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Abstract: The unprecedented global health threat of SARS-CoV-2 has sparked a continued interest
to discover novel anti-COVID-19 agents. To this end, we present here a computer-based protocol
for identifying potential compounds targeting RNA-dependent RNA polymerase (RdRp). Starting
from our previous study in which, by a virtual screening campaign, we identified a fumiquinazoli-
none alkaloid quinadoline B (Q3), an antiviral fungal metabolite with significant activity against
SARS-CoV-2 RdRp, we applied an in silico combinatorial methodologies for generating and screen-
ing a library of anti-SARS-CoV-2 candidates with strong in silico affinity for RdRp. For this study,
the quinadoline pharmacophore was subjected to structural iteration obtaining a Q3-focused library
of over 900,000 unique structures. This chemical library was explored to identify binders of RdRp
with greater affinity with respect to the starting compound Q3. Coupling this approach with the
evaluation of physchem profile, we found 26 compounds with significant affinities for the RdRp
binding site. Moreover, top-ranked compounds were submitted to molecular dynamics to evaluate
the stability of the systems during a selected time, and for deeply investigating the binding mode
of the most promising derivatives. Among the generated structures, five compounds, obtained by
inserting nucleotide-like scaffolds (1, 2, and 5), heterocyclic thiazolyl benzamide moiety (compound
3), and a peptide residue (compound 4), exhibited enhanced binding affinity for SARS-CoV-2 RdRp,
deserving further investigation as possible antiviral agents. Remarkably, the presented in silico pro-
cedure provides a useful computational procedure for hit-to-lead optimization, having implications
in anti-SARS-CoV-2 drug discovery and in general in the drug optimization process.

Keywords: Quinadoline B, SARS-CoV-2, RNA-dependent RNA polymerase inhibitors, virtual
screening, combinatorial screening, molecular dynamics

1. Introduction

The continued rise in COVID-19 cases worldwide despite the availability of vaccines
sustains the demand to discover treatment and prophylactic regimens, particularly
through natural products repurposing and design [1-3]. Computational strategies are
playing a crucial role for accelerating the discovery of effective anti-SARS-CoV-2 agents
[4-8] since in silico experiments are vital in the screening of biologically active compounds,
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offering a rapid, low-cost, and effective adjunct to in vitro and in vivo experiments. Such
methods can facilitate the iteration of known potential compounds to further enhance
their biological and pharmacokinetic activities, capable of constructing virtually all possi-
ble permutational derivatives from a single parent compound [9].

In COVID-19 drug discovery, several possible drug targets, comprised structural and
non-structural proteins, have been exploited in searching novel chemical entities as anti-
SARS-CoV-2 agents [10-13]. Among these targets is the RNA-dependent RNA polymerase
(RdRp), which is a multi-domain SARS-CoV-2 protein playing a crucial role in the viral
life cycle. In particular, RdRp is involved in the replication and transcription of the viral
genome [14,15]. Structurally, RARp deemed a conserved protein within coronaviruses and
carries an accessible region as its active site. Thus, RdRp represents an attractive drug
target to inhibit viral replication [14,16]. In our framework, we combined several compu-
tational approaches for optimizing a previously described compound targeting SARS-
CoV-2 RdRp.

In our recent work, we performed a series of computer-based approaches, employing
RdRp as one of the target proteins against fungal secondary metabolites with profound
antiviral activity against a variety of known pathogenic viruses. Our work allowed the
identification of quinadoline B (Q3, Figure 1), an anti-influenza (H1N1) metabolite iso-
lated from the mangrove-derived fungus Cladosporium sp. The fumiquinazoline alkaloid
was shown to exhibit a high binding affinity to RdRp with dynamic stability and favorable
pharmacokinetic properties [17].These results inspired us to investigate further the iden-
tified scaffold employing computational drug design methodologies, including structure-
based methods such as molecular docking and molecular dynamics, to enhance the activ-
ity of quinadoline B against SARS-CoV-2 RdRp. Thus, in this study, we structurally rede-
signed quinadoline B to generate a focused library of derivatives with potentially en-
hanced antagonism to RARp through combinatorial in silico techniques.

2. Materials and Methods
2.1. Computational details
2.1.1. Ligand and protein preparation

Quinadoline B (Q3) was treated by LigPrep (LigPrep release 2018, Schrédinger, LLC,
New York, NY, 2018) for identifying the most probable ionization state at cellular pH
value (7.4 + 0.5), and minimized using MacroModel (MacroModel release 2018, Schro-
dinger, LLC, New York, NY, 2018) implemented in Maestro software (Maestro release
2018, Schrodinger, LLC, New York, NY, 2018), employing OPLS3 as force field [18]. For
simulating the solvent effects, the GB/SA model was employed, selecting “no cutoff” for
non-bonded interactions. The PRCG technique (5000 maximum iterations and threshold
for gradient convergence = 0.001) was employed to minimize the potential energy.

The structure of RdRp enzyme of SARS-CoV-2 enzyme was downloaded from the
Protein Data Bank (PDB ID 6M71 [19]; crystal structure of RdRp in complex with cofac-
tors) and imported into Maestro suite 2018 and prepared using protein preparation wiz-
ard protocol for acquiring an appropriate starting structure for further in silico studies
[20,21]. Using this protocol, we performed different computational steps to (1) add hydro-
gens, (2) optimize the orientation of hydroxyl groups, Asn, and GIn, and the protonation
state of His, and (3) perform a constrained minimization refinement using the impref util-
ity. At first, the protein was pre-processed by adding all hydrogen atoms to structure,
assigning bond orders, creating disulfide bonds, and filling missing side chains and loops.
To optimize the hydrogen bond network, His tautomers and ionization states were pre-
dicted, 180° rotations of the terminal angle of Asn, Gln, and His residues were assigned,
and hydrogen atoms of the hydroxyl and thiol groups were sampled. Finally, a restrained

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72

73

74

75
76
77
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92
93
94



3 of 4

minimization was performed using the Impact Refinement (impref) module, employing
OPLSS3 force field to optimize the geometry and minimize the energy of the protein. The
minimization was terminated when the energy converged, or the RMSD reached a maxi-
mum cutoff of 0.30 A.

2.1.2. Binding site analysis

A comprehensive analysis of the binding site of SARS-CoV-2 RdRp was performed
using the protein prepared as reported in paragraph 2.1.1. and the software SiteMap
(SiteMap, release 2018, Schrodinger, LLC, New York, NY, 2018).

2.1.3. Molecular docking and ligand-energy evaluation

Glide software (Glide release 2018, Schrodinger, LLC, New York, NY, 2018) employ-
ing XP-scoring function was used to perform all docking studies conducted in this work
[22]. The energy grid for docking was prepared using the default value of the protein
atom-scaling factor (1.0 A), with a cubic box centered on the previously identified binding
site. The docked poses considered for the post-docking minimization step were 1000, eval-
uating the Glide XP docking score.

For improving the quality of the screening, we also evaluated the ligand binding en-
ergies from the complexes derived by the docking calculation. For this purpose,
Prime/MM-GBSA method available in Prime software (Prime release 2018, Schrodinger,
LLC, New York, NY, 2018). This technique computes the variation between the free and
the complex state of both the ligand and enzyme after energy minimization [23,24].

2.1.4. Q3-focused library generation

The library was generated as previously reported [25], using several series of frag-
ments obtained from ChemDiv (https://store.chemdiv.com/) as SDF file format. These
fragments were treated by LigPrep, to convert the 2D structure to the 3D one, and added
to Q3 in a side chain hopping approach, considering the selected attachment points that
comprise bonds, belonging to the Q3 core structure, replaced in the build process. This
strategy allowed to obtain a Q3-focused library that consists of 991,489 compounds. This
resulting library was employed in further computational experiments.

2.1.5. Evaluation of drug-like profile

The drug-like profile was evaluated using SwissADME [26], OSIRIS property ex-
plorer, and our in-house cardiotoxicity tool (3D-chERGi) [27]. PAINS assessment was ex-
ecuted employing SwissADME web-server [26] as previously reported [17,28].

2.1.6. Molecular dynamics simulation details

Desmond 5.6 academic version, providing by D. E. Shaw Research (“DESRES”), was
used to perform MD simulation experiments via Maestro graphical interface (Desmond
Molecular Dynamics System, version 5.6, D. E. Shaw Research, New York, NY, 2018.
Maestro-Desmond Interoperability Tools, Schrodinger, New York, NY, 2018). MD was
performed using the Compute Unified Device Architecture (CUDA) API [29] on two
NVIDIA GPUs. The complexes derived from docking studies (Figure 2) were imported in
Maestro and by Desmond system builder was solvated into an orthorhombic box filled
with water, simulated by TIP3P model [25,30]. OPLS force field [18] was used for MD
calculations. OPLS-aa (all atom) includes every atom explicitly with specific functional
groups and types of molecules including several biomacromolecules. A distinctive feature
of the OPLS parameters is that they were optimized to fit experimental properties of lig-
uids, such as density and heat of vaporization, in addition to fitting gas-phase torsional
profiles. Moreover, it is largely used also by us for performing MD simulations of pro-
tein/ligand complexes [25,31,32]. Na* and Cl- ions were added to provide a final salt con-
centration of 0.15 M for simulating physiological concentration of monovalent ions.
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Constant temperature (300 K) and pressure (1.01325 bar) were employed with the NPT
(constant number of particles, pressure, and temperature) as ensemble class. RESPA inte-
grator [33] was used to integrate the equations of motion, with an inner time step of 2.0 fs
for bonded and non-bonded interactions within the short-range cutoff. Nose-Hoover ther-
mostats [34] were used to keep the constant simulation temperature, and the Martyna-
Tobias-Klein method [35] was applied to control the pressure. Long-range electrostatic
interactions were calculated by particle-mesh Ewald method (PME) [36]. The cutoff for
van der Waals and short-range electrostatic interactions was set at 9.0 A. The equilibration
of the system was performed using the default protocol provided in Desmond, which
consists of a series of restrained minimization and MD simulations applied to slowly relax
the system. Consequently, one individual trajectory for each complex of 100 ns was calcu-
lated. The trajectory files were analyzed by MD analysis tools implemented in the soft-
ware package. The same application was used to generate all plots concerning MD simu-
lation presented in this study. Accordingly, the RMSD was calculated using the following
equation:

N
RMSD, = N iy (00T trep)’

where the RMSDx is referred to the calculation for a frame x, N is the number of
atoms in the atom selection; tref is the reference time, (typically the first frame is used as
the reference and it is regarded as time t = 0); and r' is the position of the selected atoms in
frame x, after superimposing on the reference frame, where frame x is recorded at time tx.
The procedure is repeated for every frame in the simulation trajectory. Regarding the
RMSF the following equation was used for the calculation:

1 T 2
RMSF, = \/th=1<(r’i O-7; (trep)) >

where RMSFi is referred to a generic residue i, T is the trajectory time over which the
RMSF is calculated, tref is the reference time, ri is the position of residue i; r' is the position
of atoms in residue i after superposition on the reference, and the angle brackets indicate
that the average of the square distance is taken over the selection of atoms in the residue.

3. Results and Discussion

SARS-CoV-2 and its predecessor SARS-CoV have significant similarities in their gene
sequence including the spike (S) glycoprotein, RdRp, and the two cysteine proteases: PLrr
and 3CLrr [37]. Among these viral target proteins, RdRp plays a crucial role in viral rep-
lication and is therefore considered an exceptional molecular target for developing anti-
SARS-CoV-2 drugs. Accordingly, different fungal derivatives, in particular quinaxoline
alkaloids identified from the mangrove-derived fungus Cladosporium sp., were identified
as possible SARS-CoV-2 RdRp inhibitors [17]. Among them, the ligand quinadoline B (Q3)
showed the most interesting inhibitory profile in silico against RdRp. Q3 was found to
tightly bind to the active site of RARp by a series of polar and non-polar interactions. Three
H-bonds were observed between the following: (a) the amino group and S682; (b) car-
bonyl oxygens of the quinazolinone core and Q573 and R569. The indoline moiety was
also involved in m-alkyl interactions with 1494 and K577. Several van der Waals interac-
tions against N496, G590, A580, 1589, Y689, D684, G683, K500, A685, T565, and L576 were
also noted [17]. The identified binding mode accounted for a binding energy of -9.5
kcal/mol, as found by AutoDock software, highlighting Q3 as one of the most promising
derivatives of the series (Figure 1). To further explore the potential of quinadoline B as a
drug prototype, in silico combinatorial techniques were employed to generate novel de-
rivatives and enhance the previously reported antagonistic potential to RdRp. To this pur-
pose, we used Schrodinger Drug-discovery Suite. As the first step, we retrieved the pre-
viously described binding mode of Q3 within the RdRp binding site by using Glide soft-
ware (Figure S1). After establishing that the docking protocol was able to correctly locate
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the quinadoline B scaffold, we deeply investigated the RdRp binding site. The SiteMap
analysis revealed the existence of a druggable sub-pocket that can be targeted by modify-
ing Q3 derivatives (Figure 1). In particular, examining the orientation of the compound,
we hypothesized that by introducing appropriate moiety to Q3, possibly linked to the
NHz, could be possible to reach the mentioned sub-pocket at RdRp binding site. To ac-
complish this task, we used an in silico structure-based combinatorial library design ap-
proach, successfully employed by us, for generating focused libraries targeting specific
binding site regions [25]. In the first step, we downloaded several sets of chemical frag-
ments from ChemDiv, including high solubility fragments, natural product fragments,
low molecular weight fragments, protein-protein interaction disruptor fragments, bioac-
tive fragments, fluorine and bromine fragments and other synthetic fragments. These
fragments were properly prepared (see Materials and Methods section) and added to an
existent library available from Schrodinger environment, obtaining 602,567 unique frag-
ments to use in the side chain hopping approach. We selected two possible attachment
points on the Q3 derivative exploiting NHz group (Figure 1). By combining the generated
fragments and Q3 at the defined attachment points, we generated a focused library con-
taining 991,489 Q3 derivatives.
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Figure 1. Schematic representation of the computational protocol adopted in this study for findings
Q3 derivatives with improved in silico affinity for SARS-CoV-2 RdRp.
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The Q3-focused chemical library was employed in a virtual screening protocol based
on molecular docking experiments and ligand-binding energy evaluation to identify Q3
derivatives that were able to bind RdRp with greater affinity compared to the starting
compound Q3. To this purpose, compounds were docked into the binding site of SARS-
CoV-2 RdRp [17], using Glide (Glide release 2018, Schrodinger, LLC, New York, NY, 2018)
employing XP as scoring function, and Prime software (Prime release 2018, Schrodinger,
LLC, New York, NY, 2018). The output of this step is reported in Table 1. Only Q3 deriv-
atives showing a GlideScore value lower than -6.22 kcal/mol were considered. The thresh-
old was chosen based on the value obtained by performing a docking calculation of Q3
into RdRp. The selected chemical entities were further examined by visual inspection for
selecting molecules displaying a proper binding mode. By employing the above-men-
tioned computational protocol, we obtained 26 compounds showing improved affinities

for the RdRp binding site with respect to the starting compound Q3.

Table 1. Final hits and their computational parameters derived from in silico studies.

Cpd c(;liif/i:g;; (k?acl;/l:rl::)l) Main contacts LogPow?| Solubility® | GI abs.c| PAINSYTumorigenicq pKi hERG
H-bonds R569, Q573,
1 -8.71 -51.1 5682, N497, S759 -3.72 High Low No No 5.03
salt bridges K545
2 | 847 52.3 H'bollz‘;gif:é(?w‘?” 4182 | High | Low | No No 5.24
3 -8.12 -43.9  |H-bonds R569, Q573, S682| -0.23 | Moderate | Low No No 5.06
4 -7.51 -44.8 H—b018121§21/2?<65945(2573, -0.27 | Moderate | Low No No 5.35
H-bonds R569, Q573,
5 -7.46 -46.3 K545 3.07 Poor Low No No 5.11
cation-1t K500, R555
6 | 742 415 |7 ggzgfeiifzfiﬁésgsz 2.75 | Moderate | High | No No 5.32
H-bonds R569, Q573, S682
7 -7.38 -40.6 double catiorSn K500 1.67 Poor Low No No 5.17
H-bonds R569, Q573,
8 -7.14 -41.2 5682, D684 245 | Moderate | High No No 5.51
cation-1t K500
9 -7.08 -39.1 |[H-bonds R569, Q573, S682| 0.80 Moderate | Low No No 5.84
H-bonds R569, Q573,
10 -7.03 -43.7 A685, A688 1.32 | Moderate | Low No No 5.63
cation-1t K545
H-bonds R569, Q573, S682
11 -6.97 -38.8 cation-1t K500 2.50 Poor Low No No 4.92
-1t Y689
H-bonds R569, Q573,
12 -6.88 -40.2 K545, R555 3.02 Poor Low No No 5.68
halogen bonds R624
13| 684 | -app [TPONASRID QTS | poo | Low | No No 5.26
cation-1t K500
14| 681 | -394 [TPOMASRID Q682 15 | \ogerate | High | No No 5.15
cation-1t K500
H-bonds R569, Q573,
15 -6.77 -42.9 D684 1.05 | Moderate | Low No No 4.93
cation-1t K545
16 | 671 -41.0 H'bogggzlfféifm’ 101 | Moderate | High | No No 6.21
17 -6.59 -37.1 |[H-bonds R569, Q573, S682| 2.55 Poor Low No No 5.24
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-1t Y689
18 -6.51 -47.2  |H-bonds R569, Q573, S501| 1.96 Poor Low No No 5.67
H-bonds R569, Q573, S682 . alert:
19 -6.44 -41.3 salt bridges D760 0.24 | Moderate | High No anil_di_alk_A| 5.79
20 -6.39 33.8 |H-bonds R569, Q573, S682| 1.84 Poor Low No No
H-bonds R569, Q573,
21 -6.37 -34.9 S682, K545 3.18 Poor Low No No 5.47
2| 636 343 [[1DondsR569,Q573, 5682 o | \roderate | Low | No No 5.18
halogen bonds K545
H-bonds R569, Q573
2 -6.34 -39.7 1. P L .
3 6.3 39 halogen bonds N497 53 oor ow No No 5.60
24 -6.30 -35.4 |H-bonds R569, Q573, 5682 0.14 | Moderate | Low No No 5.51
H-bonds R569, Q573,
25 -6.29 -40.2 R553, R555 1.37 Moderate | Low No No 4.89
salt bridges R553, R555
2 | 624 395 |[17Ponds R569, Q573, 5682 5 Poor Low | No No 5.54
cation-1t K500
Q3 -6.22 -32.3  |H-bonds R569, Q573, S682| -0.12 | Moderate | High No No 5.77

aConsesus LogP (lipophilicity) — average of five predictions using different algorithms (recommended value < 5); *Water
solubility assessed by three different methods; Gastrointestinal (GI) absorption; {PAINS (pan-assay interference com-
pounds) predict the possibility of a given compound to behave as PAINS and consequently to interfere with biological
assay; “Tumorigenic — the evaluation was performed employing OSIRIS property explorer [38]; PPredicted activity on seven
PLS factors derived from our in-house 3D-QSAR model for predicting "ERG K* channel affinity (3D-chERGi) (pKi (M);
pKi> 6, Ki<1 pM) [27].

The analysis of docking output demonstrated an improvement in the number of con-

tacts (polar and/or hydrophobic contacts) within the selected binding site for all selected
compounds along with a greater binding affinity with respect to the starting molecule.
The docking results for the five top-ranked compounds are illustrated in Figure 2 in com-
parison with Q3.
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Figure 2. Putative binding mode of Q3 (cyan sticks, panel A), and Q3 derivatives compound 1-5
(colored sticks, panel B-F, respectively) within SARS-CoV-2 binding site (PDB ID 6M71, orange car-
toon). Interacting amino acids are represented by lines, while the H-bonds are indicated by grey-
dotted lines. Pictures were generated by PyMOL (The PyMOL Molecular Graphics System, v1.8;
Schrodinger, LLC, New York, 2015).

Briefly, starting from compound 1, obtained by inserting a guanosine-like moiety on
Q3 scaffold, we detected the same contacts found for Q3 (H-bonds R569, Q573, and S682)
(Figure 2, panel A, and Table 1). Additionally, the novel substituent can target the hypoth-
esized region of the RdRp binding site, producing strong interactions with N497, 5759,
and K545, by polar contacts (Figure 2, panel B, and Table 1). This molecular arrangement
conferred a strong improvement in binding affinity with respect to the Q3 derivative,
showing a GlideScore of -8.71 kcal/mol and a AGvind of -51.1 kcal/mol (Q3, GlideScore -6.22
kcal/mol, and AGeind of -32.3 kcal/mol). Interestingly, compound 2 is also modified with a
nucleotide moiety. In this case, Q3 was modified by inserting an adenine-like moiety (Fig-
ure 2, panel C, and Table 1). The docking output revealed that compound 2 similarly in-
teracted within the RdRp binding site compared to compound 1, except for the lack of H-
bonds with N497, S759 replaced with a H-bond with D760. This strong targeting observa-
tion accounted for a significant improvement in computational score of compound 2
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(GlideScore -8.47 kcal/mol, AGpind -52.3 kcal/mol). Compound 3 lacks the previously de-
scribed contacts maintaining only the contacts found for Q3 with the addition of an addi-
tional H-bond with 5682, strongly stabilizing the binding mode (Figure 2, panel D, and
Table 1), as highlighted by in silico scores (GlideScore -8.12 kcal/mol, AGeind -43.9 kcal/mol)
compared to that found for Q3. For compound 4, the insertion of a peptidic tail allowed
to target the residue K545, in addition to the previously described contacts (H-bonds R569,
Q573, and S682) (Figure 2, panel E, and Table 1). Also in this case, the inserted substituent
is well-tolerated by the RdRp binding site as indicated by the satisfactory computational
scores found for compound 4 (GlideScore -7.51 kcal/mol, AGeind -44.8 kcal/mol). Inserting
a bulky region with a stronger aromatic nature as in compound 5, allowed improvement
of hydrophobic contacts within the RdRp binding site. In fact, compound 5 is able to form
two cation-mt interactions with residues K500 and R555, in addition to the maintained con-
tacts (Figure 2, panel E, and Table 1). Compound 5 showed a GlideScore -7.46 kcal/mol,
AGbind -46.3 kcal/mol.

To validate the docking output, we conducted MD simulation on the top-five ranked
compounds (1-5), investigating the evolution of biological systems for 100 ns. In this re-
gard, the resulting trajectories for all complexes were completely examined through dif-
ferent standard simulation parameters including root mean square deviation (RMSD)
analysis for all backbone atoms and ligands, the root mean square fluctuation (RMSF) of
individual amino acid residue. The selected complexes showed a general stability from
the early stages of the simulation, as indicated by the results found by calculating the
RMSD for each complex. In fact, we did not observe any major expansion and/or contrac-
tion, after the binding of these compounds during the entire simulation period (Figure 3,
panel A-E regarding the simulation of compounds 1-5, respectively). This stability was
also substantiated by observing the RMSF calculated for the selected complexes. RMSF
indicates the difference between the atomic Ca coordinates of the protein from its average
position during the MD simulation. This calculation is mainly helpful to characterize the
flexibility of individual residues in the protein backbone. The considered systems did not
show significant fluctuation phenomena, with the exclusion of a restricted number of res-
idues at the N- and C-terminal regions of RdRp (Figure 52). In contrast, the conformational
alterations of critical residues in the RdRp binding cleft, (lowest RMSF values for all com-
plexes) confirmed the capacity of compounds to form stable interactions within the pro-
tein.
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Figure 3. RMSD calculation for each complex (blue line) and for each ligand (red line).

In order to better understand the behavior of compounds 1-5 into the SARS-CoV-2
RdRp binding site, we performed a detailed analysis of the MD simulation investigating
the contacts established by compounds into the active site. The output of the analysis per-
formed on the complex RdRp/compound 1 is reported in Figure 4. Compound 1 main-
tained the contacts found by docking calculation, interacting with R569 and Q573 during
the MD simulation, while we observed a decrease in targeting S682. The interactions
found by residues N497, 5759, and K545 were evident through the time of simulation, as
well as the salt bridges. In addition, interactions with A558, T556, R555, and N496 became
apparent, while sporadic contacts were observed with residues S681, A685, and D760 con-
sidering the 100 ns of the simulation. Analysing the trajectory of compound 2, we ob-
served that the main contacts established with residues R569, Q573, K545, and D760 were
maintained and N496, N497, K500, D623, and S759 were formed, although with no great
potency. The output for compound 2 is illustrated in Figure 5. Compound 3 is able to
strongly interact with 5759 and D760, while less apparent contacts were detected with
N496, N497, and D684 in addition to the contacts with the residues R569, Q573, and S682
(Figure 6). The results of this analysis for compounds 4 and 5 are found in the Supplemen-
tary Material file (Figures S3 and S4). Compound 4 maintained the contacts through H-
bonds with R569, Q573, S682, K545, while it formed additional contacts with N497, K500,
G683, and D684 (Figure S3). Finally, compound 5 was still able to target R569, Q573, K500,
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K545, while the interaction with R555 became sporadic. In contrast, compound 5 strongly 311

targeted N496 and N497 (Figure S3). 312
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Figure 4. Compound 1 monitored during the simulation. The contacts can be grouped by type and 314
summarized, as shown in the plots. Grouping protein-ligand interactions into four types: H-bonds 315
(green), hydrophobic (grey), ionic (magenta), and water bridges (blue). In the second graph of the 316
picture is reported a timeline representation of the contacts. Some residues make more than one 317
specific contact with the ligand, which is represented by a darker shade of orange. 318
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Figure 5. Compound 2 monitored during the simulation. The contacts can be grouped by type and 320
summarized, as shown in the plots. Grouping protein-ligand interactions into four types: H-bonds 321
(green), hydrophobic (grey), ionic (magenta), and water bridges (blue). In the second graph of the 322
picture is reported a timeline representation of the contacts. Some residues make more than one 323
specific contact with the ligand, which is represented by a darker shade of orange. 324
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Figure 6. Compound 3 monitored during the simulation. The contacts can be grouped by type and
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picture is reported a timeline representation of the contacts. Some residues make more than one
specific contact with the ligand, which is represented by a darker shade of orange.

Overall, the MD simulation outcomes undoubtedly validated the advantageous in-
teractions of five top-ranked compounds screened compounds showing satisfactory ther-
modynamic stability in the RdRp binding site, suggesting that they can act as possible
SARS-CoV-2 RdRp inhibitors. Furthermore, despite the fact that the addition of bulky
moiety resulting in compounds with high molecular weight, they showed an acceptable
ADMET profile with logP and solubility in acceptable ranges, although the
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gastrointestinal (GI) absorption was found low. They were also found to be non-tumor-
igenic and devoid of cardiotoxicity as assessed by our in-house tool, 3D-chERGi [27]; and
finally, the selected compounds did not have substructural features that allow to behave
as pan-assay interference compounds (PAINS) (Table 1). PAINS compounds are chemical
compounds that tend to display activity against numerous targets by nonspecific interac-
tions or by altering the results of the biological tests. Compounds containing such moie-
ties, that are often present in PAINS compounds, could be false positive hits and in general
should be removed from the designed series [39]. Accordingly, our computational inves-
tigation provided five compounds as potential RdRp inhibitors, and more importantly
suggested guidelines for optimizing compounds considering the binding site of interest,
showing improved binding affinity with respect to quinadoline B. In fact, such structure-
based methodology can be easily applied to other ligand-protein complexes for optimiz-
ing existing hit compounds.

4. Conclusions

In summary, we presented a computer-aided investigation for identifying possible SARS-
CoV-2 RdRp inhibitors based on the quinadoline B scaffold, previously identified as pos-
sible RdRp ligand [17]. In particular, we used Q3 derivatives for exploring the RdRp bind-
ing site by inserting several chemical fragments, obtained from ChemDiv database, ob-
taining a Q3-focused library of over 900,000 unique structures. This library was used in a
virtual screening protocol employing the crystal structure of SARS-CoV-2 RdRp, for iden-
tifying Q3 derivatives with improved binding affinity with respect to quinadoline B.
Moreover, the top-ranked compounds were subjected to MD simulations, in order to eval-
uate the stability of the systems during a selected time, and for deeply investigating the
binding mode of the most promising derivatives. Finally, the in silico searching protocol
allowed the identification of five compounds with improved affinity for SARS-CoV-2
RdRp, ushering interests for further investigation as possible antiviral agents. Notably,
the developed computational protocol has implications in anti-SARS-CoV-2 drug discov-
ery and in general in the drug optimization process, providing a convenient computa-
tional procedure for hit-to-lead optimization.

Supplementary Materials: The following supporting information includes Figure S1: Superposition
between the docked pose of Q3 obtained by AutoDock and by Glide into RdRp binding site; Figure
52: RMSF calculation for each complex, selected by docking studies, after 100 ns of MD simulation;
Figure S3: Compound 4 monitored during the simulation. The contacts can be grouped by type and
summarized, as shown in the plots. Grouping protein-ligand interactions into four types: H-bonds,
hydrophobic, ionic, and water bridges; Figure S4: Compound 5 monitored during the simulation.
The contacts can be grouped by type and summarized, as shown in the plots. Grouping protein-
ligand interactions into four types: H-bonds, hydrophobic, ionic, and water bridges; Table S1: Struc-
ture of selected compounds reported as SMILES string.
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and A.P.M.; software, S.B.,, M.T.Q., ].G.A., ].B.H. and S.M.T.; validation, S.B., M.T.Q., K.ILN. and
A.PM.; formal analysis, S.B.,, M.T.Q., KIN., V.C. and A.P.M.; investigation, S.B.,, M.T.Q., KIN,,
J.G.A,, ].BH, SM.T,, V.C. and A.P.M.; writing—original draft preparation, S.B.; writing—review
and editing, S.B.,, M.T.Q., K.LN., V.C. and A.P.M; supervision, S.B. and A.P.M.
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