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Abstract 

Net zero requires an accelerated transition from fossil fuels to renewables. Carbon capture and 

utilization (CCU) can be an effective intermediate solution for the decarbonization of fossil 

fuels. However, many research works contain renewables in the design of CCU systems, which 

may mislead stakeholders regarding the hotspots of CCU systems. In this work we build a 

model of a CCU system with no renewables involved, and evaluate its greenhouse (GHG) 

emissions based on the life cycle assessment with a cradle-to-gate boundary. To pursue the best 

system performance, an optimization framework is established to digitalize and optimize the 

CCU system regarding GHG emissions reduction. The optimized CCU can reduce GHG 

emissions by 13% compared with the conventional process. Heating is identified as the most 

significant contributor to GHG emissions, accounting for 60%. Electrifying heating fully by 

low-carbon electricity can further reduce GHG emissions by 47%, but such extreme conditions 

will significantly sacrifice the economic benefit. By contrast, the multi-objective optimization 

can show how the decisions can affect the balance between GHG emissions and profit. Further, 

this work discusses the dual effect of carbon pricing on the CCU system – raising the cost of 

raw materials and utilities, but also gaining credits when emissions are reduced in producing 

valued products.  

[ Broader context ] 

Fossil fuels are essential to supply the global energy demand but cause remarkable CO2 

emissions. Carbon capture and utilization (CCU) can be an effective technology to decarbonize 

the fossil fuel-based heavy industry, e.g. power stations. In many systems proposed for CCU, 

further conversion of captured CO2 to valued chemicals (utilization) requires extensive input 

of hydrogen or energy, which are assumed to be generated using surplus renewable electricity. 

Such an assumption might be challenging to realize in the near future and make the evaluation 
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of CCU over-optimistic. Herein, this work focuses on a ‘worst condition’ (no renewables 

involved) and shows how optimization can be applied to explore the maximum potential of 

CCU regarding environmental and economic aspects. Further, the influence of carbon pricing 

on the deployment of CCU is also discussed. 

Highlights   

• Statistical surrogate models ease the task of optimization of large process  

• Heating in CCU is identified as the most significant contributor to GHG emissions  

• Multi-objective optimization achieves better solutions compared to single-objective 

• Carbon pricing has dual effects on the deployment of CCU.  

Keywords: multi-objective optimization; carbon capture and utilization; digitalization; carbon 

pricing; lifecycle GHG emissions 

Nomenclature 
CCUS Carbon capture, utilization and storage 
CCU Carbon capture and utilization 
CCS Carbon capture and storage 
GHG Greenhouse gas 
NGCC Natural gas combined cycle power plant 
NGCC-CCS  Natural gas power plant equipped with CCS 
Low-carbon electricity Specifically refer to the electricity from NGCC-CCS in this work.  
MEA Monoethanolamine  
PSA Pressure swing adsorption 
FT Fischer-Tropsch 
MS Methanol synthesis 
GHG!!" GHG emissions of the whole CCU system (the industrial park) 
GHG#$% GHG emissions of the reference system (no capture, refinery, MS)  
F Mass flow, ton/h 
α  Lifecycle GHG emission factors, ton!&!$'/ton 
U Consumption of utility u in sub-system i, GJ/h 
β  Economic	factors, $/ton 
𝛾()! Carbon price, $/ton!&! 
GA Genetic algorithm 
NSGA-II Non-dominated sorting genetic algorithm-II 
Subscript   
i Notation for sub-systems 
r Notation for raw materials (natural gas, process water, MEA, etc.) 
u Notation for utilities (steam, fuel gas, electricity, cooling, etc.) 
p Notation for products (gasoline, diesel, methanol, etc.) 
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1. Introduction 

To limit global warming to 1.5~2 ℃ above pre-industrial levels, worldwide countries have 

pledged to cut the CO2 emissions to nearly zero (or ‘net zero’) by the mid of 21st century.1 Net 

zero requires a complete upgrading for the current energy system, since approx. 75% of GHG 

emissions result from today’s energy sector.2 Fossil fuels are essential to supply approx. 80% 

of today’s worldwide energy demand, and they are projected to play an indispensable role in 

an immediate timeframe.2 Carbon capture is reported as both an effective and scalable 

technology to decarbonize the fossil fuels-based energy sectors.3 Further conversion of 

captured CO2 to high-value products (or ‘utilization’) requires an excessive amount of energy 

to break its chemical bonds, because CO2 is thermodynamically highly stable. If the energy 

source is purely fossil fuels, carbon capture and utilization (CCU) is reported to cause more 

emissions than unabated fossil fuels.4-6 To address this challenge, it has been proposed to apply 

renewable energy to power the carbon utilization, thus forming ‘power-to-X’ (power refers to 

solar or wind renewable energy source; X refer to fuels or chemicals, such as methanol, H2, 

gasoline and polymers).4, 5, 7-13 However, it is complex to immediately scale up these systems 

due to two facts: (1) a prerequisite is the access to cheap renewable energy, which requires a 

considerably higher renewable power capacity than todays’ installations for solar 

photovoltaics14 and wind turbines; (2) the intermittent renewable electricity requires either 

cheap battery systems or the feasibility for dynamic operation of the utilization processes.8, 11 

Further, several studies on hybrid systems, i.e. [CCU + renewable H2/electricity], lead to a 

conclusion that the inclusion of renewable energy sources are indispensable to achieve 

emissions reduction,4, 5 and also the cost of the renewables is considered to be the limiting 

factor for the economic feasibility of hybrid systems.4, 6, 15 We anticipate that the involvement 

of renewables might underestimate the potential of CCU and mislead the hotspot identification 

for the CCU itself.  

We therefore sought to investigate whether CCU can be viable without the input of renewables. 

To answer this question, we created a hypothetical industrial park, where power plants are 

integrated with CCU, but no renewables are involved in the initial design. Following this, 

optimization is applied to explore the maximum potential of CCU regarding the environmental 

and economic aspects. The proposed strategy is inspired by the net-zero trends and prior works 

on CCU studies, which will be expanded in this section.  
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1.1 ‘Big picture’ - some trends urged by net zero 

Transition to net zero requires drastic changes across many industries, which is difficult to 

realize in a short period of time.16 Net zero will not happen spontaneously, and it largely relies 

on policies. So far, over 130 countries have pledged to their national net-zero targets,1 but few 

pledges are backed up by legislation or detailed policies. From the existing policies to stricter 

schemes, International Energy Agency (IEA) presents three scenarios2 for the prediction of 

global energy sector through 2050, as shown in Figure 1.  

 

Figure 1. Three scenarios for energy transition, predicted by IEA.2 STEPS only considers the 

existing policies, which can control the temperature increase by 2.7 ℃ in 2100; (2) APC 
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assumes that all the pledged targets will become policies, which can control the temperature 

increase by 2.1 ℃ in 2100; (3) net-zero case, corresponds to the temperature increase by 1.5 ℃ 

in 2050. (Note: this net-zero case scenario is proposed by IEA, but not the only scenario path 

to achieve net-zero emissions.) 

Some key points are as follows. 

(1) Electricity (generation) sector produces nearly 40% emissions in 2020 (Figure 1b).2    

(2) The reliance on fossil will decline to 67 ~ 22% in 2050 (Figure 1c) but not disappear, 

because fossil fuels are required to produce carbon-embodied products (e.g., certain 

polymers),2 which cannot be easily replaced by bio-materials based products. 

(3) Even if fossil fuels decline to 22%,  the potential market of carbon capture is enormous, 

because around half of fossil fuels are required to equip with carbon capture (4Gt CO2 

captured in 2035, while 7.6Gt captured in 2050).2  

(4) The renewable share will grow to 25 ~ 67% in 2050 (Figure 1d).2   

(5) Electrification will be the trend across all sectors.2 Electricity generation will increase 

by 170 ~ 150% (Figure 1e), which lays the foundation for electrification. Regarding 

the supply of heating utility, fossil fuels should gradually be substituted by low-carbon 

electricity.2  

(6) A significant growth in carbon price should be introduced to regulate the GHG 

emissions (Figure 1f).2 

Therefore, reducing the power plant emissions is paramount under the net-zero framework. 

Fossil fuels will continue to play a dispensable role through 2050, while the growth rate of 

renewables will be subject to a high degree of uncertainty depending on the extent of policy 

support. As such, there is a need for innovation that supports a stepwise transition from the 

current fossil-fuels based energy production to the renewable-based future. Hence, [fossil fuels 

+ carbon capture] may be a good intermediate solution to renewables. Additionally, we can 

consider electrification to enhance CCU as well as the influence of carbon price.  

1.2 Prior works on CCU  

‘Capture’ systems described in the literature usually refer to carbon capture, utilization and 

storage (CCUS). Carbon capture involves capturing CO2 from heavy industries, such as power 

stations, fertilizer production sites, cement factories, steel plants, or directly from the air.3 CO2 

storage refers to the captured CO2 being compressed and injected into the underground for 

permanent storage.3 CO2 utilization converts the captured CO2 to valued products, e.g., fuels 
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and polymers.3 Depending on storage or utilization, the CCUS is divided into CCS (carbon 

capture and storage) and CCU (carbon capture and utilization).17 CCS deal with the endpoint 

of CO2, which can directly benefit climate change mitigation17 but might deliver limited 

financial returns depending on the local policies.18 By contrast, CCU regards CO2 as a carbon 

source for further conversion, which can be highly profitable, as far as the deployed conversion 

methods are efficient and associated with a minimum additional GHG emissions.17 Hence, 

CCU is a complex system that requires a techno-economic evaluation at a regional scale,17 e.g., 

an industrial park.  

There are various pathways for either capture or utilization. Extensive studies had been done 

to optimize individual sub-systems of CCU, e.g., pressure swing adsorption,19-22 and MEA for 

CO2 capture,23, 24 methanol synthesis11, 15, 25 or Fischer-Tropsch26, 27 for subsequent utilization. 

However, the performance of these sub-systems depends on each other, and thus individual 

optimal solutions cannot simultaneously co-exist. When optimizing a sub-system before 

extending to the whole CCU system, we can only expect to obtain a sub-optimal solution. In a 

recent review paper, Dieterich et al. also pointed out that the studies on the interaction between 

CCU sub-systems are still scarce.8 Inspiringly, Roh et al. optimized a whole CCU system, 

where MEA is taken as the only CO2 capture technology, and the 15 utilization pathways co-

exist to satisfy market demands.5 In Roh’s work, the competitive interactions among different 

sub-systems are considered, but the complexity/non-linearity for individual sub-systems is 

neglected.5 To manipulate both high-level system variables and sub-system variables, a more 

robust method is superstructure optimization,28 but this method leads to complex formulations 

and difficult-to-solve MINLP problems.29 An alternative solution is surrogate-based 

optimization, where sub-systems can be represented by cheap-to-evaluate surrogates.29 

Surrogates are developed by regression to build a direct relationship between process inputs 

and outputs.30 Still, most prior works limit the surrogate-based optimization to a CCU sub-

system (either capture21, 22, 31-33 or utilization15, 25).  

Overall, previous works neither deliver a convincing evaluation of an impact of a CCU system 

in energy transition, nor address the complexity of optimizing a CCU system composed of 

different carbon capture and utilization technologies. To address both challenges, this work 

focuses on an overseen scenario: CCU plants without renewable energy input considered in the 

initial design, and we develop a surrogate-based optimization methodology to assess its 

maximum potentials regarding emissions reduction and economic gain. Carbon pricing is 

included in the economic calculation to predict the future potential of this CCU system.   
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The remaining sections are structured as follows. Section 2 describes an industrial park where 

natural gas power plants are integrated with CCU. Section 3 illustrates the digitalization and 

optimization framework for the whole CCU system. Section 4 presents the single-objective 

optimization of maximizing the GHG reduction; this is set up to evaluate whether CCU can 

reduce CO2 effectively, as well as to validate the overall optimization framework. Following 

this, multi-objective optimization is applied to the whole system concerning GHG reduction 

and economic gain in Section 5. Section 6 introduces carbon pricing within the economic 

evaluation. The final section presents conclusions and outlooks.  
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2. Problem statement: an industrial park of power stations integrated with CCU 

To explore the potential for decarbonization of energy and chemicals manufacturing by means 

of CCU, we sought to investigate all feasible process configurations that include well-

understood, scalable process options for capture and utilization sections. We illustrate this 

approach with a case study of a hypothetical industrial park, which is powered by natural gas, 

and delivers electricity and liquid fuels as main products. In the reference case, where no carbon 

capture is deployed, all CO2 emissions arising from electricity production are vented to the 

atmosphere. In case of integration of CCU, these CO2 emissions will be captured and converted 

to fuels, thus reduce the input of petrochemical resources to the chemical synthesis and 

consequently decrease the carbon footprint of the industrial park. The industrial park is 

presumed to contain two natural gas combined cycle (NGCC) power plants. One NGCC is 

equipped with MEA, while the other is coupled with a PSA, as to capture CO2. The CO2 

fraction of flue gas is concentrated from ~4 to ~90% by MEA and PSA, respectively. Following 

this, with the co-feed of NG and steam, the concentrated CO2 is reformed to syngas, which is 

further converted to fuels, being reviewed as one of the most promising product type for carbon 

utilization.17, 34 Among different liquid fuels used on large-scales, methanol,  gasoline, and 

diesel are reported as the crucial for the mobility sector, because of their high energy density,8 

and convenient handling. Hence, we focused on Fischer-Tropsch (FT) and methanol synthesis 

(MS) to manufacture fuel products (gasoline, diesel, and methanol). Overall, the proposed 

industrial park can be compatible with the existing industry in: (1) the upstream – by 

decarbonizing the energy sector, (2) the downstream – by supplying fuels to the mobility sector. 

 

Figure 2. The hypothesized industrial park, where two NG power plants are integrated with 
carbon capture and fuel production. The industrial park operates as a CCU system, which 
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contains four sub-systems: [NGCC+MEA], [NGCC+PSA], [Reforming + FT] and [Reforming 
+ MS]. 

The model of the industrial park is based on the following assumptions: 

(1) The CO2 captured by PSA is assumed to be temporarily stored in a collection hub, 

where CO2 is well mixed before utilization. As such, the PSA performance under cyclic 

steady state32 can be equivalent to steady-state. Additionally, the time scale of a PSA 

cycle (~10 min)35 is much shorter than the start-up of chemical plants (~days)36. 

Therefore, the overall system can be considered to operate under a steady-state 

condition. 

(2) This PSA system contains two 4-step PSA processes in series to gradually improve the 

purity of CO2 and guarantee the final purity is over 90% (SI, Section S1.3). 

(3) An NGCC power plant is closely connected to a capture process, forming a sub-system.  

(4) The captured CO2 is mixed and then re-distributed to the downstream utilization 

pathways. The optimal ratio of CO: H2 is slightly different between FT (*!&
+!

= 1) and 

MS (*!&,-!&!
+!

= 1). This is because CO2 can be a carbon source in MS (CO2 is active 

on MS catalysts37, 38), while CO2 is inactive on FT catalysts39, 40. Hence, CO2 is 

distributed before reforming, which adjusts the CO/H2 for FT and MS, respectively.     

(5) Combined reforming is considered: dry reforming is considered to convert CO2 to 

syngas, while steam reforming is also involved in adjusting the ratio between CO and 

H2 in the final syngas. Both reforming processes can be assumed to achieve 

equilibrium.41, 42 

(6) A reforming process is closely connected to FT or MS, thus resulting in a single sub-

system.  

(7) The heating utility can be replaced with low-carbon electricity for a flexible design for 

utility supply.  

3. Optimization framework 

The scope of the optimization framework is designed around the entire industrial park, 

containing of four sub-systems, i.e. [NGCC + MEA], [NGCC + PSA], [Reforming + FT] and 

[Reforming + MS]. To determine an optimal configuration, models of sub-systems are 

necessary. The current industrial practice involves the application of tailored simulators for 

specific systems (e.g. Dymola for dynamic process modelling, Aspen for reactors and 

separation units). We anticipated that it might be insightful to search a global decision space 
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by simultaneously optimizing all sub-systems, ideally from a level of a higher interactive 

platform. To achieve this goal, as well as improve the computational efficiency of the complex 

optimization task, we digitalized the sub-systems using surrogates and proposed a three-level 

framework shown in Figure 3. This work mainly considers Artificial Neural Networks (ANNs) 

as surrogates, because ANNs are claimed to be universal approximators.43 

 

Figure 3. Three-level approach for the optimization of complex processes, illustrated by the 
case-study of decarbonization of an integrated industrial park. 

In Level 1, the sub-systems are modelled in different dedicated simulators. The two NGCC 

power plants are represented in Integrated Environmental Control Model (IECM).44 MEA 

absorption is also modelled in IECM. The PSA is modelled in Dymola, which is a mature and 

broadly deployed tool for modelling dynamic processes.45 Reforming section integrated with 

FT/MS is modelled in Aspen Plus. The detailed information for modelling of the individual 

sub-systems and technical flowsheets are given in Section 1 of Supplementary Information (SI, 

S1).  

In Level 2, ANN-based surrogates are established to replace the rigorous simulations for sub-

systems for the overall optimization goal. Each sub-system can have one or two surrogates. For 

example, [Reforming + FT] sub-system contains only one surrogate, while the [NGCC + PSA] 

sub-system contains two surrogates for the two PSA in series. The detailed methodology for 

surrogate construction can be referred to our prior work, where we present how to build 

surrogates for the PSA and [reforming + FT].46 The paramount step to generate surrogates is 

identifying the essential input/output variables, which is closely related to the optimization of 
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the whole CCU system. To identify input/output variables for individual surrogates, we use a 

top-down systems thinking approach: (1) the decision variables and optimization objectives are 

the key input/output variables of the whole CCU system; the input should also include 

uncertainties, e.g., concertation of methane in NG or carbon price; (2) the input/output variables 

of whole CCU system determines those for sub-systems, which can be referred to Section S2 

in SI; (3) the input/outputs variables of a sub-system determines those for surrogates (SI, 

Section S3). Table 1 summarized the decision variables considered. Design space of the 

decision variables is randomly sampled to generate sufficient input values, which are sent to 

the simulators in Level 1 for the corresponding output via rigorous simulations. Eventually, the 

obtained input/output data points can be used to train ANN-based surrogates.  

In Level 3, surrogate-based optimization is performed, as illustrated in Figure 4. We deploy a 

simulation-based optimization approach, where simulation is executed within the optimizer. 

Level 1 and Level 2 offer process model inputs to one simulation platform, where decision 

variables and process uncertainties are used to run the overall flowsheet simulation. 

Subsequently, lifecycle GHG emission factors (SI, Table S3) and economic factors (SI, Table 

S4) are considered within the mass and energy balances calculated in the overall flowsheet 

simulation, thus resulting in the objective values. The optimizer varies the values of decision 

variables and improves the objectives iteratively. After the surrogate-based optimization is 

completed, we use the obtained values for the decision variables to perform rigorous 

simulations for individual sub-systems, as to validate the optimal solution.  
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Figure 4. Detailed steps of the optimization deployed on Level 3: mass and energy flows, in 
conjunction with the input of environmental metrics (lifecycle GHG emissions) and economic 
factors are being used to evaluate the objectives and constraints.  
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Table 1. Design variables for the model of the industrial park and their lower (LB) and upper 
bounds (UB) considered during optimization. 

 Design variables Unit [LB,UB] Definition 
MEA r!&! - [0.60, 0.95]47 Recovery rate of CO2  

1st PSA 

P./ bar [0.005, 0.05]20 Low-pressure setpoint 
P0/ bar [0.07, 0.5]20 Intermediate-pressure setpoint 
v%$$1/ m s-1 [0.1, 2]20 Velocity of inlet flow 
t213/ s [20, 100]20 Duration of adsorption 
t41/ s [30, 200]20 Duration of blowdown 
t$526/ s [30, 200]20 Duration of evacuation  

2nd PSA 

P.* bar [0.005, 0.05]20 Low-pressure setpoint 
P0* bar [0.07, 0.5]20 Intermediate-pressure setpoint 
v%$$1* m s-1 [0.1, 2]20 Velocity of inlet flow 
t213* s [20, 100]20 Duration of adsorption 
t41* s [30, 200]20 Duration of blowdown 
t$526* s [30, 200]20 Duration of evacuation  

CO2 to FT z78 - [0.025, 0.975] Splitting between FT and MS 

FT 

T78 ℃ [215, 265]26 Reaction temperature for FT 
P78 bar [15,50]48, 49 Reaction pressure for FT 
tray78 - [45, 65] Tray no. of distillation column 
T#$%/ ℃ [750, 1000]50 Reformer temperature 
P#$%/ bar [3, 7]50 Reformer pressure  
S9:#;$ - [0.001, 0.2] Fraction for purge (recycle) 
Re78 - [0.01,0.99] Fraction for FT (reformer)  

MEOH 

F<=/F!& - [2, 3.7] Ratio of NG over CO2 

T>? ℃ [180, 220]51 Reaction temperature for MS 

P>? bar [50, 80]51 Reaction pressure for MS 
Tray>? - [45, 65]52 Tray No. of distillation column 
T#$%* ℃ [800, 1000]50 Reformer temperature 
P#$%* bar [3, 7]50 Reformer pressure  

Heating 
utility 

Frac%:$@$@$A!!?	 - [0, 1] Fraction of fuel heating 
substituted by CCS electricity 

Frac3B$2C$@$A!!? - [0, 1] Fraction of steam heating 
substituted by CCS electricity 

4. Single-objective optimization regarding lifecycle GHG emissions reduction 

The optimization framework described above was applied to assess the potential of CCU to 

solely reduce GHG emissions (i.e., in the absence of renewable sources of energy). Here we 

only consider the GHG emission reduction as the objective of the optimization.  

The GHG emissions are evaluated based on the life cycle assessment (LCA) with a cradle-to-

gate boundary. We seek to compare the overall emissions from the reference process (described 

in Section 2: Problem statement) to emissions of the system with CCU. For a meaningful 
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comparison (Fig. 4), we evaluate multiple process configurations where both the reference 

process and the CCU system yield exactly the same amount of electricity and fuels (defined as 

the system expansion strategy53).  A more detailed information for the system boundary and 

the system expansion strategy can be referred to Section S4.1 – S4.2 (SI). 

 

Figure 5. Comparison between CCU vs. Reference (Ref) system by the system expansion 

strategy: different process configurations considered within the optimization are designed to 

yield equivalent amount of electricity and fuels for both CCU and Reference systems. 

Based on the mass and energy balances derived from process models and lifecycle GHG 

emission factors (SI, Table S3), the GHG reduction is calculated in Eq 1-Eq 3 (further details 

are given in Section S4 in SI). 

 GHG!!" =FFα# ∙ FD,#
#

+FFα: ∙ UD,:
:

+FFD,!&*
DDD

 Eq 1 

 GHG#$% = αFG(( ∙ E$@$6B#D6DBH +FFα9 ∙ FD,9
9D

 Eq 2 

 GHG#$1:6BDIJ = 1 − =+=""#
=+=$%&

  Eq 3 

where 

GHG!!" GHG emissions of the whole CCU system (the industrial park) 
GHG#$% GHG emissions of the reference system (no capture, refinery, MS)  
F Mass flow, ton/h 
α#  Lifecycle GHG emission factor per raw material r generation: ton!&!$'/ton# 
U Consumption of utility, GJ/h 
α: Lifecycle GHG emission factor per utility u generation: ton!&!$'/GJ 
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FD,!&! Uncaptured CO2 or CO2 in the vent gas in sub-system i, ton!&!$'/h 
α<=!!  Lifecycle GHG emission factor per NGCC power generation: ton!&!$'/GJ 
E$@$6B#D6DBH Net output of electricity from [NGCC + MEA/PSA], GJ/h 
α9 Lifecycle GHG emission factor per product p generation: ton!&!$'/ton9 
Subscript   
i Notation for sub-systems 
r Notation for raw materials (natural gas, process water, MEA, etc.) 
u Notation for utilities (steam, fuel gas, electricity, cooling, etc.) 
p Notation for products (gasoline, diesel, methanol, etc.) 

The optimization is formulated as follows, 

 max
𝛉
(1 −

GHG!!"
GHG#$%

) Eq 4 

s.t. LB ≤ θ ≤ UB Eq 5 

Genetic algorithm (GA) is used as the optimizer, and the progress of the optimization towards 

reaching the maximum reduction of GHG emissions is illustrated in Figure 6. The mean 

objective value is the average objective value of populations at every iteration.  In the initial 

generations, the mean objective value is negative, which indicates CCU can even cause more 

GHG emissions than the reference system. We terminate the optimizer after 50 iterations, 

where the mean objective value is closed to the best objective. Herein, we approximate the 

found values for decision variables as the optimal operating condition, as shown in Table 3. 

Under this condition, rigorous simulation is performed and yields a similar objective value as 

the simulation by surrogates. 

 

Figure 6. The optimization progress for GHG reduction in the industrial park, for single-
objective optimization (GHG reduction). 
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Further, we find that surrogate simulation for GHG emissions of sub-systems is very close to 

rigorous simulation results under both initial (random guess) and optimal operating conditions 

(SI, Figure S10), what confirms the capability of the surrogate model to accurately evaluate 

mass and energy flows at a reduced computational cost.  

The GHG emissions of sub-systems are presented in Figure 7. Under a random (initial) system 

configuration, CCU deployment results in more life cycle GHG emissions than the reference 

system, used to generate the same amount of electricity and products. This is because, within 

the initially evaluated process configuration, CO2-based reforming requires extensive energy 

input, which can lead to more emissions if no proper operating conditions are set. For example, 

emissions from [Reforming + FT] is almost triple of that from the refinery in the reference 

system (Figure 7a). Under the optimal operating condition, GA selects to produce more 

methanol instead of gasoline (thus, emissions from [Reforming + FT] become negligible). This 

is probably because CO2 cannot be converted in the FT path,39, 40 while CO2 can be well utilized 

in MS.8, 37, 38  

 

Figure 7. GHG emissions of sub-systems of the industrial park for the system with CCU 

deployment and the reference case (no CCU). Both systems are designed to deliver equivalent 

output of products (electricity, methanol, fuels). a) Emissions for the initial configuration. b) 

emissions for the configuration determined as optimal, where methanol production is favored. 

Clarification for the legends: left of ‘/’ for the CCU system, right of ‘/’ for the reference system.  

Furthermore, the optimization algorithm is capable of distinguishing between the choice of 

MEA from PSA unit operations, even though this is not evident from the system-level data. 

The use of carbon capture leads to two effects on the 500 MW NGCC plants: lowering the 
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emissions but shrinking the net electricity output. As shown in Table 2, PSA has fewer 

emissions than MEA; 20% electricity loss is seen for the deployment of MEA, while 16% 

electricity loss for PSA. Hence, PSA has an advantage over MEA regarding GHG emissions 

reduction and energy saving. However, this advantage is negligible when referring to GHG 

emissions in the whole CCU system because more emissions are caused by the utilization paths 

than the capture paths (Figure 7b).   

Table 2. Performance of carbon capture for 500 MW NGCC under the optimal operating 
condition determined for single-objective optimization (Figure 7b). 
  Emissions [ton CO2/h] Net electricity output [MW] 

CCU 
[NGCC1 + MEA] 37.17 400 

[NGCC2 + PSA] 36.66 418 

Reference 
[NGCC1] 163.50 400 

[NGCC2] 170.80 418 

The optimal operating conditions are listed in Table 3. To maximize the GHG reduction, the 

requirements for sub-systems are as follows: 

(1) MEA: high recovery rate is preferred. 

(2) PSA: in 1st PSA, the PL1 should be low enough to enhance capture capacity, while this 

requirement is not strict for 2nd PSA. Long evacuation is preferred for two PSA columns, 

and thus sufficient time is allocated to recover the captured CO2.  

(3) MS is favoured over FT.  

(4) Heating tends to be fully substituted by low-carbon electricity.   

(5) In the reforming process, the ratio of NG/CO2 is suggested to approach the upper bound, 

meaning sufficient NG is required to substantially convert CO2 to CO in the reforming 

section.  
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Table 3. Initial guess and optimal values (by GA) for decision variables for single objective 
optimization. 

 Decision 
variables θ Unit Initial  

(base case) Optimal Decision 
index 

MEA r!&! - 0.775 0.933 (1) 

1st PSA 

P./ bar 0.0075 0.007 (2) 
P0/ bar 0.285 0.406 (3) 
v%$$1/ m s-1 1.05 0.614 (4) 
t213/ s 60 68.789 (5) 
t41/ s 115 32.515 (6) 
t$526/ s 115 183.637 (7) 

2nd PSA 

P.* bar 0.0275 0.014 (8) 
P0* bar 0.285 0.170 (9) 
v%$$1* m s-1 1.05 0.534 (10) 
t213* s 60 59.411 (11) 
t41* s 115 44.544 (12) 
t$526* s 115 178.820 (13) 

CO2 to FT z78 - 0.75 0.027 (14) 

FT 

T78 ℃ 240 248 (15) 
P78 bar 32.5 25.904 (16) 
tray78 - 55 62 (17) 
T#$%/ ℃ 875 876 (18) 
P#$%/ bar 5 5.073 (19) 
S9:#;$ - 0.1005 0.045 (20) 
Re78 - 0.5 0.573 (21) 

MS 

F<=/F!&! - 2.85 3.498 (22) 

T>? ℃ 200 204 (23) 

P>? bar 65 69.542 (24) 
Tray>? - 55 46 (25) 
T#$%* ℃ 900 933 (26) 
P#$%* bar 5 6.224 (27) 

Heating 
utility 

Frac%:$@$@$A!!?	 - 0.2 0.997 (28) 
Frac3B$2C$@$A!!? - 0.2 0.956 (29) 

While determining the optimal conditions, GA tends to replace fossil fuel-based heating with 

low-carbon electricity generated from sources deploying carbon capture and storage. However, 

we anticipate that there might exist several techno-economic limitations towards a complete 

substitution of heating by decarbonized electricity sources. Hence, we performed a set of 

scenario analyses for the heating substitution regarding the upper bound for substituting heating 

utility is set as 0, 25%, 50%, 100%. The optimization is performed respectively for them 

(optimization progresses can be referred to Figure S11 and optimal operating condition in Table 

S5). After optimization, the GHG emissions can be reduced, ranging from 13% to 47%, while 
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all the substitution percentages to low-carbon electricity tend to approach the upper bounds 

(Table 4).  

Table 4. Scenario analysis for the optimization result of the industrial park, with 0-100% 
heating utility is substituted by low-carbon electricity (CCS-electricity). 

Max substitution [%]  0 25 50 100 

GHG reduction [%] 13.0 19.8 30.5 47.0 

Fuel sub [%] 0 24.9 49.8 99.7 

Steam sub [%] 0 22.3 49.6 95.6 

Figure 8 shows the breakdowns of sources for GHG emissions in the industrial park. The 

largest source is heating, followed by NG, CO2 emissions via vent gas and electricity, etc. 

When increasing the heating substitution from 0% to 100%, the GHG emissions can be reduced 

by 40%. By contrast, GHG emissions are negligible for the cooling, process water and MEA. 

Yet, even for 100% heating substitution by CCS-electricity, we can spot that heating still holds 

the most considerable contribution to GHG emissions.  

 

Figure 8. Sources of GHG emissions in the industrial park. Results correspond to the 
optimization result of the industrial park, regarding 10%, 25%, 50% and 100% heating utility 
are substituted by low-carbon electricity.  
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5. Multi-objective optimization regarding lifecycle GHG emissions and economic gain 

Upon exploring the capability of CCU to decarbonize the NG-based power plants and fuels 

production, we sought to include the economic into the optimization framework. The economic 

evaluation is under the following assumptions: 

(1) The cost calculation considers the operational cost only, since the technology readiness 

level of CCU is relatively low and its capital cost cannot be quantified accurately.5   

(2) This industrial park is operated in the EU. Economic assessment is based on the prices 

data for materials/utilities in the first half of 2021. No carbon tax is assumed at this 

stage of analysis.  

Based on the mass & energy flow from process models and lifecycle GHG emission factors 

(SI, Table S3), the profit of the CCU system is calculated following Eq. 6. 

 Profit = −FFβ# ∙ FD,#
#

−FFβ: ∙ UD,:
:

−FFD,!&*
D

∙ γ!&!
DD

+ β!!? ∙ E$@$6B#D6DBH +FFβ9 ∙ FD,9
9D

 

Eq 6 

where 

FD,# Mass flow of raw material r in sub-system i, ton/h 

β#  Cost of raw material r, $/ton# 

UD,: Consumption of utility u in sub-system i, GJ/h 

β	: Cost of utility u, $/GJ 

FD,!&! CO2 emissions in the vent gas in sub-system i, ton!&!$'/h 

β!!?  Price of CCS electricity, $/GJ 

E$@$6B#D6DBH Net output of electricity from [NGCC + MEA/PSA], GJ/h 

β9 Price of product p, $/ton9 

γ!&! Carbon price (‘0’ in this section), $/ton!&! 

Subscript   

i Notation for sub-systems 

r Notation for raw materials (natural gas, process water, MEA, etc.) 

u Notation for utilities (steam, fuel gas, electricity, cooling, etc.) 

p Notation for products (gasoline, diesel, methanol, etc.) 
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The formulation of relevant equations and economic data can be referred in Section S5 in SI 

(SI, S5). The optimization is formulated as follows, 

 max
𝛉
[S1 −

GHG!!"
GHG#$%

T , 	profit] Eq 7 

s.t. LB ≤ θ ≤ UB Eq 8 

To solve it, we use the non-dominated sorting genetic algorithm-II (NSGA-II), a stochastic 

optimization algorithm that approximates the Pareto front. Pareto front offers a set of trade-off 

solutions, where one objective cannot be improved without worsening the other one.  

5.1 Pareto front 

Surrogate-based optimization yields the optimal values for decision variables (Figures S12-

S13). Based on these optimal decisions, rigorous simulations are performed to calculate the 

two objectives. As shown in Figure 9, when we set the GHG emissions reduction objective to 

a high value at 42%, the profit is even negative; yet pursuing a high profit (>3.8e5 $/h) can 

make the CCU system release even more emissions than conventional processes.    

 

Figure 9. Multiobjective optimization of the CCU system: Pareto front between profit and 
GHG emissions reduction. 

To better understand the trade-off between the two objectives, we refer to the economic 

breakdowns of several Pareto points, which are selected based on GHG emissions reduction at 

-24%, 0%, 15%, 30% and 42%. As shown in Figure 10, improving GHG emissions reduction 

leads to a gradual growth of utility costs and dropping revenue. Table 5 indicates that the 

increasing utility cost is caused by the rising percentage of heating electrification, because the 
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energy price of low-carbon heating can be over four times that of fuel or steam (SI, Figure S14). 

Meanwhile, the shift from FT to MS can further promote the GHG emissions reduction but 

sacrifice the economic revenue, because the market price of methanol is much lower than FT 

fuels – gasoline/diesel (SI, Table S4).  

 

Figure 10. The breakdowns of economic gain in several Pareto front points (selected based on 

GHG emissions reduction at -24%, 0%, 15%, 30% and 42%). 

Table 5. The trend of Pareto front points (from left to right in Figure 9). 

GHG reduction  -24% 0 15% 30% 42% 

Profit [$/h] 5.06e5 3.80e5 3.03e5 1.19e5 -6.20e4 

z78 0.963 0.958 0.963 0.565 0.195 

Frac%:$@$@$A!!?	 0.047 0.579 0.933 0.965 0.984 

Frac3B$2C$@$A!!? 0.631 0.754 0.843 0.940 0.997 

Clarification: z78: split of CO2 to FT. 1 − z78: split of CO2 to MS. Frac%:$@$@$A!!?: fraction of 

fuel heating substituted by CCS heating. Frac3B$2C$@$A!!? : fraction of steam heating 

substituted by CCS.  

5.2 Optimal values for the decision variables 

When referring to the optimal values for the decision variables, multi-objective optimization 

can recommend the operating conditions for individual processes. As shown in Figures S12-

S13, each subplot refers to one decision variable, while each circle in a subplot corresponds to 

one solution found by NSGA-II (corresponding to a point in Pareto front in Figure 9).  
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Table 6 compares the suggested operating conditions by single-objective optimization and 

multi-objective optimization. On the one hand, both suggest some similar operating conditions. 

For example, MEA is recommended to approach the upper bound in both cases. On the other 

hand, two types of optimization differ on some operating conditions: single-objective 

optimization suggests some extreme conditions (approach either lower or upper bound of 

decision variables). In contrast, multi-objective optimization offers more moderate operating 

conditions. For example, single-objective optimization selects the lowest PL (corresponding to 

the best recovery for CO2 but also the highest energy consumption20) for the PSA system; also, 

MS is chosen as the main CO2 utilization pathway. By contrast, multi-objective optimization 

determines a relatively low value for PL and recommends to mix FT with MS in the utilization 

pathways. This is because the multi-objective optimization delivers more practical solutions, 

where GHG emissions reduction should be balanced with the economic aspects.  
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Table 6. Best operating conditions (decision variables) found by single-objective vs. multi-
objective optimization. 

 Suggested operating conditions (θ) by Decision 

Index  Single-objective optimization 

GA (Table 3) 

Multi-objective optimization 

NSGA-II (Figure S12-S13) 

MEA High recovery rate High recovery rate  (1) 

1st PSA PL approaches the lowest 

Long adsorption 

Short desorption for N2 

Long desorption for CO2 

PL is relatively low 

Long adsorption 

Long desorption for N2 

Long desorption for CO2 

(1-7) 

2nd PSA  PL approaches the lowest 

Long desorption for CO2 

PL is relatively low 

Long desorption for CO2 

(8-13) 

Utilization 

pathways 

MS is favored over FT. FT is favored over MS sometimes 

FT and MS co-exist sometimes 

(14) 

FT (not important, because FT is not 

selected) 

FT 248 ℃, 26 bar 

Distillation 62 trays 

Reformer 876 ℃, 5.0 bar 

Purge % at 4.5% 

More recycle to FT section 

(very important, because FT is 

selected as a key utilization path) 

FT 244-246 ℃, 28 bar 

Distillation 55-57 trays 

Reformer 947 - 950 ℃, 4.2-4.5 bar  

Purge % at 4.4 – 7.2% 

More (>80%) recycle to reforming 

(15-21) 

MS NG/CO2 = 3.5. 

MS reactor inlet 204 ℃. 

MS reactor inlet 70 bar 

Distillation 46 trays 

Reformer 933 ℃, 6.2 bar 

NG/CO2 = 3.6-3.7 

MS reactor inlet 196-198 ℃  

MS reactor inlet 66 bar 

Distillation 55 trays 

Reformer 863-881 ℃, 5.6-5.7 bar 

(22-27) 

Heating  Fuel-gas heating is fully 

substituted by low-carbon elec. 

Steam-based heating is fully 

substituted by low-carbon elec. 

Fuel-gas heating is partially 

substituted by low-carbon elec. 

Steam-based heating is over 60% 

substituted by low-carbon elec. 

(28-29) 

NSGA-II is a stochastic optimization technique, so the found solution theoretically cannot 

guarantee the optimality unless infinite iterations are performed. To check whether the best 

solutions found in our case are robust or not, we evaluate two extreme scenarios regarding the 
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selection of utilization pathways – fully employing either FT or MS. As shown in Figure 11, 

either way does not deliver better solutions than the found solution found by NSGA-II. On the 

one hand, the CO2 utilization via entirely FT tends to bring in a higher profit, but the potential 

for GHG emissions reduction is limited to 20%. On the other hand, fully MS can enhance GHG 

emissions reduction to 46% but dramatically lose the economic advantage compared to the 

original solution found by NSGA-II. 

 

Figure 11. Influence of different utilization pathways: (a) Trade-off between profit and GHG 
reduction for the industrial park. (b) the fraction of CO2 utilization via FT (values of other 
operating conditions keep the same). 
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Similarly, we evaluate another extreme scenario, where the heating is fully substituted by low-

carbon electricity. As shown in Figure 12, such a complete substitution brings in minor 

improvement on GHG reduction but significantly sacrifices the economic gain.  

 

Figure 12. Influence of the heating fully substituted by low-carbon electricity: (a) trade-off 
between profit and GHG reduction for the industrial park; (b) the fraction of fuel-gas heating 
substituted by low-carbon electricity; (c) the fraction of steam heating substituted by low-
carbon electricity (values of other operating conditions keep the same). 

In brief, multi-objective optimization can recommend moderate operating conditions for the 

industrial park. Relating the Pareto front to decision variables can offer an insight into how 

environmental and economic aspects are affected by operating conditions. Specifically, 

utilization to gasoline/diesel (FT path) can bring in more economic benefits, while utilization 

to methanol (MS path) and electrifying heating is more environmental-friendly. By contrast, 

the extreme operating conditions tend to significantly sacrifice either economic or 

environmental aspects.  

Notably, the economic evaluation can be sensitive to the project location choice and market 

dynamics. Subsequently, the LCA-Economic trade-off curve may potentially change.     



27 

 

6. Influence of carbon pricing 

Lastly, we sought to examine the influence of carbon pricing on the CCU system. IEA reports 

that carbon price will significantly increase up to 250 $/ton-CO2 by 2050 for advanced 

economies.2 As predicted by Nicholson et al., the rising carbon prices can raise the energy 

cost.54 as a result of an extra financial constraint for the utility emissions, which can be roughly 

assessed by multiplying the emission factors by the carbon price (Eq 9). We embedded different 

strategies for carbon tax deployment and assumed that carbon pricing is imposed both on 

emissions resulting from both utility usage, and also, on the life-cycle emissions from the 

carbon-based raw materials and products.  

The economic factors contain therefore two parts: original prices and carbon tax as follows, 

 β: = β:,L + α: ∙ γ!&! Eq 9 

 β# = β#,L + α# ∙ γ!&! Eq 10 

 β9 = β9,L + α9 ∙ γ!&! Eq 11 

where 

β  Economic factors, $/ton 

𝛼 Lifecycle GHG emission factors, ton!&!/ton 

𝛾()! Carbon price, $/ton!&! 

Subscript   

i Notation for sub-systems 

r Notation for raw materials (natural gas, process water, MEA, etc.) 

u Notation for utilities (steam, fuel gas, electricity, cooling, etc.) 

p Notation for products (gasoline, diesel, methanol, etc.) 

0 Notation for original price (no carbon tax applies) 

Based on the optimization results for decision variables at no carbon price, the profits are re-

calculated under other carbon prices (no further optimization is performed here, so it is not 

proper to use the term ‘Pareto front’. The phrase, ‘trade-off’ curve, is used in this section). 

Figure 13 presents the change of the trade-off curves for the carbon price ranging from 0 to 

250 $/ton-CO2. With the increase of carbon price, the profit shifts to different directions 

depending on the GHG reduction. At a low GHG reduction, the profit drops with the carbon 

tax increase; at a high GHG reduction, the trend is reversed.   
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Figure 13. Influence of carbon price on the trade-off curve between profit and GHG emissions 
reduction. 

To investigate why the trade-off curve shift to different directions, we pick the points at -24%, 

23% and 42% of GHG emissions reduction, under which we investigate their economic 

breakdowns (Figure 14). We can find carbon tax has dual effects on this CCU system. On the 

one hand, the process cost increases with carbon tax. This is because the CCU plant is still 

associated with emissions from raw materials, utilities and unreacted CO2 emissions, so the 

cost of these emissions is consequently increased. On the other hand, the revenue from fuel 

products rises with the growth of carbon tax, as the carbon tax increases the price of fuel 

products, which brings in extra credits to the CCU system. MS can reduce more GHG 

emissions and the credit for methanol is larger than FT products. Hence, the revenue increase 

in methanol is much more significant than that in FT products, which reflects that raising 

carbon tax brings in more revenue at 42% GHG reduction than that at -24% GHG emissions 

reduction.  
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Figure 14. Influence of carbon price on the breakdowns of net profit. 

Additionally, carbon price imposes a higher penalty to the utilities with higher emissions. As 

shown in Figure 15, the cost of utilities with direct emissions increases faster than the low-

carbon utilities. This explains why the utility cost at -24% GHG emissions reduction, when the 

percentage of heating electrification is very low (Table 5), grows significantly with the increase 

of carbon tax (Figure 14). By contrast, heating is almost fully substituted by low-carbon 

electricity at 42% GHG reduction, so the growing carbon tax does not notably change the utility 

cost.   

 

Figure 15. Influence of carbon price on the costs of utilities. 

Overall, at a higher GHG emissions reduction, the carbon tax promotes a higher growth rate 

for credit gain and a lower growth rate for the penalty. By contrast, a lower GHG emissions 

reduction has an inverse trend. As such, increasing carbon tax brings the trade-off curves in an 

intersection at 23% GHG reduction, where the growth rate of cost is equivalent to that of 
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product revenue. Notably, we analyzed here only the net profit from the CCU system, without 

considering how its economic performance would compare to a direct-emission system, which 

will become significantly less economic under the increasing carbon pricing scenario.  

7. Conclusions  

The optimization framework presented in this paper allows for optimization of complex 

problems with conflicting objectives, as illustrated with the case of CCU system (the proposed 

industrial park). To determine its best performance regarding environmental and economic 

aspects, we developed an optimization framework, where the industrial park is fully digitalized 

by ANN-based surrogates and simultaneously optimized in a cost-efficient manner. As such, 

the nonlinearity of sub-systems and the interaction between sub-systems are well considered 

during the optimization iterations. By scrutinizing the interactions between different unit 

operations proposed for carbon capture and utilization sections, optimization enables to 

determine a process configuration allowing for substantial reduction of CO2 emissions (-13%). 

Importantly, the proposed decarbonization strategy does not rely on deployment of renewable 

energy sources hence offers a solution which is not dependent on the growth of renewables 

sectors. Through comparing the emissions from sub-systems under the optimal solution, we 

found that the GHG emissions in utilization dominate the whole CCU system, so optimizing 

the utilization path can be more rewarding than the capture path. This finding benefits from 

optimizing the sub-systems simultaneously. The GHG emissions breakdowns indicate that 

heating is the most significant contributor to GHG emissions of the whole system, accounting 

for 60%. Electrifying heating fully by CCS electricity and fully producing methanol in the 

utilization pathways can reduce GHG emissions by 47% compared to the conventional process. 

Still, such extreme conditions will significantly sacrifice the economic benefit. By contrast, 

multi-objective optimization suggests the production of mixed methanol/gasoline/diesel and 

partially heating electrification, which can achieve a better trade-off between GHG reduction 

and economic profit.  

This work also discusses the dual effect of the carbon price on this CCU system. On the one 

hand, carbon pricing puts an extra cost on the raw materials and utilities. On the other hand, 

the carbon tax can also bring in a ‘credit’ effect when reducing GHG emissions in production. 

The effect of carbon taxes on the techno-economic performance of CCU is therefore complex 

to predict, and consequently the optimization approach proposed here can be a useful tool to 

determine the optimal solution under different scenarios of carbon prices.  
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Additionally, this work suggests the heating electrification can be an alternative to renewable 

H2 to make the CCU more competitive regarding the environmental aspect, while developing 

the affordable low-carbon heating technologies10, 55-57 can enhance the economic viability.  

Proposed method demonstrates that digitalization and optimization are powerful tools to 

explore the potential of CCU. We anticipate that availability of tools that can generate precise 

process estimates under a low computational cost can support decision-making in comparing 

numerous technologies. Specifically, the scope of this work is [gas + CCUS], which integrates 

the gas-fired power plants with CCU, as well as the heating utility partially substituted by CCS 

electricity. Eq 12 and random simulations can deliver a rough range of emission factor of [Gas 

+ CCUS], see the red column in Figure 16. Single-objective optimization can reach the lower 

bound for the emission factor, while multi-objective optimization tends to slightly increase the 

emissions while improve other objectives, such as the economic aspect. Figure 16 lists the 

emission factors of several power generation technologies,58 and specific attentions should be 

given to renewables with the potential to form new low-carbon pathways. In a long term, net 

zero needs various low-carbon pathways. While their decarbonization performances are 

exploited by optimization, the overall progress of net zero will be accelerated. 

 

Figure 16. Lifecycle GHG emission factors of various power generation technologies. Scope 

of this work is [Gas-CCUS], and its emission factor is calculated as Eq 12. Other values can be 

found in Weisser.58   

 α;23A!!"? =
GHG!!"

E$@$6B#D6DBH + ∑ ∑ e9 ∙ FD,99D
 Eq 12 

where 



32 

 

α;23A!!"? Lifecycle GHG emission factor of [gas-CCUS]: ton!&!$'/GJ 
GHG!!" GHG emissions of the whole CCU system (the industrial park) 
F Mass flow, ton/h 
e  Energy density: GJ/ton 
E$@$6B#D6DBH Net output of electricity from [NGCC + MEA/PSA], GJ/h 
Subscript   
i Notation for sub-systems 
p Notation for products (gasoline, diesel, methanol, etc.) 
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S1. Rigorous process models for sub-systems  

This section describes the how sub-systems are simulated in a rigorous way. 

S1.1. NG-based Power plant (NGCC) 

The natural gas combined cycle power plant (NGCC) is simulated in the Integrated 

Environmental Control Model (IECM) platform.1 Wet cooling water is selected as the cooling 
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system. Based on the simulation, we can obtain the consumptions of raw materials (NG, water) 

and emissions per unit of electricity generated.     

 

Figure S1. NGCC power plant. 

S1.2. MEA absorption process 

A MEA absorption process is set up in the Integrated Environmental Control Model (IECM) 

platform. In IECM, a power plant equipped with carbon capture (NGCC-MEA) can be 

simulated. Based on the simulation, we can obtain the consumptions of raw materials (NG, 

water, MEA) and emissions per net electricity generated.     

 

Figure S2. MEA absorption process. 
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S1.3. PSA in series 

A more detailed description on PSA process (balance equations, boundary conditions, cyclic 

steady state) can be referred to our prior work.2 After our initial trail, one PSA unit cannot 

guarantee the required purity (90% for carbon capture), due to the low CO2 concentration in 

the flue gas (~ 4%). Herein, we propose to use two PSA in series to gradually improve the 

purity of CO2. A trade-off relationship is reported between recovery and purity.3, 4 To maintain 

a relatively high recovery, the first PSA aims to increase the CO2 purity to 20%~50% (ranging 

from 25% to 75% among the CO2 purity distribution), while the second one PSA further 

improve the CO2 purity over 90%.   

 

Figure S3 Two PSA in series.
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S1.4. Reforming + FT 

A more detailed description on [Reforming + FT] sub-system can be referred to the process modelling for GTL in our prior work.2 This section 

only mentions some essential information related to this work. As shown in Figure S4, the [Reforming + FT] sub-system is modelled in Aspen 

Plus, including combined reforming, FT synthesis, and product upgrading section. This process starts with the combined reforming (CO2 + H2O) 

of natural gas to syngas, followed by FT synthesis for fuels. Since the upgrading section has little influence on the overall performance,5 we use a 

distillation column to simplify it. To deal with a petrochemical process, Peng-Robinson is selected as the thermodynamic method.  

 

Figure S4. Flowsheet for GTL built in Aspen Plus.
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S1.4.1. Combined reforming  

In the reforming section, GTL starts with NG, water and CO2.  In the pre-reformer, all the 

carbon components are converted to CO and CH4. In Aspen Plus, the reformer is modelled by 

an RGibbs reactor, where the total Gibbs energy is minimized to the reach the equilibrium 

(‘Restricted Chemical Equilibrium’ is set for the combined reforming reactions). A flowsheet 

option is set to vary the flowrate of H2O and NG to guarantee the ratio of CO: H2 falls in a 

range of 2.0 – 2.2 in the reformer outlet.  

Combined reforming 

CH! + H"O → 3H" + CO 

CH! + CO" → 2H" + 2CO 

S1.4.2. Fischer-Tropsch  

Fischer-Tropsch (FT) has a long industrial history of producing high-quality fuels.6, 7 Low-

temperature FT (LTFT) is considered in this work. This is because FT	 reaction	 is	 highly	
exothermic,	 and	 a	 lower	 temperature	 can	 improve	 the	 final	 conversion	 regarding	 the	
thermodynamic	equilibrium.	For LTFT, the desired syngas ratio falls in the range of 2 – 2.2 

for H2 : CO,5-7 and the reaction temperature is reported to range from 200 to 270 ℃ 6, 8, 9 as well 

as pressure in 15 – 50 bar.8-10  

(2n + 1)H" + nCO → C#H"#$" + nH"O 

For FT kinetics, Yates et al. developed a simple but reliable expression 30 years ago for the 

consumption rate of CO as Equation S.1.11 

 r%& =
F ∙ a ∙ P%& ∙ P'!
(1 + b ∙ P%&)"

 S.1  

where,  F: catalyst improvement factor since Yates’ kinetics proposed in 1991; 

 4(: partial pressure of component 5; 

 a: reaction rate coefficient; 

 b: adsorption coefficient. 

In the FT section, the syngas is pressurized before entering the FT reactor. RPlug is chose to 

simulate the multi-tubular fixed-bed reactor for FT in Aspen Plus. Yates’ kinetics is used for 

the overall consuming rate of CO (6)*),11 while the Anderson-Schulz-Flory mechanism can be 



 7 

used to estimate the distribution of FT products.7 Since the properties of hydrocarbons (HCs) 

are similar, .we employ four reactions (R1~R4) to represent the whole range of HCs for 

simplification during the simulation as the Table S1. CO2 is reported not to react on the Cobalt-

based catalyst and can be regarded as an inert gas in the FT reaction.12, 13 Based on the 

information mentioned above, we used the kinetic information in Rplug model. 

Table S1. Components and reactions used in the simulation. 

C range Molar fraction Representations Representative reactions R%& 

C+ 0.07 CH! R1:		3H" + CO →CH! + H"O 0.007r%& 

C"~C! 0.18 C,H- R2:		7H" + 3CO →C,H- + 3H"O 0.053r%& 

C.~C+" 0.30 C-H+- (gasoline) R3:		17H" + 8CO →C-H+- + 8H"O 0.234r%& 

C+,$ 0.45 C+/H,! (diesel) R4:		33H" + 16CO →C+/H,! + 16H"O 0.706r%& 

Total 1.00   r%& 

S1.4.3. Separation and recovery 

Following the FT reactor, a three-phase flash is used to split the mixed stream into gas, liquid 

HCs and wastewater. As a simplification to the upgrading system, we use a distillation column 

(RadFrac) to separate gasoline from diesel. For the gas mixture in the simulation, we use an 

ideal separator (in the real world, PSA can be an option) to recycle all the C1 components. The 

GTL system contains inert gas (N2), which must be purged (otherwise, it will gradually 

accumulate in the recycle stream, making the convergence impossible to achieve). Here, the 

recycle stream is split to vent (to purge) and C1REC, which will be followed by splitting into 

reforming section and FT sections, respectively.        

S1.4.4. Utility and its integration 

The heating utility is supplied by steam at 300 ℃ and fuel gas over 1000 ℃. The cooling utility 

is provided by air and cooling water at room temperature. Pump and compressor are powered 

by electricity.  

A high temperature is required for the reforming reaction. Thus, the reformer outflow has an 

extremely high temperature and needs to be cooled before the FT process. We built three heat 

exchangers to gradually cool down the reformer outflow, while the recycled heat is used to pre-
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heat the mixed stream to the gas form (>100 ℃), an intermediate temperature for pre-reformer 

(~ 500 ℃) and a high temperature for reformer (700 ~ 1000 ℃). 

Additionally, the purge stream contains CO and CH4, which will bring in considerable 

greenhouse emissions if the direct emissions apply. With the assistance of air, a burner is used 

to deal with these C1 components. An RGibbs reactor @ 600 ℃ is used to simulate the burner. 

Due to the exothermic reactions, the burner will release heat, while the waste heat recovery 

technology14, 15 can be used to recover the part of burner heating (utilization efficiency is 

assumed at B012342 = 60%) to reduce the heating utility of steam or fuel gas.   
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S1.5. Reforming + MS 

The [Reforming + MS] sub-system contains two sections: (1) combined reforming, which generates the syngas with the composition ratio as 
!"#$%"#!

&!
= 1 (Figure S5); (2) methanol synthesis (MS) converted the syngas to methanol (Figure S6). The MS process model was reported in the 

Aspen Plus model library.16  

 

Figure S5. Reforming section for [Reforming + MS]. 
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Figure S6. MS process model, taken from Aspen Tech model library.16 

S1.5.1. Combined reforming 

Combined reforming section is similar to S1.4.1. Combined reforming ; flowsheet options are set to manipulate the flowrates of NG and inlet 

water, in order to the guarantee the optimal syngas ratio as !'($%'(!)!
= 1 for MS reaction (Figure S5).
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S1.5.2. Methanol synthesis 

For the MS section, Aspen Tech Model library offers an industrial-scale process model (Figure 

S6), where the thermodynamics, reaction kinetics and mass balance are validated. The process 

model is reported to be capable to simulate the most common industrial methanol process - ICI 

Synetix low pressure methanol process (LPM). A four-stage quench reactor is used to perform 

the heat integration between the inlet stream and exothermic MS reactions. More detailed 

information about the process models can be referred to the Aspen Tech documents.16    

CO2 + 3H2 ↔ CH3OH + H2O 

CO2 + H2 ↔ CO + H2O (RWGS) 

Vanden Bussche and Froment kinetics17 are used for MS.  

 r !" = 	

k!"p#$!p%!(1 −
p#%"$%p%!$
K!"p%!

& p#$!
)

+1 + K'
p%!$
p%!

+ K(p%!
).+ + K#p%!$-

& (W,-.F,-.) S.2 

 r /01" = 	
k/01"p#$!(1 −

p#$p%!$
K/01"p#$!p%!

)

+1 + K'
p%!$
p%!

+ K(p%!
).+ + K#p%!$-

(W,-.F,-.) S.3 

where the rate constants can be expressed as follows, 

 k!" = k!",345exp	(−
E!"
R
(
1

T
−

1

T345
)) S.4 

 k/01" = k/01",345exp	(−
E/01"

R
(
1

T
−

1

T345
)) S.5 

where,  r!": rate of methanol synthesis, kmol/s; 

 p6: partial pressure of component i, bar (i = H7, H7O, CH&OH, CO, CO7); 

 k8: rate constant of reaction j, kmol/kg-cat/s (j = MS, RWGS) 

 T345: reference temperature, 501.57 K 

 k8,345: rate constant of reaction j @ T345,  kmol/kg-cat/s (j = MS, RWGS) 

 E8: activation energy of reaction j,  kmol/kg-cat/s (j = MS, RWGS) 
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 K8: equilibrium constant of reaction j (j = MS, RWGS), expressed as lnK8 = A8 +
(#
9

 

 W,-.: rate constant of reaction j, kmol/kg-cat/s (j = MS, RWGS) 

 F,-.: catalyst activity factor, F,-.=1 @ fresh catalyst. 

S1.5.3. Separation and recovery 

We do not modify the separation part of the original process model. More detailed information 

about the process models can be referred to the Aspen Tech documents.16        

S1.5.4. Utility and its integration 

This section is the same as the Section S1.4.4. Utility and its integration. 
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S2. Overview of essential input/output of sub-systems 

The carbon capture and utilization (CCU) system can be divided into four sub-systems: [NGCC 

+ MEA], [NGCC + PSA], [Reforming + FT] and [Reforming + MS]. Table S2 lists the input 

and output for sub-systems. The input of a sub-system contains the decision variables and 

relevant variables from other sub-system. The output of a sub-system contains its mass and 

energy balance. After the decision variables θ = [θ!:', θ;"'<, θ;"'7, z=9, θ=9, θ!", ϵ, ε] are 

given a set of values, the mass and energy balance of the whole CCU system can be assembled 

from the sub-systems. 

Table S2. Inputs and outputs for sub-systems. 

Sub-systems (i) Input  Output 

NGCC + MEA θ!"# F!"#,%&!'(), F!"#,%&!*, E+,%%-!"# 

NGCC + PSA [θ./#0, θ./#1] F./#,%&!'(), F./#,%&!*, E+,%%-./# 

Reforming + FT [θ23, F!"#,%&!'(), F./#,%&!'(), z23] F23,4, F23,), F23,%&!" , U23,5 

Reforming + MS [θ!/, F!"#,%&!'(), F./#,%&!'(), 1 − z23] F!/,4, F!/,), F!/,%&!" , U!/,5 

where,  

θ!:': decision variables for MEA absorption process.  

θ;"'<: decision variables for 1st PSA process. 

θ;"'7: decision variables for 2nd PSA process. 

θ=9: decision variables for [reforming + FT]. 

θ!": decision variables for [reforming + MS] sub-system. 

z=9: distribution of captured CO2 to FT process. 

F!:',#$!,->: mass flow of captured CO2 by MEA absorption process, ton#$!/h. 

F!:',#$!4: mass flow of uncaptured CO2 by MEA absorption process, ton#$!/h. 

F;"',#$!,->: mass flow of captured CO2 by the two PSA in series, ton#$!/h. 

F;"',#$!4: mass flow of uncaptured CO2 by the two PSA in series, ton#$!/h. 
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E?1##@!:': net electricity output for [NGCC + MEA] sub-system, netMW. 

E?1##@;"': net electricity output for [NGCC + PSA] sub-system, netMW. 

F66,3: mass flow for required raw materials, ii = [FT,MS], r = [NG, H7O], ton/h. 

F66,>: mass flow for products, ii = [FT,MS], p = [gasoline, diesel, MEOH], ton/h. 

F66,#$!$: mass flow for CO2 emissions via the vent gas, ii = [FT,MS],	 ton/h. 

U66,A: utility consumption, ii = [FT,MS], u = [fuel	gas, steam, electricity, cooling], GJ/h. 

S3. Surrogates for sub-systems 

S3.1. NGCC 

There is no surrogate here. For NGCC, the IECM software can yield 

GHG!0B:  emissions per unit of electricity generation, ton/MWh; 

NG!0B: NG consumption per unit of electricity generation, ton/MWh; 

H7O!0B: water consumption per unit of electricity generation, ton/MWh. 

S3.2. [NGCC + MEA] 

The [NGCC + MEA] sub-system aims to build the relationship between θ!:'  and 

[F!:',#$!,->, F!:',#$!4, E?1##@!:'].  

θ!:'  only contains one decision variable as the recovery rate of CO2 in MEA process 

(Re#$!,!:'). When assigning a set of values to Re!:' , the IECM software can yield the 

corresponding simulation outputs. With the inputs/outputs, we train a linear regression model 

as follows: 

 [Re!:', η!:', H7OC4.!0B, MEAC4.!0B] = surrogate?1##@!:'(θ!:') S.6 

where, Re!:': recovery rate of CO2 in MEA process.  

η!:': net power out per NGCC power generation (partial loss in MEA), netMW/MW 

After coupled with a MEA absorption process, a 500 MW NGCC power station generate net 

power (E?1##@!:', netMW) and captured CO2 (F!:',#$!,->, ton#$!/h) as follows, 

 E?1##@!:' = η!:' ∙ 500 S.7 
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 F!:',#$!,-> =	500 ∙ GHG!0B ∙ 	Re!:' S.8 

 F!:',#$!4 =	500 ∙ GHG!0B ∙ (1 − Re!:') S.9 

S3.3 [NGCC + PSA] 

The [NGCC + MEA] sub-system aims to build the relationship between 	

[θ;"'<, θ;"'7] and [F;"',#$!,->, F;"',#$!4, E?1##@;"']. 

Two surrogates are built for two PSA processes, respectively. The obtained CO2 purity from 

1st PSA is the inlet CO2 concentration for the 2nd PSA. Their input variables are as follows, 

θ;"'< = [PD<, PE<, v544F<, t-FG<, tHF<, t4I-,<] 

[Pu;"'<, θ;"'7] = [Pu;"'<, PD7, PE7, v544F7, t-FG7, tHF7, t4I-,7] 

A well-distributed values for input can generated by employing Latin hypercube sampling 

(LHS) for the design space of input variables. Based on these input values, the rigorous PSA 

simulation on Dymola can yield outputs (purity, recovery and energy consumption). With the 

inputs/outputs, we train two ANN models as follows,  

 [Pu;"'<, Re;"'<, Energy;"'<] = Surrogate;"'<(θ;"'<)	 S.10 

 [Pu;"'7, Re;"'7, Energy;"'7] = Surrogate;"'7([Pu;"'<, θ;"'<]) S.11 

where, Re;"'<: recovery rate of CO2 in 1st PSA process 

Re;"'<: recovery rate of CO2 in 2nd PSA process 

Energy;"'<: energy consumption per CO2 captured in 1st PSA, MWh/ton#$! 

Energy;"'7: energy consumption per CO2 captured in 2nd PSA, MWh/ton#$!. 

The overall performance for [NGCC + PSA] sub-system can be obtained in the following 

equations: 

 Pu;"' = Pu;"'7	 S.12 

 Re;"' = Re;"'< ∙ Re;"'7	 S.13 

 η;"' = 1 − GHG!0B ∙ (Energy;"'< ∙ Re;"'< + Energy;"'7 ∙ Re;"') S.14 

where Pu;"': purity of CO2 from the two PSA  

Re;"': recovery rate of CO2 from the two PSA  
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η;"': net power out per NGCC power generation (partial loss in PSA), netMW/MW 

After coupled with two PSA in series, a 500 MW NGCC power station generate net power 

(E?1##@;"', netMW) and captured CO2 (F;"',#$!,->, ton#$!/h) as follows, 

 E?1##@!:' = η;"' ∙ 500 S.15 

 F;"',#$!,-> =	500 ∙ GHG!0B ∙ 	Re;"' S.16 

 F;"',#$!4 =	500 ∙ GHG!0B ∙ (1 − Re;"') S.17 

S3.4. Reforming + FT 

The [Reforming + FT] sub-system aims to build the relationship between 	

]θ=9, F!:',#$!,->, F;"',#$!,->, z=9, ϵ, ε^ and [F=9,3, F=9,>, F=9,#$!$ , U=9,A]. 

The amount of CO2 flowing to [Reforming + FT] can be calculated as follows, 

 F=9,#$! = (	F!:',#$!,-> + F;"',#$!,->) ∙ z=9 S.18 

The input variables for [Reforming + FT] are as follows, 

[F=9,#$! , θ=9] = [F=9,#$! , T=9, P=9, Tray345<, T345<, P345<, S>A3J4, Re=9] 

A well-distributed values for input can generated by employing Latin hypercube sampling 

(LHS) for the design space of input variables. Based on these input values, the rigorous 

simulation on Aspen Plus can yield outputs (mass flows and utilities). With the inputs/outputs, 

we train an ANN model for [Reforming + FT] sub-system as follows,   

 [F=9,3, F=9,>, F=9,#$!$ , U=9,A] = Surrogate345K3L6CJM=9([F=9,#$! , θ=9]) S.19 

S3.5. Reforming + MS 

The [Reforming + MS] sub-system aims to build the relationship between 	

[θ!", F!:',#$!,->, F;"',#$!,->, 1 − z=9] and [F!",3, F!",>, F!",#$!$ , U!",A]. 

The amount of CO2 flowing to [Reforming + MS] can be calculated as follows, 

 F!",#$! = (	F!:',#$!,-> + F;"',#$!,->) ∙ (1 − z=9) S.20 

The input variables for [Reforming + MS] are as follows, 

[F!",#$! , θ!"] = [F!",#$! , T=9, P=9, Tray345<, T345<, P345<, S>A3J4, Re=9] 
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A well-distributed values for input can generated by employing Latin hypercube sampling 

(LHS) for the design space of input variables. Based on these input values, the rigorous 

simulation on Aspen Plus can yield outputs (mass flows and utilities). With the inputs/outputs, 

we train an ANN model for [Reforming + MS] sub-system as follows,   

 [F!",3, F!",>, F!",#$!$ , U!",A] = Surrogate345K3L6CJM!"([F!",#$! , θ!"]) S.21 

S4. Evaluation of GHG emissions for the industrial park 

S4.1. System boundary in this work: cradle-to-gate 

This section explains the ‘cradle-to-gate’ boundary adopted for the analysis. The GHG 

emissions for the whole CCU system are evaluated based on the life cycle assessment (LCA). 

The system boundary determines the life cycle stages required for the evaluation. A strict LCA 

can cover the evaluation of emissions throughout entire ‘cradle-to-grave’ life cycle stages 

ranging from raw material, manufacturing, distributing, use, to recycling/disposal. However, 

the evaluation of the entire life cycle of a product requires excessive workloads. Further, LCA 

is mainly used in comparative assessments. The cradle-to-gate (from raw materials to 

manufacturing) is sufficient to compare the emissions for different technology, while the 

downstream emissions are identical.18 As shown in Figure S7, the cradle-to-gate approach for 

the CCU system will quantify the GHG emissions of raw materials and utility as well as CO2 

emissions in the process (e.g. uncaptured CO2 and CO2 emissions via vent gas).   

 

Figure S7. System boundaries of cradle-to-gate vs. cradle-to-grave approach for the emissions 

of a CCU system. 
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S4.2. System expansion strategy to compare CCU with a reference process.  

The ‘system expansion’ strategy is particularly useful for LCA of a system with multiple 

functions.18 The CCU system achieves multiple functions, i.e. the co-productions of several 

fuels and the generation of low-carbon electricity. For a proper comparison, the ‘system 

expansion’ strategy expands a reference process to include all the functions as the original 

process. As shown in Figure S8, the reference system can generate the electricity (no capture 

technology) and fuels by conventional process. Meanwhile, the amount of electricity 

generation and the production of fuels are equivalent in the two systems for a fair comparison. 

 

Figure S8. Expansion strategy for a fair comparison between CCU system and a conventional 

system. 

S4.3. The reduction of GHG emissions 

 

Figure S9. Sources of GHG emissions in the cradle-to-gate system boundary. 
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 GHG##N =__α3 ∙ F6,3
3

+__αA ∙ U6,A
A

+_F6,#$7
666

 S.22 

 GHG345 = αOPQQ ∙ E4R4,.36,6.S +__α> ∙ F6,>
>6

 S.23 

 GHG34FA,.6KC = 1 −
1%1%%&
1%1'$(

  S.24 

where 

F: mass flow, ton/hour 

U: utility, GJ/hour 

α3: emission factor per raw material r generation: ton#$!4T/ton3 

αA: emission factor per utility u generation: ton#$!4T/GJ 

α>: emission factor per product p generation: ton#$!4T/ton> 

Subscript  

i: notation for sub-systems 

r: notation for raw materials (natural gas, process water, MEA) 

u: notation for utilities (steam, fuel gas, electricity, cooling water) 

p: notation for products 

S4.4. Calculation of emission factors for low-carbon electricity 

In this work, the emission factor is defined as the GHG emission in generating a material (per 

ton) or a utility (per GJ). In the proposed industrial park, two 500 MW power stations generate 

electricity by natural gas combined cycle (NGCC) technology. When no carbon capture is 

applied, as shown in Equation S.25, the emission factor per unit of electricity generation is 

calculated by the sum of emissions in generating raw materials (NG, water) together with the 

direct emissions. As such, the emission factor of NGCC electricity is calculated as 0.41 

kg#$!4T/kWh, which falls in the range reported by Weisser.19   

α?1## =
∑ α3 ∙ F?1##,33 + F?1##,#$!4

E?1##
 S.25 
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In our work, the low-carbon electricity specifically refers to CCS electricity (NGCC integrated 

with CCS). MEA decarbonizes one NGCC, while PSA decarbonizes the other one. The 

emission factors of low-carbon electricity is approximated by the average value between 

[NGCC-PSA-storage] and [NGCC-MEA-storage]. Equation S.26-S.28 shows how the 

emission factor for low-carbon electricity. As such, the cost of low-carbon electricity is 

estimated at 0.098 kg#$!/kwh  (value may slightly change subject to the amount of CO2 

captured), which is in agreement with the literature value.19 

α##" = (α;"' + α!:')/2	 S.26 

α;"' =
∑ α3 ∙ F?1##,33 + F;"',#$!4

E?1##@;"'
	 S.27 

α!:' =
∑ α3 ∙ F?1##,33 + ∑ α3 ∙ F!:',33 + F!:',#$!4

E?1##@!:'
	 S.28 

E?1##: power generation of NGCC, GJ/h 

E?1##@;"': net power out for a NGCC coupled with PSA, GJ/h 

E?1##@!:': net power out for a NGCC coupled with MEA, GJ/h 

F;"',#$!4: emissions for a NGCC coupled with PSA, ton#$!/h 

F!:',#$!4: emissions for a NGCC coupled with MEA, ton#$!/h 

F;"',#$!G: the amount of stored CO2 for a NGCC coupled with PSA, ton#$!/h 

F!:',#$!G: the amount of stored CO2 for a NGCC coupled with MEA, ton#$!/h 

F!:',3: mass flow of raw materials (MEA, H2O) in MEA absorption process, ton/hour 

Subscript: 

CO74, CO7 emission to envrioment  

CO7G, CO7 storage to underground  

S4.5. Calculation of GHG emission factor for low-carbon heating 

In this work, heating is proposed to be partially substituted by CCS electricity. As such, low-

carbon heating is used in the CCU system. Herein, the GHG emission factor for low-carbon 

heating is calculated as follows, 
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α5A4R)*+,% = ϵ ∙ α##" + (1 − ϵ)α5A4R	 S.29 

αG.4-L)*+,% = ε ∙ α##" + (1 − ε)αG.4-L	 S.30 

where, 

 α5A4R)*+,% : GHG emission factor for low-carbon heating (partially by CCS electricity and 

partially by fuel gas), ton/GJ 

α5A4R: GHG emission factor for heating by fuel gas, ton/GJ 

αG.4-L)*+,%: GHG emission factor for low-carbon heating (partially by CCS electricity and 

partially by steam), ton/GJ 

αG.4-L: GHG emission factor for heating by steam, ton/GJ 

S4.6. Data for GHG emissions factors 

α3: emission factor per raw material r generation: ton#$!4T/ton3 

αA: emission factor per utility u generation: ton#$!4T/GJ 

α> : emission factor per product p  generation (in conventional or reference process): 

ton#$!4T/ton> 

Table S3. GHG emissions factors for materials (eU or eV) and utilities (eW) 

 GHG emissions factors  Unit source 

Natural gas 0.354 ton%&!*6/ton+, 1) 

Process water  5.4e-4 ton%&!*6/ton7(8*4 1) 

Methanol  0.762 ton%&!*6/ton!"&9 1) 

Gasoline 0.802 ton%&!*6/ton:(;<=>?* 1) 

Diesel 0.663 ton%&!*6/ton@>*;*= 1) 

MEA 3.40 ton%&!*6/ton!"# 2) 

Ethanol  3.74 ton%&!*6/ton"8&9 3) 

C2-C4 1.11 ton%&!*6/ton%A 4) 
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Electricity 0.114 ton%&!*6/GJ+,%% 5) 

Fuel gas 0.079 ton%&!*6/GJB5*=-:(; 1) 

Steam 0.083 ton%&!*6/GJ;8*(C 1) 

Cooling water 8.04e-3 ton%&!*6/GJ'<<=>?: 6) 

1) Roh et al.20 

2) Cuéllar-Franca et al.21 

3) Munoz et al.22 

4) Average the emission factors of propene and propane in the software Umberto (method: 

ReCiPe Midpoint (H) w/o LT). 

5) The emission factor of electricity (from a NGCC power plant) is based on the sum of 

NG, process water, CO2 emissions (refer to Equation S.25). 

6) The emission factor of cooling is calculated by water emission factor times its required 

amount (based on ΔT = 20℃, heat transfer efficiency η = 0.8). 

S5. Evaluation of economic aspect for the industrial park 

S5.1. The calculation of profits 

 

Profit##N = −__β3 ∙ F6,3
3

−__βA ∙ U6,A
A

−_F6,#$7
6

∙ γ#$!
66

+ β##" ∙ E4R4,.36,6.S +__β> ∙ F6,>
>6

 
S.31 

where 

F: mass flow, ton/hour 

U: utility, GJ/hour 

β3: cost of raw material r, $/ton 

βA: cost of utility u, $/GJ 

γ#$!: carbon tax (carbon price), $/ton#$! 

β##": cost of low-carbon electricity (equivalent to CCS electricity), $/GJ 

β>: price of product p, $/ton 



 23 

Subscript  

i: notation for sub-systems 

r: notation for raw materials (natural gas, process water, MEA) 

u: notation for utilities (steam, fuel gas, electricity, cooling water) 

p: notation for products  

S5.2. Calculation of economic factors for low-carbon electricity 

Economic factors refer to the costs of raw materials and utilities as well as the prices of products. 

The emission factors of low-carbon electricity is approximated by the average value between 

[NGCC-PSA-storage] and [NGCC-MEA-storage]. The cost of carbon storage is obtained by 

IECM software.  

β##" = (β;"' + β!:')/2	 S.32 

β;"' =
β?1## ∙ E?1## + γ#$! ∙ F;"',#$!4+δ#$! ∙ F;"',#$!G

E?1##@;"'
	 S.33 

β!:' =
β?1## ∙ E?1## +∑ β3 ∙ F!:',33 + γ#$! ∙ F!:',#$!4+δ#$! ∙ F!:',#$!G

E?1##@!:'
	 S.34 

β##": cost of low-carbon electricity (CCS electricity), $/GJ 

β;"': cost of electricity from [NGCC-PSA-storage] (the value can change based on the carbon 

price and the amount of captured CO2), $/GJ 

β?1##: cost of electricity from NGCC, $/GJ 

β!:' : cost of electricity from [NGCC-MEA-storage] (the value can change based on the 

carbon price and the amount of captured CO2), $/GJ 

δ#$!: cost of the CO2 transportation and storage in underground (obtained in IECM, assuming 

a 50 km pipeline is used for transportation), $/ton#$	!G 

F!:',#$!.: cost of electricity from [NGCC-MEA-storage] (the value can change based on the 

carbon price and the amount of captured CO2), $/GJ 
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S5.3. Calculation of economic factors for low-carbon heating 

In this work, heating is proposed to be partially substituted by CCS electricity. As such, low-

carbon heating is used in the CCU system. Herein, the economic factor for low-carbon heating 

is calculated as follows, 

β5A4R)*+,% = ϵ ∙ β##" + (1 − ϵ)β5A4R	 S.35 

βG.4-L)*+,% = ε ∙ β##" + (1 − ε)βG.4-L	 S.36 

where, 

β5A4R)*+,%: economic factor for low-carbon heating (partially by CCS electricity and partially 

by fuel gas), ton/GJ 

β5A4R: economic factor for heating by fuel gas, ton/GJ 

βG.4-L)*+,%: economic factor for low-carbon heating (partially by CCS electricity and partially 

by steam), ton/GJ 

βG.4-L: economic factor for heating by steam, ton/GJ 

S5.4. Calculation of economic factors involving with carbon tax. 

The economic factors contain two parts: original prices and carbon tax.   

 β3 = β3,) + α3 ∙ γ#$! 	 S.37 

 βA = βA,) + αA ∙ γ#$! 	 S.38 

 β> = β>,) + α> ∙ γ#$! 	 S.39 

where 

β  Economic factors, $/ton4 

4 Emission factors, ton%&!/ton) 

5DE! Carbon price, $/ton%&! 

Subscript   

i Notation for sub-systems 

r Notation for raw materials (natural gas, process water, MEA, etc.) 
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u Notation for utilities (steam, fuel gas, electricity, cooling, etc.) 

p Notation for products (gasoline, diesel, methanol, etc.) 

S5.5. Data for economic factors 

For the key materials (NG, methanol, gasoline, diesel), we use the prices data in the first half 

of 2021. Due to the EU energy crisis in the second half of 2021, the prices for all petrol-products 

dramatically surge in different speeds [FT], so the very latest price data may cause bias in the 

economic analysis.   

Table S4. Economic factors for materials (nU,) or nV,)), utilities (nW,)) and CO2 storage (oQX!). 

 Economic factors  

[$ / ton] 

Unit source 

Natural gas 475.4 $/ton+, 1)  

Process water  0.036 $/ton7(8*4 2)  

Methanol  475.6 $/ton!"&9 3) 

Gasoline 2254.8 $/ton:(;<=>?* 4)  

Diesel 1808.6 $/ton@>*;*= 4) 

MEA 1100.0 $/ton!"# 5)  

Ethanol  705.7 $/ton"8&9 6)  

C2-C4 1067.2 $/ton%A 6) 

Electricity 41.34 $/GJ+,%% 1) 

Fuel gas 9.76 $/GJB5*=-:(; 1) 

Steam 15.35 $/GJ;8*(C 7) 

Cooling water 0.029 $/ton7(8*4 2) 

Cooling utility 0.43 $/GJ'<<=>?: 8) 

CO2 storage 5.56 $/ton%&!; 9) 

1) Eurostat. Choose the prices for EU in the first half 2021.23  

2) Boulamanti et al. 24 
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3) Methanex. Choose the prices for EU in April 2021.25  

4) European Commission – Weekly Oil Bulletin. Choose the prices for EU in April 2021.26  

5) Brandl et al.27 

6) ICIS 2019 EU.28 

7) TLV.29  

8) The cost of cooling is calculated by cooling water emission factor times its required 

amount (based on Δp = 20℃, heat transfer efficiency q = 0.8). 

9) oQX!: cost of the CO2 transportation and storage in underground is obtained in IECM 

(assuming a 50 km pipeline is used for transportation).1 

S6. Single-optimization (LCA) of the industrial park 

 

Figure S10. Validation of surrogate models by rigorous simulation for the industrial park 

regarding: (a) initial operating condition based on surrogates; (b) initial operating condition 

based on rigorous process models; (c) optimal operating condition based on surrogates; (d) 

optimal operating condition based on rigorous process models. For the legends: left of ‘/’ for 

CCU system, right of ‘/’ for the reference system.  
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Figure S11. Scenario analysis for the optimization progress, regarding 10%, 25%, 50% and 

100% heating utility is substituted by electricity.   
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Table S5. Scenario analysis for optimal values of decision variables, regarding maximum 10%, 

25%, 50% and 100% heating utility is substituted by electricity. 

   Max heating percentage substituted by CCS-elec 

 design 
variables Unit 1  0.5 0.25 0 

MEA r#$! - 0.933 0.935 0.917 0.925 

1st PSA 

PD< bar 0.007 0.008 0.006 0.006 
PE< bar 0.406 0.375 0.447 0.203 
v544F< m/s 0.614 0.614 1.265 0.857 
t-FG< s 68.789 80.648 51.744 69.800 
tHF< s 32.515 54.996 50.743 42.274 
t4I-,< s 183.637 179.226 194.448 190.152 

2nd PSA 

PD7 bar 0.014 0.011 0.011 0.019 
PE7 bar 0.170 0.266 0.432 0.267 
v544F7 m/s 0.534 0.917 0.917 0.316 
t-FG7 s 59.411 46.559 59.411 60.379 
tHF7 s 44.544 36.050 35.890 82.815 
t4I-,7 s 178.820 178.820 191.707 176.463 

CO2 to FT z=9 - 0.027 0.027 0.046 0.027 

FT 

T=9 ℃ 247.886 263.910 254.435 257.929 
P=9 bar 25.904 17.334 46.535 42.624 
tray=9 - 62 52 52 52 
T345< ℃ 876.081 876.081 774.820 858.981 
P345< bar 5.073 5.130 4.730 3.129 
S>A3J4 - 0.045 0.069 0.194 0.102 
Re=9 - 0.573 0.828 0.660 0.468 

MEOH 

F?1/F#$ - 3.498 3.643 3.656 3.656 

T!" ℃ 204.318 198.258 187.149 189.011 

P!" bar 69.542 78.283 75.294 77.341 
Tray!" - 46 61 60 64 
T3457 ℃ 933.319 864.478 913.001 876.951 
P3457 bar 6.224 4.615 5.474 5.176 

Heating 
utility 

Frac5A4R4R4@##"	 - 0.997 0.498 0.250 0.000 
FracG.4-L4R4@##" - 0.956 0.496 0.223 0.000 
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S7. Multi-objective (LCA-Economic) optimization of the industrial park 

S7.1. Optimal values for decision carbon @ Carbon price = 0 

 

Figure S12. Optimal values of decision variables !!~!!" after multi-objective optimization @ ##$% = 0 $/ton-CO2 (corresponding to the Pareto 

front in Figure 8). 
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Figure S13. Optimal values of decision variables !!&~!'( after multi-objective optimization @ ##$% = 0 $/ton-CO2 (corresponding to the Pareto 

front in Figure 8).
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S7.2. Evaluation of utilities  

As indicated by the single-objective optimization, the heating utility is accounted for the 

biggest role in the GHG emissions. Herein, we once again check the influence of optimized 

utility on both economic aspects and GHG emissions. NSGA-II promotes low-carbon heating. 

On the one hand, switching to the low-carbon electricity increases the energy cost, by 25% for 

electricity and by average 337% for fuel-gas heating as well as 201% for steam heating. On the 

other hand, switching to the low-carbon electricity dramatically reduces the GHG emissions, 

by 76% for electricity and by 52% for fuel-gas heating as well as average 57% for steam heating.  

 

Figure S14 (a) Price of utilities. (b) GHG emissions of utilities. Clarification for the x-axis label 

- (1) !"#$%&'$'%(: NG-based power plant with direct emissions; (2) !"#$%&'$'%(!"#: NG-based 

power plant coupled with MEA; (3) !"#$%&'$'%($%#: NG-based power plant coupled with PSA; 

(4) !"#$%&'$'%(&'()* : low-carbon electricity, which is approximated by the average value 

between !"#$%&'$'%(!"# and !"#$%&'$'%($%# (the cost of CO2 storage is included); (5) )*#"-
+,-: heating provided by fuel gas; (6) )*#"-+,-&'()*: fuel-gas heating partially substituted 

by low-carbon electricity; (7) .%#,/: heating provided by steam; (8) .%#,/&'()* : steam 

heating partially substituted by low-carbon electricity. 

 

References 

1. IECM, Integrated Environmental Control Model (IECM) Version 11.4 (Carnegie 
Mellon University), https://www.cmu.edu/epp/iecm/index.html, accessed: 2020-08-01. 



 32 

2. Z. Hao, C. Zhang and A. Lapkin, Efficient Surrogates Construction of Chemical 
Processes: Case studies on Pressure Swing Adsorption and Gas-to-Liquids. ChemRxiv, 
2021. 

3. R. Haghpanah, A. Majumder, R. Nilam, A. Rajendran, S. Farooq, I. A. Karimi and M. 
Amanullah, Ind Eng Chem Res., 2013, 52, 4249-4265. 

4. Z. Hao, A. Caspari, A. M. Schweidtmann, Y. Vaupel, A. A. Lapkin and A. Mhamdi, 
Chem Eng J., 2021, 423, 130248. 

5. K.-S. Ha, J. W. Bae, K.-J. Woo and K.-W. Jun, Environ Sci Technol., 2010, 44, 1412-
1417. 

6. M. E. Dry, Catal Today, 2002, 71, 227-241. 
7. J. R. van Ommen and J. Grievink, in Biomass as a Sustainable Energy Source for the 

Future, 2014, pp. 525-546. 
8. Y. H. Kim, K.-W. Jun, H. Joo, C. Han and I. K. Song, Chem Eng J., 2009, 155, 427-

432. 
9. C.-J. Lee, Y. Lim, H. S. Kim and C. Han, Ind Eng Chem Res., 2009, 48, 794-800. 
10. B. Bao, M. M. El-Halwagi and N. O. Elbashir, Fuel Process Technol., 2010, 91, 703-

713. 
11. I. C. Yates and C. N. Satterfield, Energy Fuel, 1991, 5, 168-173. 
12. C. G. Visconti, L. Lietti, E. Tronconi, P. Forzatti, R. Zennaro and E. Finocchio, Appl 

Catal A: Gen., 2009, 355, 61-68. 
13. P. Kaiser, R. B. Unde, C. Kern and A. Jess, Chem Ing Tech., 2013, 85, 489-499. 
14. H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan and S. A. Tassou, 

Therm Sci Eng Prog., 2018, 6, 268-289. 
15. P. F. Fleming and B. J. Church, in Plant Engineer's Reference Book (Second Edition), 

ed. D. A. Snow, Butterworth-Heinemann, Oxford, 2002, pp. 13-11 ~ 13-35. 
16. AspenTech, Aspen Plus Methanol Synthesis Model, 2018. The methanol synthesis 

model can be downloaded from esupport.aspentech.com. Alternatively, for Aspen Plus 
V11 and higher version, the model file can be accessed in C:\Program 
Files\AspenTech\Aspen Plus Vxx.x\GUI\Examples\Bulk Chemical\Methanol. 

17. K. M. V. Bussche and G. F. Froment, J Catal., 1996, 161, 1-10. 
18. A. Zimmermann, L. Müller, Y. Wang, T. Langhorst, J. Wunderlich, A. Marxen, K. 

Armstrong, G. Buchner, A. Kätelhön and M. Bachmann, Techno-Economic Assessment 
& Life Cycle Assessment Guidelines for CO2 Utilization (Version 1.1), 2020. 

19. D. Weisser, Energy, 2007, 32, 1543-1559. 
20. K. Roh, A. S. Al-Hunaidy, H. Imran and J. H. Lee, AIChE J., 2019, 65, e16580. 
21. R. M. Cuéllar-Franca, P. García-Gutiérrez, S. F. R. Taylor, C. Hardacre and A. 

Azapagic, Faraday Discuss, 2016, 192, 283-301. 
22. I. Muñoz, K. Flury, N. Jungbluth, G. Rigarlsford, L. M. i Canals and H. King, The Int 

J Life Cycle Ass., 2014, 19, 109-119. 
23. Eurostat, Natural gas price statistics,  

https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Natural_gas_price_statistics#Natural_gas_prices_for_non-
household_consumers, accessed: 2021-08-01. 

24. A. Boulamanti and J. A. Moya, Renew Sust Energy Reviews, 2017, 68, 1205-1212. 
25. Methanex, Methanex Methanol  Price Sheet, https://www.methanex.com/our-

business/pricing, accessed: 2021-08-01. 
26. European-Commission, Weekly Oil Bulletin, https://ec.europa.eu/energy/data-

analysis/weekly-oil-bulletin_en, accessed: 2021-08-01. 
27. P. Brandl, M. Bui, J. P. Hallett and N. Mac Dowell, Int J Greenh Gas Con., 2021, 105, 

103239. 



 33 

28. ICIS, ICIS Europe Chemicals Outlooks - 2019, 
 https://www.icis.com/explore/resources/europe-chemical-outlook-2019/,  
accessed: 2021-08-01. 

29. TLV, Calculator: Steam Unit Cost, https://www.tlv.com/global/UK/calculator/steam-
unit-cost.html. accessed: 2021-08-01. 


