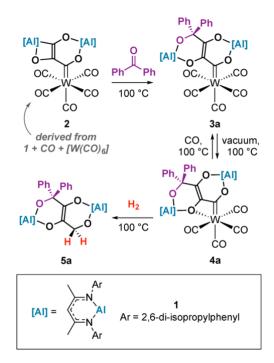
# Functionalization and Hydrogenation of Carbon Chains Derived from CO

Maria Batuecas, Richard Y. Kong, Andrew J. P. White, Mark, R. Crimmin\*

Department of Chemistry, MSRH, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.

**ABSTRACT:** Selective reactions that combine  $H_2$ , CO and organic electrophiles (aldehyde, ketones, isocyanide) to form hydrogenated  $C_3$  and  $C_4$  carbon chains are reported. These reactions proceed by CO homologation mediated by  $[W(CO)_6]$  and an aluminum(I) reductant, followed by functionalization and hydrogenation of the chain ends. A combination of kinetics (rates, KIEs) and DFT calculations has been used to gain insight into a key step which involves hydrogenation of a metallocarbene intermediate. These findings expand the extremely small scope of systems that combine  $H_2$  and CO to make well-defined products with complete control over chain length and functionality.


The controlled polymerization, hydrogenation and dehydration of CO/H<sub>2</sub> mixtures to form hydrocarbons by the Fischer-Tropsch (F-T) process is an essential reaction for industry.<sup>1,2</sup> There has long been interest in controlling the selectivity of this reaction.<sup>3</sup> Many have advocated the potential of homogeneous catalysts to lead to reaction products with defined molecular weight and oxygen content.<sup>4,5</sup>

Despite these ambitions, homogeneous reactions that lead to F-T products are incredibly rare.<sup>4,6–10</sup> Our fundamental understanding of this type of reactivity is limited; there are only a handful of well-defined systems that combine CO and H<sub>2</sub> in a single reaction sequence to form either hydrocarbon ( $C_xH_y$ ) or oxygenate ( $C_xH_yO_z$ ) products. In 1991, Lippard and co-workers reported the reductive coupling and hydrogenation of CO to form *cis*-disiloxyethylene compounds, mediated by vanadium complexes.<sup>11</sup> More recently, Peters and Suess reported a similar product from the hydrogenation of a CO derived iron dicarbyne.<sup>12</sup> Hou and co-workers have documented the hydrodeoxygenative cyclotetramerization of CO by a trinuclear titanium poly(hydride) complex to form a cyclobutanone product.<sup>13</sup> Stephan and co-workers have shown that a simple lithium amide base (LiNCy<sub>2</sub>) can react with CO/H<sub>2</sub> mixtures to form small amounts (<10 % yield) of an a-hydroxy amide derived from coupling and hydrogenation of two CO units.<sup>14</sup>

These systems represent the limit of knowledge in this field and have clear limitations. To date only C<sub>2</sub> and C<sub>4</sub> hydrogenated chain-growth products have been isolated. There are no examples of generating more complex products by incorporating organic electrophiles (other than CO) within the carbon chain. There is also a lack of detailed mechanistic information on the hydrogenation step. A broader scope and deeper understanding of these types of transformations could be an important factor in ultimately achieving selective F-T catalysis.

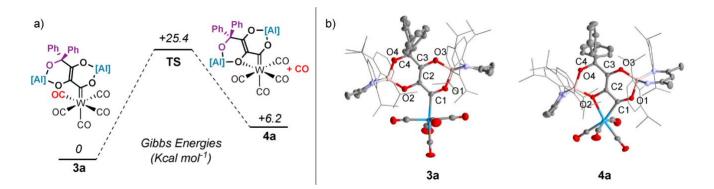
In this paper, we describe the direct hydrogenation of a series of CO homologation products, including for the first time, well-defined reactivity of  $C_3$  carbon chains. We show that F-T products can be obtained by reaction with CO, organic electrophiles, a main group reductant and H<sub>2</sub>. We provide a mechanistic description of the key hydrogenation step, shedding light on a key C–H bond formation pathway of relevance to F-T catalysis.

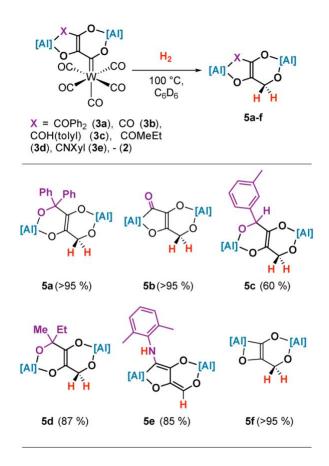
We have previously reported carbon-chain growth reactions from **1**,  $[W(CO)_6]$  and  $CO.^{15,16}$  Reaction of **2** with benzophenone at 100 °C in C<sub>6</sub>D<sub>6</sub> led to the formation of **3a** and **4a** in 81 % yield, in a 4:1 ratio based on <sup>1</sup>H NMR spectroscopy (Scheme 1).



Scheme 1. Reactions of 2 with benzophenone and H<sub>2</sub>.

The conversion of **3a** to **4a** is reversible. Heating mixtures of **3a**+**4a** under 1 atm. of CO for 12 h at 100 °C led to complete conversion to **3a**. Upon heating under vacuum, **3a** partially converts back to **4a**. DFT calculations are consistent with the reversible reaction. Formation of **4a** from **3a** was calculated to be endergonic ( $\Delta G^{\circ}_{298K}$  = +6.2 kcal mol<sup>-1</sup>) and occur *via* an interchange mechanism ( $\Delta G^{\ddagger}_{298K}$  = +25.4 kcal mol<sup>-1</sup>) (Figure 1a).





Figure 1: a). DFT calculated mechanism for transformation of **3a** to **4a**. b). Solid state structures of **3a** and **4a**.

Compounds **3a** and **4a** have been characterized by multinuclear NMR and IR spectroscopy. In C<sub>6</sub>D<sub>6</sub> solution, **3a** and **4a** display <sup>13</sup>C NMR resonances for the metallocarbene ligand at  $\delta$  = 315.6 and 310.9 ppm respectively. The equatorial and axial carbonyl ligands of **3a** are magnetically inequivalent and appear at d = 203.3 and 205.1 ppm. For comparison, **4a** shows three resonances for the CO ligands in the <sup>13</sup>C NMR spectrum at  $\delta$  = 215.5, 218.8 and 221.4 ppm due to the reduction in symmetry. IR spectroscopy is consistent with a change in geometry around the metal center from **3a** (v(CO) = 2050, 1897 and 1871 cm<sup>-1</sup>) to **4a** (v(CO) = 1988, 1874, 1862 and 1825 cm<sup>-1</sup>) due to CO dissociation.

In the solid-state, the W–C bond length of **3a** of 2.269(4) Å is longer than that of 2.195(3) Å found in **2**. Formation of the k<sup>2</sup>-C,O coordination mode occurs with a large distortion away from an ideal octahedral geometry at W, an effect driven by the acute bite angle of  $60.9(1)^{\circ}$  of the chelating ligand.<sup>17</sup> This distortion also influences the geometry at the metallocarbene fragment. The W–C<sup>1</sup>–O<sup>1</sup> and W–C<sup>1</sup>–C<sup>2</sup> angles in **3a** are 115.4(2) and 130.0(3) °, close to the expected value for a sp<sup>2</sup>-hybridised carbon center. Upon chelation to form **4a** these values become increasingly distorted away from an ideal geometry with the W–C<sup>1</sup>–O<sup>1</sup> angle expanding to 141.3(2) ° and W–C<sup>1</sup>–C<sup>2</sup> angle contracting to 99.4(2) °.

Complex **4a** reacts with H<sub>2</sub>. Treatment of a benzene solution of **4a** with H<sub>2</sub> (1 atm.) at 100 °C for 2 h led to the corresponding F-T type product **5a** in >95% NMR yield (Scheme 1). Attempts to crystallise this complex were unsuccessful, however compound **5a** was characterised by diagnostic resonances at  $\delta$  = 4.38 ppm and  $\delta$  = 67.9 ppm, in the <sup>1</sup>H and <sup>13</sup>C NMR spectra respectively, assigned to the new methylene group formed upon H<sub>2</sub> addition. Further analysis of the reaction mixtures revealed [W(CO)<sub>6</sub>] and [W(CO)<sub>3</sub>( $\eta^6$ -C<sub>6</sub>D<sub>6</sub>)] as side products of hydrogenation. An isotope labelling experiment in which **4a** was reacted with D<sub>2</sub> provided clear evidence for the formation of **5a**-D<sub>2</sub> with the methylene group resonating at d = 4.38 ppm in the <sup>2</sup>H NMR spectrum. Hydrogenation of **3a** also directly leads to **5a**,<sup>18</sup> as does the reaction of **2**, H<sub>2</sub> and benzophenone at 100 °C.

The reaction scope was developed further (Table 1). A series of C<sub>4</sub> homologation complexes (**3b-e**) were prepared from the reaction of **2** with CO,<sup>15</sup> 3-methylbenzaldehyde, 2-butanone, and 2,6-dimethylphenyl isocyanide. These reactions proceeded smoothly in all cases demonstrating that  $C_3 \rightarrow C_4$  chain growth is possible with a range of electrophiles. Hydrogenation of **3b-e** led to **5b-e** in 60-95 % NMR yield. In the case of **3e**, the expected hydrogenation product can be observed spectroscopically but isomerizes to a more stable enamine tautomer under the reaction conditions. The reaction is not limited to  $C_4$ homologation products, as direct hydrogenation of **2** was also possible leading to the formation of the C<sub>3</sub> analogue **5f**. Remarkably, **5b** could also be obtained in 50 % NMR yield from a direct reaction of  $[W(CO)_6]$ , **1** and syngas (1:1 mixture of H<sub>2</sub>/CO, 1 atm.) after 10 days at 100 °C. While the reaction is slow, this experiment shows that there is an element of self-organisation in this system as F-T type products to be formed in a single step from simple starting materials.



**Table 1.** Scope of hydrogenation reaction. Yield determined by <sup>1</sup>H NMR spectroscopy using 1,3,5-trimethoxybenzene as external standard.

Further experiments and calculations were undertaken to gain insight into the key hydrogenation step. The reaction of **3a** with H<sub>2</sub> (1 atm.) in benzene- $d_6$  at 100 °C was monitored as a function of time by *in situ* <sup>1</sup>H NMR spectroscopy. Kinetic data show that hydrogenation of **3a** occurs as consecutive reactions with **4a** as intermediate (supporting information, Figure S6). Hydrogenation of **4a** was also monitored by <sup>1</sup>H NMR spectroscopy. Kinetic data could be fitted to pseudo-1<sup>st</sup> order decay of [**4a**]. The rate constant for the H<sub>2</sub> reaction was found to be  $k_{obs}(H_2) = 6.28 (\pm 0.06) \times 10^{-4} s^{-1}$  (Figure 2). Side-by-side kinetic runs with H<sub>2</sub> and D<sub>2</sub> gave a KIE of 1.02 (±0.01).

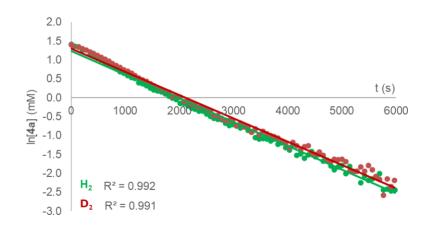



Figure 2. Ln[4a] versus time plot for reaction of 4a with  $H_2$  (green) and  $D_2$  (red); [4a]<sub>0</sub> = 4.6 mM.

A series of plausible pathways for the hydrogenation reaction were calculated by DFT. The lowest energy pathway is depicted in Figure 3. The calculated mechanism is initiated by  $\eta^2$ -dihydrogen coordination to complex **4a** to give **Int-1**.<sup>19–23</sup> Formation of this intermediate occurs *via* an interchange mechanism ( $\Delta G^{\dagger}_{298K} = +21.7 \text{ kcal mol}^{-1}$ ). Oxidative addition of H<sub>2</sub> to the W centre from **Int-1** gives the dihydride intermediate **Int-2** *via* a low energy barrier transition state **TS-2** followed by a barrierless migration of one of the hydrides to the carbon atom of the metallocarbene to give **Int-3**. There is precedent for this type of 1,2-migration involving hydride and metallocarbene ligands.<sup>24–26</sup> Prior calculations are consistent with a low energy process.<sup>27–29</sup> **Int-3** is stabilised by an agostic interaction of the newly formed C–H bond to W.<sup>30</sup> After two consecutive rotations steps via **TS-4** and **TS-5**, **Int-3** leads to **Int-5** which is stabilised by coordination of an oxygen atom of the carbon chain. **Int-5** dissociates a CO ligand through **TS-6** to give **Int-6**. **Int-6** then rotates again through **Int-7** to **Int-8** which is preorganised for reductive elimination *via* **TS-9** to afford the thermodynamically stabilised **Int-9**, a precursor of the final products.<sup>31</sup> The barrier for the reductive elimination step is low ( $\Delta G^{\dagger}_{298K} = +11.7 \text{ kcal mol}^{-1}$ ).

Overall, this calculated mechanism proceeds via a series of established fundamental steps of organometallic compounds namely: (i) ligand substitution (ii) oxidative addition, (iii) migratory insertion, and (iv) reductive elimination. The Gibbs activation energy corresponds to energy span from **4a** to **TS-5** ( $\Delta G^{\ddagger}_{298K}$  = +34.8 kcal mol<sup>-1</sup>).<sup>32</sup> The rate-limiting sequence involves coordination of H<sub>2</sub>, oxidative addition of H<sub>2</sub>, hydride migration from W to C and CO dissociation. The predicted pathway is consistent across a series of DFT functionals.

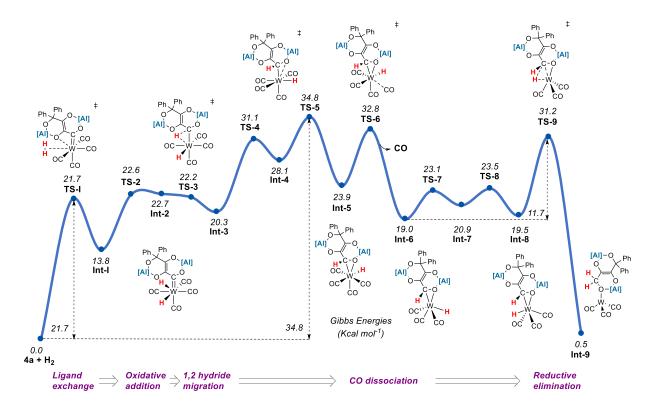



Figure 3. DFT calculated mechanism for hydrogenation of 4a.

Consideration of the calculated reaction mechanism suggests that the assignment of a KIE in this system is complex. Although the experimentally determined KIE of 1.02 ( $\pm$ 0.01) could be interpreted as a simple step not involving hydrogen atoms, based on the calculations it more likely arises from the combination of individual KIEs (or EIEs) from a series of steps. While oxidative addition of H<sub>2</sub> to W is expected to show a normal primary KIE, H<sub>2</sub> binding often occurs with an inverse IE.<sup>33</sup> Similarly, based on the stretching vibrational modes, hydride migration from W to C might be expected to occur with an inverse KIE.<sup>34</sup>

In summary, we report the formation of F-T type products from the combination of H<sub>2</sub>, CO, organic electrophiles, and a main group reductant. The reaction scope allows the generation of both C<sub>3</sub> and C<sub>4</sub> chains with complete selectively. The hydrogenation step is mediated by the transition metal which likely plays a key role through activation of H<sub>2</sub> at a site adjacent to a metallocarbene ligand. These findings greatly expand the scope and understanding of reactivity for homogeneous systems reported that combine H<sub>2</sub> and CO to make hydrogenated carbon-chains.

# ASSOCIATED CONTENT

X-ray data are deposited in the Cambridge Crystallographic database: CCDC 2130349-2130351 and 2129490-2129492. Primary data (.mnova, .txt and .xyz) are available from Imperial's Research Data Repository and available through the following link: <u>10.14469/hpc/10042</u>

# AUTHOR INFORMATION

### **Corresponding Author**

\*m.crimmin@imperial.ac.uk

### **Author Contributions**

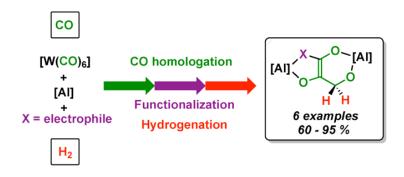
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

# ACKNOWLEDGMENT

We thank Imperial College London for the award of a President's Scholarship (RYK). We also thank the EPSRC for project funding (EP/S036628/1).

#### REFERENCES

- Schulz, H. Short History and Present Trends of Fischer-Tropsch Synthesis. *Appl. Catal. A Gen.* 1999, *186* (1–2), 3–12.
- (2) De Klerk, A. Fischer–Tropsch Process 1. *Kirk-Othmer Encyclopedia of Chemical Technology*; John-Wiley and Sons, Inc.: Hoboken, NJ, 2013; pp 1–36.
- (3) Anderson, R. B.; Friedel, R. A.; Storch, H. H. Fischer-Tropsch Reaction Mechanism Involving Stepwise Growth of Carbon Chain. *J. Chem. Phys.* **1951**, *19* (3), 313–319.
- West, N. M.; Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. Homogeneous Syngas Conversion. Coord. Chem. Rev. 2011, 255 (7–8), 881–898.
- Kong, R. Y.; Crimmin, M. R. Cooperative Strategies for CO Homologation. *Dalt. Trans.* 2020, 49 (46), 16587–16597.
- (6) B, D. Homogeneous Catalytic Hydrogenation of Carbon Monoxide: Ethylene Glycol and Ethanol from Synthesis Gas. *Adv. Catal.* **1983**, *32* (C), 325–416.
- Labinger, J. A. Approaches to Homogeneously Catalyzed CO Hydrogenation: A Personal Retrospective. J. Organomet. Chem. 2017, 847, 4–12.
- Maitlis, P. M. Fischer-Tropsch, Organometallics, and Other Friends. J. Organomet. Chem. 2004, 689 (24 SPEC. ISS.), 4366–4374.
- (9) Qi, Z.; Chen, L.; Zhang, S.; Su, J.; Somorjai, G. A. Integrating the Fields of Catalysis: Active Site Engineering in Metal Cluster, Metal Organic Framework and Metal Single Site. *Top. Catal.* **2020**, 63 (7–8), 628–634.
- (10) Demitras, G. C.; Muetterties, E. L. Metal Clusters in Catalysis. 10. A New Fischer-Tropsch Synthesis. J. Am. Chem. Soc. 1977, 99 (8), 2796–2797.
- (11) Protasiewicz, J. D.; Lippard, S. J. Vanadium-Promoted Reductive Coupling of CO and Facile Hydrogenation To Form Cis-Disiloxyethylenes. *J. Am. Chem. Soc.* **1991**, *113* (17), 6564–6570.
- (12) Suess, D. L. M.; Peters, J. C. A CO-Derived Iron Dicarbyne That Releases Olefin upon Hydrogenation. J. Am. Chem. Soc. 2013, 135 (34), 12580–12583.
- Hu, S.; Shima, T.; Hou, Z. Hydrodeoxygenative Cyclotetramerization of Carbon Monoxide by a Trinuclear Titanium Polyhydride Complex. *J. Am. Chem. Soc.* **2020**, *142* (47), 19889–19894.
- Xu, M.; Qu, Z. W.; Grimme, S.; Stephan, D. W. Lithium Dicyclohexylamide in Transition-Metal-Free Fischer-Tropsch Chemistry. *J. Am. Chem. Soc.* 2021, *143* (2), 634–638.
- Kong, R. Y.; Crimmin, M. R. Carbon Chain Growth by Sequential Reactions of CO and CO<sub>2</sub> with [W(CO)<sub>6</sub>] and an Aluminum(I) Reductant. *J. Am. Chem. Soc.* **2018**, *140* (42), 13614–13617.
- (16) Kong, R. Y.; Batuecas, M.; Crimmin, M. R. Reactions of aluminium(I) with transition metal carbonyls: scope, mechanism and selectivity of CO homologation. *Chem. Sci.* 2021, *12*, 14845-14854.
- (17) Hart, I. J.; Jeffery, J. C.; Lowry, R. M.; Stone, F. G. A. Acyl-Alkylidyne Coupling in the Synthesis


of Dinuclear Complexes. Angew. Chem. Int. Ed. 1988, 27 (12), 1703–1705.

- (18) To check if insertion could occur also into hydrogenated products, reaction of **3a** with benzophenone was tested and no reactivity was observed, suggesting that the reaction follows the sequence insertion-hydrogenation.
- (19) Although different geometries for Int-1 can be proposed, rotational barriers for H<sub>2</sub> ligand have been calculated to be low in energy for this molecule (ΔG°<sub>298K</sub> = +3.2-6.8 kcal mol<sup>-1</sup> and ΔG<sup>‡</sup><sub>298K</sub> = +0.7-4.5 kcal mol<sup>-1</sup>) and are in agreement with previous results for related molecules (see supporting information).
- (20) Hay, P. J. Ab Initio Theoretical Studies of Dihydrogen Coordination vs Oxidative Addition of H<sub>2</sub> to Five-Coordinate Tungsten Complexes. J. Am. Chem. Soc. **1987**, 109 (3), 705–710.
- (21) Hay, P. J. Ab Initio Theoretical Studies of a Novel Tungsten Dihydrogen Complex. *Chem. Phys. Lett.* **1984**, *103* (January), 466–469.
- (22) Juergen Eckert, Gregory J. Kubas, John H. Hall, P. Jeffrey Hay, and C. M. B. Molecular Hydrogen Complexes. 6. The Barrier to Rotation of η<sup>2</sup>-H<sub>2</sub> in M(CO)<sub>3</sub>(PR<sub>3</sub>)<sub>2</sub>(η<sup>2</sup>-H<sub>2</sub>) (M = Tungsten, Molybdenum; R = Cyclohexyl, Isopropyl): Inelastic Neutron Scattering, Theoretical, and Molecular Mechanics Studies. *J. Am. Chem. Soc.* **1990**, *112*, 2324–2332.
- (23) Albright, T. A. Rotational Barriers and Conformations in Transition Metal Complexes. *Acc. Chem. Res.* **1982**, *15* (5), 149–155.
- (24) Osborn, V. A.; Parker, C. A.; Winter, M. J. Hydride to Carbene Migration at Molybdenum; the Isomerisation of Mo(H){=C[CH<sub>2</sub>]<sub>3</sub>NMe}(CO)<sub>2</sub>(η-C<sub>5</sub>H<sub>5</sub>) to Mo(CO)<sub>2</sub>{η<sup>2</sup>-CH[CH<sub>2</sub>]<sub>3</sub>NMe}(η-C<sub>5</sub>H<sub>5</sub>). *J. Chem. Soc. Chem. Commun.* **1986**, *2* (15), 1185–1186.
- (25) Charles P. Casey and Stephen M. Neumann. Reaction of Molecular Hydrogen with Transition Metal Carbene Complexes: Reductive Cleavage of the Carbene Ligand. *J. Am. Chem. Soc.* 1977, 99 (5), 1651–1652.
- (26) Green, J. C.; Green, M. L. H.; Morley, C. P. A Kinetic Study of the 1,2-Hydrogen Shift in a Bis(η-Cyclopentadienyl)Tungsten System. *Organometallics* **1985**, *4* (7), 1302–1305.
- (27) Carter, E. A.; Goddard, W. A., III Methylidene Migratory Insertion into a Ruthenium-Hydrogen Bond. J. Am. Chem. Soc. 1987, 109 (2), 579–580.
- (28) Ziegler, T.; Versluis, L.; Tschinke, V. Migratory Aptitude of Hydride and Methyl toward Carbon Monoxide, Thiocarbonyl, and Carbene in RMn(CO)<sub>4</sub>XY (XY = CO, CS, CH<sub>2</sub>; R = H, CH<sub>3</sub>). A Theoretical Study by the Hartree-Fock-Slater Transition-State Method. *J. Am. Chem. Soc.* **1986**, *108* (4), 612–617.
- (29) Carter, E. A.; Goddard, W. A. Modeling Fischer—Tropsch Chemistry: The Thermochemistry and Insertion Kinetics of CIRuH(CH<sub>2</sub>). *Organometallics* **1988**, *7* (3), 675–686.
- (30) Alternative mechanisms in which **Int-1** undergoes CO dissociation to give a pentacoordinated dihydrogen intermediate or in which CO dissociation and H migration occur simultaneously from

**Int-2** have been discarded due to their high transition state energy: **TS-2a**,  $\Delta G^{\ddagger}_{298K} = +42.3$  kcal mol<sup>-1</sup>; **TS-3b**,  $\Delta G^{\ddagger}_{298K} = +44.0$  kcal mol<sup>-1</sup> (see supporting information).

- (31) An alternative plausible mechanism from **Int-5** in which CO dissociation does not take place was calculated to present a similar energy ( $\Delta G^{\ddagger}_{298K} = +35.9 \text{ kcal mol}^{-1}$ ) (see supporting information).
- (32) The energy span from **4a** to **TS-6** ( $\Delta G^{\ddagger}_{298K} = +32.8 \text{ Kcal mol}^{-1}$ ) is similar. These two steps are close in energy and either could be rate-limiting.
- (33) Janak, K. E.; Parkin, G. Deuterium and Tritium Equilibrium Isotope Effects for Coordination and Oxidative Addition of Dihydrogen to [W(CO)<sub>5</sub>] and for the Interconversion of W(CO)<sub>5</sub>(H<sub>2</sub>-H<sub>2</sub>) and W(CO)<sub>5</sub>H<sub>2</sub>. Organometallics **2003**, 22 (22), 4378–4380.
- (34) Bullock, R. M.; Bender, B. R. Isotope Methods Homogeneous. In *Encyclopedia of Catalysis*; I. Horváth, Ed.; 2000; pp 1–62.

# **TOC graphic**

