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Abstract

The scale of the parameter optimisation problem in traditional molecular mechanics

force field construction means that design of a new force field is a long process, and

sub-optimal choices made in the early stages can persist for many generations of the

force field. We hypothesise that careful use of quantum mechanics to inform molecular

mechanics parameter derivation (QM-to-MM mapping) should be used to significantly

reduce the number of parameters that require fitting to experiment and increase the

pace of force field development. Here, we design a collection of 15 new protocols for

small, organic molecule force field design, and test their accuracy against experimental

liquid properties. Our best performing model has only seven fitting parameters, yet

achieves mean unsigned errors of just 0.031 g/cm3 and 0.69 kcal/mol in liquid densities

and heats of vaporisation, compared to experiment. The software required to derive the

designed force fields is freely available at https://github.com/qubekit/QUBEKit.
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Introduction

Classical molecular mechanics force fields are widely used approximations to recover the

energy and forces of an atomistic system as a function of its nuclear coordinates. Force

fields are an invaluable companion to quantum mechanical modelling in cases where the

number of atoms or the time scale to be modelled would be otherwise restricted. Such

techniques have seen applications in, for example, the modelling of battery materials,1,2

organic light-emitting diodes,3,4 crystal structure prediction,5 and particularly in computer-

aided drug design where they form the basis of molecular dynamics, docking and free energy

simulations for calculating protein-ligand binding affinity.6,7

Typically, for modelling organic molecules in biology and chemistry, the force field is a

sum of bonded (including harmonic bond-stretching and angle-bending terms, and anhar-

monic 4-body torsion potentials) and non-bonded (including Coulombic and Lennard-Jones

interactions) terms. Small molecule force fields of this form include GAFF,8 CGenFF,9

OPLS,10 and the Open Force Field 1.0.0 (‘Parsley’) force field.11 In general, the bonded

and charge parameters of the force field may be fit to quantum mechanical potential energy

surfaces and electrostatic potentials, respectively. On the other hand, the Lennard-Jones

parameters are nearly always fit to experimental pure liquid properties.10,12 To be broadly

effective, small molecule force fields require accurate parameterisation of each of the above

terms for all chemical space. While recent trends have seen parameters fit to larger datasets,

complete coverage is challenging. Numerous studies, such as the SAMPL blind challenges13

have shown that there is plenty of room for improvement when it comes to predictive molec-

ular modelling with force fields.

In contrast to the empirical molecular mechanics force fields common in biological mod-

elling, interatomic potentials may instead be derived directly from quantum mechanics (QM).

For example, intermolecular perturbation theory may be used to separate the full QM inter-

action energy into physically motivated components,14 or machine learning based potentials

may be trained on QM energies and forces.15 These methods are attractive because they
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remove the empiricism of the force field approach, but they are computationally more ex-

pensive, and unless they fully incorporate, for example, many body and quantum nuclear

effects they are unlikely to reproduce condensed phase observables with sufficient accuracy.

QM-to-MM mapping reduces size of parameter search space.

Between the empiricism of typical classical force fields and the accurate, yet expensive, ab

initio derived force fields, increasing attention is being drawn to mapping physically moti-

vated parameters from QM into simple MM functional forms. By deriving bespoke force

field parameters for the molecule under study directly from QM, the number of transferable,

empirical parameters to be fit is significantly reduced. By retaining common MM functional

forms, the potentials may readily be implemented in widely used MM software and used

in, for example, free energy calculations. Bespoke intramolecular bond, angle and, partic-

ularly, torsion parameters may be readily derived from a small number of QM calculations

either by fitting to Hessian matrices16 or potential energy surface scans.17,18 Atom-centred

partial charges can be routinely derived from either semi-empirical calculations,19,20 or QM

electrostatic potential fitting,21,22 or atoms-in-molecule electron density partitioning.23–26

Less common, but perhaps most interestingly, is the possibility of using atoms-in-molecule

electron density partitioning to derive other components of the non-bonded interaction from

QM, in particular dispersion coefficients (C6,
27–30 C8,

31,32 ...), atomic polarisabilities,32,33

and off-centre charges to model electronic anisotropy.28,29 For example, Visscher and Geerke

have derived a polarisable force field model, with a higher order dispersion term derived from

iterative Hirshfeld atoms-in-molecule analysis, and applied it to small-molecule amino acid

analogues.34 Of the 138 nonbonded parameters in their model, 132 are determined from QM,

leaving just six to be fit to experiment. Kantonen et al35 employ a mapping of information

from minimal basis iterative stockholder (MBIS) atomic electron densities (in particular the

decay constants of the electron densities), to derive atom-specific Lennard-Jones parameters.

The mapping parameters (two per element) are fit to experimental liquid properties using
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the ForceBalance software.36

Our own work has focused on the development of a QUantum mechanical BEspoke

(QUBE) force field and associated toolkit (QUBEKit),29 built on QM-to-MM parameter

mapping. QUBE bond and angle force field parameters are derived from the QM Hes-

sian matrix of the molecule under study, using the modified Seminario method.37 Atomic

partial charges are computed from the density derived electrostatic and chemical (DDEC)

partitioned atomic electron densities.38,39 The Tkatchenko-Scheffler method27 is used to de-

rive C6 parameters from the same atomic electron densities, and the repulsive part of the

Lennard-Jones potential is derived from atoms-in-molecule atomic radii.28 Once all other

parameters are in place, flexible torsion parameters can be fit to QM dihedral scans using in-

terfaces between QUBEKit and external QM and MM software packages.29 A small number

of mapping parameters (in this case free atom radii for use in the derivation of Lennard-Jones

parameters) is used to ensure accuracy of condensed phase properties,29 and the resulting

force fields have also been shown to perform well in the calculation of protein–ligand binding

free energies.40–42

Force field design choices can be tested and optimised.

The above mentioned force fields derived from QM-to-MM parameter mappings have a simple

functional form, are straightforward to derive from a small number of simple QM calcula-

tions, and are bespoke to the system under study. However, despite the advantages, there are

still multiple design choices that must be made when constructing a QM-derived force field.

These range from the choice of functional form to use for the final force field, to the choice of

underlying QM method to compute the electron density, how to partition it between atoms,

and how to map the partitioned density to force field parameters. These choices may be

regarded as hyperparameters of the model.43 Drawing on lessons from the machine learning

field, separate models for each hyperparameter should be systematically trained and tested.

However, these hyperparameters are often ‘baked in’ to the design of the force field, and
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correcting known problems can be challenging.44 Until recently, the manual training of force

field parameters for a given set of hyperparameters (for example, Lennard-Jones parame-

ters for a given charge model) would be extremely time-consuming. However, allied with

improvements in data collection and retrieval,45 advances in automated parameter fitting to

experimental liquid properties now make this possible.36,46,47 Most notably, the ForceBal-

ance software enables reproducible and automated force field parameterisation against a set

of target data that can include either QM or experimental input data. In the context of the

current work, ForceBalance was used to tune the QM-to-MM mapping parameters against

experimental liquid data in the aforementioned study by Kantonen et al,35 and was also used

to rapidly re-fit Lennard-Jones parameters for a range of proposed implicit solvent models

(hyperparameters) in the development of the RESP2 method.22

An automated toolkit for force field design, training and testing.

Until now, the systematic testing of design choices in MM force fields has been rather lim-

ited, and it is almost impossible for individual users to undertake this task due to the scale

of the parameter optimisation problem. In what follows, we describe our interface between

the QUBEKit and ForceBalance software packages. This open source (including all depen-

dencies) software workflow allows users to make a choice of force field hyperparameters,

train the model against experimental liquid properties, and unambiguously test the result-

ing accuracy. We provide improved protocols for deriving the positions and magnitudes

of off-site charges (virtual sites) to model anisotropic electron density from the output of

atoms-in-molecule electron density partitioning calculations, as well as tools for including

them in torsion parameter fitting. Using a train/test split of 15/51 small, organic molecules,

we develop 15 force field protocols that aim to test the accuracy of different choices of i)

underlying QM method and basis set, ii) atoms-in-molecule electron density partitioning

method, iii) implicit solvent model parameters (used to pre-polarise charges for use in the

condensed phase), iv) mapping of atomic electron densities to LJ parameters, v) assignment
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of Lennard-Jones parameters to polar hydrogen atoms, and vi) use of virtual sites to model

anisotropic electron density. We show that a wide range of different choices can be made in

the force field design process, some of which do not affect the overall accuracy, and some of

which show marked improvements. For our best performing protocol, we provide all of the

parameters required for users to derive their own force fields using the QUBEKit software.

With these developments comes the potential for future rapid design of next-generation force

fields.

Methods

QUBEKit Workflow

QUBEKit is a largely Python 3.6+ based force field derivation toolkit for mac and Linux op-

erating systems. By combining multiple open-source bioinformatics and quantum chemistry

packages into a single workflow, it is possible to generate bespoke force fields for molecular

dynamics simulations (Figure 1(a)). QUBEKit can be run using only Anaconda or PyPI

installable open-source packages, with the option to use Gaussian48 for QM and torsion

optimisations, and the fortran package Chargemol24,25 for atoms-in-molecule analysis.

The general workflow of QUBEKit begins with generating a set of initial parameters for

an OPLS-style force field:

U =
∑
Bonds

kr
2

(r − r0)2 +
∑
Angles

kθ
2

(θ − θ0)2

+
∑

Dihedrals

[
V1
2

(1 + cos(φ)) +
V2
2

(1− cos(2φ)) +
V3
2

(1 + cos(3φ)) +
V4
2

(1− cos(4φ))

]

+
∑
Pairs

qiqj
rij

+ 4εij

((
σij
rij

)12

−
(
σij
rij

)6
) (1)

where kr, r0, kθ, θ0, V1−4, qi, εij and σij are force field parameters to be derived. QUBEKit

can take as input most industry-standard molecule formats, such as a SMILES string, or
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Figure 1: a) QUBEKit workflow. The molecule under study is input and optimised. The
total electron density is partitioned into atomic contributions, while Hessian matrices and
optional torsion scans are computed. QM measurements are mapped to MM force fields
using the QUBEKit software, and (optionally) mapping parameters are optimised using
ForceBalance. b) Virtual site derivation for 1,3-dioxolane. (Top right) ESP surface plot (at
1.4x the van der Waals radius) using a single atom-centred point charge (kcal/mol), (bottom
left) the QM ESP up to quadrupole order, (bottom right) the MM ESP with the addition
of two virtual sites (as shown in top left). c) Example torsion scans before (green) and after
(orange) parameter optimisation.
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pdb or mol2 file. Initial parameters may be generated from the Open Force Field toolkit,11

Antechamber,49 or a supplied XML file. From there, multiple conformers of the molecule

coordinates are generated and used in a fast but basic optimisation via TorchANI,50 XTB51

or OpenMM.52 Of these conformers, the lowest energy result is taken to the QM optimisation

stage. The QM structural optimisation is performed using either PSI453 or Gaussian,48 both

run through QCEngine54 with an ultra-fine grid. If the first, lowest energy conformer fails

to optimise after 50 iterations, the next conformer is passed instead. The QM optimised

coordinates are used as input for an electron density calculation, a Hessian matrix calculation

and optional 1D torsiondrive calculation(s) (Figure 1(a)). The Hessian matrix is used to

calculate all bond and angle parameters (kr, r0, kθ, θ0) via the modified Seminario method.37

QUBE uses atoms-in-molecule (AIM) electron density partitioning to obtain all non-

bonded parameters of the force field. AIM methods partition the total electron density n(r)

into overlapping atomic densities ni(r) according to:

ni(r) =
wi(r)∑
k wk(r)

n(r) (2)

where the form of the weights, wi(r), are determined by the choice of AIM method. Common

choices include (iterative) Hirshfeld,26 MBIS23 and density derived electrostatic and chemical

(DDEC)24,25 partitioning. Following AIM partitioning, atom-centred partial charges are

simply assigned by integrating the atomic electron densities:

qi = zi −
∫
ni(r)d3r (3)

where zi is the nuclear charge. It is well-known that partial charges in non-polarisable force

fields need to be scaled in some way to account for polarisation in an effective manner in

condensed phase simulations. Common approaches include use of bond order corrections or

charge scaling factors,19,20 but we prefer to use an implicit solvent model with a dielectric con-

stant intermediate between the gas and water phases.22,28,55 The final charges thus depend on
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the choice of underlying QM method used to compute n(r), the choice of AIM method, and

the choice of implicit solvent model and parameters. Previously we computed the electron

density using the linear-scaling DFT code, ONETEP,56 using the PBE exchange-correlation

functional and a non-orthogonal generalised Wannier function basis set.29 A multigrid Pois-

son solver57 was used with a dielectric of 4 to pre-polarise the charges, and an implementation

of the DDEC AIM method in ONETEP (similar to DDEC339) was employed to partition

the electron density. As discussed in the Introduction, we now have the infrastructure in

place to systematically test the effects of these hyperparameter choices. Table 1 summarises

the alternative model protocols that will be investigated here to test the effect of the under-

lying QM method (models 1a and 1b), the implicit solvent parameters (models 2a–2c) and

AIM partitioning scheme (models 3a and 3b) on the force field parameters, and physical

properties.

In the original QUBE force field, the non-bonded part of the force field includes the

Lennard-Jones interaction:

VLJ(rij) =
Aij
r12ij
− Bij

r6ij
(4)

between pairs of atoms i, j. The dispersion coefficient, Bi is derived for the atom in the

molecule via the Tkatchenko-Scheffler (TS) relation:27

Bi =

(
V AIM
i

V free
i

)2

Bfree
i (5)

where V AIM
i is the third radial moment of the partitioned atomic electron density:

V AIM
i =

∫
r3ni(r)d3r (6)

The corresponding quantities Bfree
i and V free

i may be computed and tabulated for free atoms

in a vacuum (Table S1). To ensure that the Lennard-Jones potential has a minimum at the

effective van der Waals radius of the atom-in-molecule, the coefficient of the repulsive term
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may be approximated via:28

Ai =
1

2
Bi

(
2RAIM

i

)6
(7)

where the AIM radius, RAIM
i , is again found by re-scaling a reference free atom radius:

RAIM
i =

(
V AIM
i

V free
i

)1/3

Rfree
i (8)

The Rfree
i are free parameters to be fit to experiment, which we have found to be crucial

if the force field is to reproduce condensed phase properties. Previously, we have fit these

via parameter scans to liquid properties (densities and heats of vaporisation).28 However,

as discussed in the Introduction, a new set of parameters is required for each set of model

hyperparameters, and so we employ here a more automated approach as set out later.

Transforming the Ai and Bi parameters to the σi and εi parameters of eq 1, we obtain

(a full derivation is given in Supporting Information S1.1):

σi = 25/6

(
V AIM
i

V free
i

)1/3

Rfree
i (9)

and:

εi =
Bfree
i

2
(

2Rfree
i

)6 (10)

Throughout this study, the Lorentz-Berthelot combination rules are used to derive εij and

σij from the corresponding atomic quantities. Eq 9 results in atoms with more diffuse

electron density having a larger Lennard-Jones σi parameter but, as correctly pointed out

previously,35 all atoms of the same element have the same Lennard-Jones well depth (eq 10).

In that same study, the authors proposed that each atom should have a unique effective

ionisation energy, derived from the partitioned atomic electron density, which affects the

scaling relationship in eq 5.35 An additional consideration is that the dispersion coefficient

(Bi) should be viewed as an effective interaction, taking into account not only the dipole-
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dipole, but also higher-order (dipole-quadrupole etc) contributions to dispersion. It has

been shown that physics-based derivations of Bi tend to therefore be lower than the effective

coefficients in common MM force fields.30,40 To take both of these factors into account, we

test here the effect of introducing additional flexibility in the definition of the dispersion

coefficient:

Bi = α

(
V AIM
i

V free
i

)2+β

Bfree
i (11)

where α and β are global fitting parameters. This change has no effect on σi, but εi is

now dependent on the diffuseness of the atomic electron density, measured by V AIM
i (a full

derivation is given in the Supporting Information S1.2):

εi =
α
(
V AIM
i

V free
i

)β
Bfree
i

2
(

2Rfree
i

)6 (12)

Note that β can be positive or negative. Thus, as summarised in Table 1, we can set α = 1

and β = 0 to retain the original QUBE force field model (e.g. model 0), or optimise α and

β alongside Rfree
i (e.g. model 4b). The effects of these choices are discussed later.

An additional choice in force field design is whether to include Lennard-Jones parameters

on polar hydrogen atoms, or to effectively redistribute them onto the neighbouring heavy

atom28 (see Supporting Information S1.3). Different choices are made for example in

the design of the TIP3P and CHARMM modified water model,58 while there is precedent

for improved agreement with liquid data using Lennard-Jones parameters on polar hydrogen

atoms.59 While separate mapping parameters have been previously proposed for polar and

non-polar hydrogen atoms, the effect on accuracy has not been directly explored,35 and so

we add this comparison to our list of model protocols to be tested (Table 1, model 4a).

A final consideration to be made when deriving the non-bonded parameter set is how to

treat atoms with significant anisotropy in their electron density, such that an atom-centred

point charge gives a poor approximation to the full QM electrostatic potential at the surface
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of the molecule. Such situations are commonly treated in MM force fields using an off-

centre charge (or “virtual site”), as used in, for example, the TIP4P water model60 and

various treatments of lone-pairs and σ-holes in common force fields.61–63 In keeping with

our general force field philosophy, we previously proposed a method to derive the positions

and magnitudes of off-site charges, where required, directly from the partitioned QM electron

density. Full details are given elsewhere,29 but in brief the charges are positioned to minimise

the quantity:

Φ =
1

n

n∑
i=1

∣∣V i
QM − V i

MM

∣∣ (13)

where V i
QM is the electrostatic potential generated by the partitioned atomic electron density

at a sample point i, V i
MM is the corresponding quantity calculated using the point charge

model, including any off-centre charge(s), and n is the total number of sample points (located

between 1.4 to 2.0 times the van der Waals radius of the atom). By using the atomic, rather

than the molecular, electron density, the method scales easily to larger molecules. To limit

the search space, off-site charges were restricted to positions determined by the symmetry

of the atom’s bonding environment.29 For example, for halogens bonded to a single atom,

the search direction is along the bond vector, and for oxygen bonded to two neighbours, the

search direction is along the bisector of the two bonds. Similar arguments can be made for

positioning two virtual sites.29

A similar protocol is followed in the current work. Key differences are discussed here

and full implementation details are provided in the Supporting Information Section S2.

It is desirable to perform the optimisation of eq 13 directly in QUBEKit, but storage and

imports of the full atomic electron density is inefficient. Instead, V i
QM is now reconstructed

from the QM atomic multipole moments, up to quadrupole order, which are readily extracted

from either Chargemol (using the DDEC AIM method)24,25 or the PSI4 software (using the

MBIS AIM method).53 For atoms with isotropic electron density, the atomic multipoles are

low, and the QM electrostatic potential is well-described by an atom-centred point charge

(monopole). For atoms with anisotropic electron density (defined here as Φ > 1 kcal/mol),
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eq 13 is minimised with respect to the virtual site charge and position, using the Scipy

python package.

Figure 1(b) shows example surface plots of the electrostatic potential energy (ESP) at

1.4x the van der Waals surface of an oxygen atom in 1,3-dioxolane. The bottom-left plot

shows the QM-calculated ESP, up to quadrupole order. The top-right plot shows the ESP

using an atom-centred monopole, which simply gives a uniform, averaged ESP over the

entire surface of the atom. The difference between these two plots at every point allows

the calculation of the error function, eq 13. The bottom-right plot shows an approximation

of the QM ESP, constructed with the addition of just two virtual sites, which are able to

recover the expected anisotropy in the ESP. Table 1 shows the experiments performed in

what follows to test the effect of including virtual sites on our force field model accuracy

(models 5a–5e).

In previous works, new non-bonded force field parameters tend to be investigated in

conjunction with the bonded parameters of standard transferable force fields, which may

lead to incompatibility given the close inter-dependency between parameter types. Here, the

benefit of assembling the force fields using the QUBEKit package, is that torsion parameters

for rotatable bonds may be re-fit in a simple, automated manner for compatibility with the

rest of the bonded and non-bonded parameters. Using a new interface between QUBEKit,

ForceBalance36 and TorsionDrive,64 dihedral parameters of any freely rotatable bonds were

optimised via a least squares minimisation of the root mean square error (RMSE) between

QM and MM torsional potential energy surfaces. We use the same procedure for parameter

fitting as the recent Open Force Field Parsley force field,11 and full details are provided

in Supporting Information Section S3.1. A new feature in this work is that we have

modified the ForceBalance code to allow parameter fitting in the presence of local coordinate

virtual sites. These virtual sites then inherit their exceptions and exclusions from the parent

atom meaning they interact with the same rules as the parent. The code may be obtained

from conda-forge or github (https://github.com/leeping/forcebalance), and is available from
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version 1.9.0 onward. Figure 1(c) demonstrates an example of bespoke dihedral parameter

fitting for the molecule acetic anhydride, which has two virtual sites on the central oxygen

atom. With the initial parameter set (which is incompatible with the new Lennard-Jones

parameters and virtual sites), the RMS error is more than 3 kcal/mol, but following fitting it

falls to just 0.12 kcal/mol. In fact, the average RMSE across all molecules in the 51 molecule

test set (a total of 117 scans) after fitting was just 0.13 kcal/mol.

ForceBalance Workflow

As outlined in Figure 1(a), for each choice of force field design protocol (Table 1), the Force-

Balance software36 was employed to optimise the set of fitting parameters. These parameters

were the Rfree
i parameters of H, C, N and O (eq 8), and optionally the dispersion rescaling

parameters α and β (eq 11). Where Lennard-Jones parameters were included on polar hy-

drogen atoms, it was found that a separate Rfree
i parameter was required for these atoms.

Optimisation was performed against the experimental liquid densities and enthalpies of va-

porisation of a training set of 15 molecules. The training set comprised molecules containing

H, C, N and O only, and a range of functional groups (Supporting Information Section

S4). It was identical to that used in the training of the RESP2 charge fitting procedure,22

except that one molecule (N1(C)CCOCC1) was replaced by CN(C)C=O to ensure that

sampling complex potential energy surfaces did not influence the fit. ForceBalance uses the

reference data to produce an objective function, which is minimised with a non-linear opti-

misation algorithm through numerical differentiation of physical properties with respect to

the fitting parameters. Further details are given in the Supporting Information Section

S3.2. To create the inputs required by ForceBalance, QUBEKit automatically combines the

force fields of the individual molecules, along with algebraic expressions that transform the

fitting parameters into the σi and εi parameters of the force field (see, for example, eqs 9 and

10), into a single xml file. The full training set, experimental data, example ForceBalance

input files, and tutorial are provided in the Supporting Information.
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Following the completion of ForceBalance training runs, the final fitting parameters are

used to re-calculate the Lennard-Jones and re-fit the torsion parameters in QUBEKit. Train-

ing set accuracy was then confirmed by re-computing the liquid properties of the 15 molecules

using QUBEBench, which is an interface with OpenMM for the benchmarking of QUBE force

fields (Supporting Information Section S3.3). QUBEBench and ForceBalance data de-

viated by just 0.002 g/cm3 and 0.11 kcal/mol, on average, for density and heat of vaporisation

calculations, respectively, indicating good convergence of the fit. Finally, four of the most

encouraging force field protocols were taken forward to testing. Here, QUBEKit was used

to fit force fields for a test set comprising a further 51 molecules taken from a previous

study (Supporting Information Section S4).22 Physical properties were calculated us-

ing QUBEBench, and compared with experiment, to confirm transferability of the designed

protocols.

Results

Training a range of force field models identifies patterns in accuracy.

Using our new interface between the QUBEKit engine for QM-to-MM force field parameter

mapping and the ForceBalance software for parameter tuning, we have trained a total of 15

different force field protocols to investigate the effects of choices made in force field design on

model accuracy. Descriptions of the force field protocols are listed in full in Table 1, grouped

roughly by the type of hyperparameter being investigated.

The first groupings investigate the choice of underlying QM methods used to compute the

total electron density for AIM partitioning and subsequent non-bonded parameter derivation

(the same QM method is also used for Hessian matrix calculation and dihedral scans to obtain

the bonded parameters). As mentioned, our first implementation of QUBEKit29 interfaced

with the ONETEP DFT code,56 which uses the PBE exchange-correlation functional, for

non-bonded parameter derivation. However, this new version of QUBEKit is interfaced, via
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Table 1: Summary of changes across force field models. Model 0 is designated as the
default protocol, and changes from the default in subsequent models are highlighted in
bold. Training set mean unsigned error (MUE) in density (g/cm3) and heat of vaporisation
(kcal/mol), relative to experiment, are displayed for each force field protocol.

Model QM Method Solvent V–Sites AIM LJ MUE (ρ, ∆Hvap)
0 ωB97X–D/6–311++G(d,p) IPCM, ε=4 No DDEC6 TS 0.0274, 0.766
1a B3LYP–D3(BJ)/DZVP IPCM, ε=4 No DDEC6 TS 0.0271, 0.726
1b HF/6–31G(d) None No DDEC6 TS 0.0248, 0.731
2a ωB97X–D/6–311++G(d,p) IPCM, εεε=2 No DDEC6 TS 0.0296, 0.772
2b ωB97X–D/6–311++G(d,p) IPCM, εεε=10 No DDEC6 TS 0.0237, 0.783
2c ωB97X–D/6–311++G(d,p) IPCM, εεε=20 No DDEC6 TS 0.0285, 0.678
3a ωB97X–D/6–311++G(d,p) IPCM, ε=4 No DDEC3 TS 0.0213, 0.475
3b B3LYP–D3(BJ)/DZVP Chloroform No MBIS TS 0.0159, 0.578
4a ωB97X–D/6–311++G(d,p) IPCM, ε=4 No DDEC6 H0 0.0235, 0.896
4b ωB97X–D/6–311++G(d,p) IPCM, ε=4 No DDEC6 α, βα, βα, β 0.0206, 0.587
5a ωB97X–D/6–311++G(d,p) IPCM, ε=4 Yes DDEC6 TS 0.0190, 0.441
5b ωB97X–D/6–311++G(d,p) IPCM, ε=4 Yes DDEC6 α, βα, βα, β 0.0209, 0.244
5c ωB97X–D/6–311++G(d,p) IPCM, ε=4 Yes DDEC3 TS 0.0163, 0.357
5d B3LYP–D3(BJ)/DZVP IPCM, ε=4 Yes DDEC6 TS 0.0141, 0.450
5e B3LYP–D3(BJ)/DZVP Chloroform Yes MBIS α, βα, βα, β 0.0175, 0.480

Table 2: Values of the fitting parameters following ForceBalance optimisation for each of the
force field protocols. The Rfree

i for each element are in Å, and α and β are dimensionless.

Model C N O H polar H α β
0 2.008 1.765 1.499 1.738 1.083 – –
1a 1.999 1.740 1.489 1.752 1.111 – –
1b 2.042 1.676 1.501 1.737 1.218 – –
2a 2.004 1.708 1.464 1.744 1.107 – –
2b 2.026 1.751 1.521 1.724 1.119 – –
2c 2.025 1.756 1.503 1.733 1.132 – –
3a 2.051 1.740 1.590 1.670 1.126 – –
3b 2.068 1.681 1.599 1.753 1.404 – –
4a 2.021 1.604 1.550 1.719 – – –
4b 2.074 1.742 1.481 1.760 1.154 1.301 0.465
5a 1.994 1.706 1.558 1.738 1.279 – –
5b 2.035 1.722 1.574 1.731 1.294 1.221 0.489
5c 2.042 1.740 1.630 1.687 1.274 – –
5d 2.013 1.680 1.558 1.732 1.442 – –
5e 2.043 1.693 1.680 1.680 1.464 0.999 0.491

17



QCEngine,54 with both Gaussian0948 and PSI4,53 which gives us access to a wide range

of alternative quantum chemistry methods. If using PSI4, the electron density partitioning

is performed using MBIS.23 If using Gaussian09, Chargemol is used to calculate the atom

centred charges via either the DDEC3 or DDEC6 AIM schemes. In all cases, the AIM

method returns atom-centred point charges, the third radial moment of the atomic electron

density (for Lennard-Jones parameter derivation), and multipole moments of the atomic

electron density (for virtual site derivation).

QM Method

First, we investigate the use of two relatively high level QM methods. The ωB97X-D/6-

311++G(d,p) method is used for bonded parameter derivation in earlier QUBE force fields,29,65

as well as the OPLS-AA/M protein force field.66 The B3LYP-D3(BJ)/DZVP method is used

for bonded parameter fitting in the Parsley force field11 and has been shown to give a good

compromise between accuracy and computational expense for gas phase conformational en-

ergetics of small organic molecules.67 It has been shown that the choice of DFT functional

is not too critical in the reproduction of molecular electrostatic potentials, while larger ba-

sis sets afford some improvements in accuracy.22 However, relatively little is known about

how this choice translates to force field accuracy. Runs 0 and 1a reveal that this choice

is not critical, with nearly identical training set accuracy obtained for both liquid densities

(0.027 g/cm3) and heats of vaporisation (0.77 vs 0.73 kcal/mol). It should be emphasised

that this does not mean that the non-bonded parameters themselves are identical. Table 2

shows the final Rfree
i parameters after ForceBalance training. There is a notable reduction

in the radius of the N atom, using the B3LYP-D3(BJ)/DZVP method, and corresponding

increase in both the polar and non-polar H atoms. This backs up the recent assertion that

improving the accuracy of atomic charges is unlikely to improve calculation accuracy without

a corresponding optimisation of Lennard-Jones parameters.22

For comparison, in run 1b, we employed the HF/6-31G(d) method, which has been used
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historically for the fitting of force field ESP charges.21 The argument goes that this method

produces a fortuitous over-polarisation of the electron density in the gas phase to yield

charges that are suitable for condensed phase modelling, and so we perform these electron

density calculations in vacuum (Table 1). The results are very similar to the two higher level

QM methods in implicit solvent, but perhaps this is not too surprising, given the success of

many force fields that are built from the HF/6-31G(d) method. However, as we will show,

we can now do better with improved physics-based protocols.

Implicit Solvent Model

In previous versions of QUBEKit, we have computed the electron density using a minimal

parameter solvent model, with the solute cavity defined by an isosurface of the electron

density.57 We argued that a solvent dielectric ε = 4 is appropriate, as it leads to charges

that are polarised midway between vacuum and a dielectric medium of ε = 78 (i.e. water).28

Gaussian09 provides the IPCM implicit solvent model,68 which also builds the solute cavity

from an isosurface of the electron density, and so we use this model as our default here.

Models 2a–2c compare the effect of tuning the solvent dielectric in the range ε = 2–20.

Again, very little change in force field accuracy is observed, with density errors in the range

0.02–0.03 g/cm3 and heat of vaporisation errors in the range 0.6–0.8 kcal/mol. This is

broadly in agreement with previous observations,22 which showed a strong dependence of

condensed phase properties on the polarity of the charge model for a fixed set of Lennard-

Jones parameters, but much less sensitivity when the Lennard-Jones parameters are tuned

for consistency with the charges. Table 2 shows that the Rfree
i parameters in run 2a tend to

be lower than the others, which indicates that the minimum of the Lennard-Jones interaction

should be closer to the atom for the less-polarised charge model. Compared to vacuum, we

found that molecular dipole moments are scaled by a factor of 1.10x (ε = 2) and 1.22x

(ε = 20), on average, indicating that a suitable range of condensed phase polarisation has

been captured in these force field models by tuning the dielectric of the background implicit
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solvent (Figure S4).

AIM Partitioning Method

Our previous version of QUBEKit relied on an implementation of the DDEC AIM approach

in the ONETEP DFT code.39 The DDEC AIM method is described elsewhere,24 but in

short it aims to construct the optimal weighting factors of eq 2 that result in approximately

spherical atomic electron densities, so that its multipole expansion converges rapidly, whilst

ensuring that the resulting charges are chemically reasonable. Alongside the observation that

DDEC charges show excellent transferability between different conformations of the same

molecule,25 these properties make the DDEC AIM approach very promising for flexible force

field design.

In the previous sections, we employed the latest DDEC6 AIM approach for the first

time in organic molecule force field design, through the interface between Gaussian09 and

Chargemol. In model 3a, we investigate the effect of switching to the older DDEC3 approach.

The accuracy is actually slightly better for DDEC3, with a decrease in both density and heat

of vaporisation errors, compared to the baseline model 0. DDEC6 has several methodological

improvements, which are summarised elsewhere24 and have been shown to result in more

robust convergence, lower computation times, lower ESP errors, and higher transferability,

when compared to DDEC3.24,25 However, most of these advantages will not be apparent in

the small, relatively rigid, organic molecules, which lack buried atoms and are simulated here

under standard conditions.

MBIS is similar in idea to the Hirshfeld family of AIM methods.23 In this method the

total electron density is partitioned onto a minimal set of s-type Slater functions, whose

parameters are fit to the input molecular electron density by minimising the Kullback-Leibler

divergence. Like DDEC, it has been shown that the MBIS-derived charges reproduce the QM

ESP to good accuracy and are robust to small conformational changes, while MBIS can also

be used to derive Tkatchenko-Scheffler based dispersion coefficients.23 MBIS charges, along
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with all AIM properties (atomic multipoles up to quadrupole order and radial moments) that

we require for force field derivation have recently been implemented in the PSI4 quantum

chemistry package,53 which we can now access through our latest interface with QCengine.54

Model 3b thus investigates the use of MBIS as the AIM partitioning method in force field

derivation. For technical reasons, it was necessary to use the B3LYP exchange-correlation

functional, and the IEFPCM implicit solvent model (with a chloroform solvent to mimic a

dielectric of approximately 4),69 for the underlying QM calculations. Again this combination

of methods gave very good accuracy on our training set, with errors in the density and heat

of vaporisation of 0.016 g/cm3 and 0.58 kcal/mol, respectively.

Given the expected benefits of DDEC6 in larger, more flexible molecules, we retain this

method as our standard approach, but do investigate both DDEC3 and MBIS further in what

follows. It is gratifying that a range of AIM methods have been shown to be promising for

flexible force field design, and are available through our QUBEKit interface with QCEngine.54

Lennard-Jones Parameters

Figure 2: Correlation between Parsley and QUBE (model 5b) summed molecular dispersion
coefficients for each molecule in the test set (Bmol =

∑
i∈molBi).

As discussed in the Methods section, the default QUBE protocol for deriving the attrac-

tive part of the Lennard-Jones potential (Bij in eq 4) from QM tends to lead to dispersion

coefficients that are lower than those used in common effective force fields40 and energy
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well depths that are constant across atoms of the same element.35 Model 4b in Table 1

investigates the effects of relaxing this protocol, by introducing two new global, variable

parameters (α and β) into the fit, thus moving away from the default Tkatchenko-Scheffler

(TS) approach. As expected, a reduction in training set errors is achieved, relative to the

default model 0, with these extra fitting parameters. Table 2 shows that this is achieved with

α > 1 and β > 0, both factors that act to increase the well depth for atoms with more diffuse

electron density (eq 12). Figure 2 plots the dispersion coefficients (summed over all atoms

in the molecule) for all molecules in the larger test set, using the identical Lennard-Jones

scheme (from model 5b, see later), against the corresponding quantities extracted from the

Parsley force field. Unlike previous protocols (see our previous work,40 and Section S5.2),

there is a very good correlation between the two force fields, albeit with a consistent offset.

While the Parsley parameters are extracted from a library, which in turn has been fit to

condensed phase properties, and ours are derived from QM calculations specifically for the

molecule under question, the convergence of the two approaches is encouraging.

In addition, we investigate the question of whether to include Lennard-Jones parameters

on polar hydrogen atoms, or to set them to zero and effectively absorb them onto the

neighbouring heavy atom (Section S1.3).28 In Table 1, we show that force field protocol 4a,

which has no Lennard-Jones parameters on polar hydrogens (denoted ‘H0’), has a similar

density error, but higher heat of vaporisation error (0.90 kcal/mol) compared to the other

protocols. Interestingly, this model has a much lower Rfree
i for nitrogen than the other

models, but the low density error indicates that this does not propagate through to too

short hydrogen bonding distances in condensed phase simulations. Nevertheless, we conclude

that explicitly including Lennard-Jones parameters on polar hydrogen atoms has accuracy

benefits, and we continue to use this approach in the following force field models.
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Virtual Sites

Figure 1(c) shows an example benefit of including just a small number of virtual sites on

a molecule in terms of the reproduction of the QM electrostatic potential (in this case up

to quadrupole order). In fact, considering a larger test set of 51 molecules, we found that

33 molecules had electron density anisotropy above our set threshold (1 kcal/mol, eq 13)

for at least one atom. As expected from our previous work,29 these virtual sites were found

almost exclusively on oxygen and nitrogen atoms. Using atom-centred point charges only,

the average ESP error on these atoms was 1.87 kcal/mol, which fell to 0.53 kcal/mol after

virtual site fitting. Further examples are given in the next section and a full list of molecules

and ESP errors are given in the Supporting Information.

However, a more pertinent question is whether a force field model that more accurately

captures the QM electrostatic potential also results in more accurate prediction of condensed

phase properties. We have therefore trained a series of force field protocols that include vir-

tual sites in the description of the electrostatics (models 5a–5e). Table 1 summarises the

accuracy on the training set. As opposed to some of the other design choices, we now see

significant accuracy gains for these models, with predictions in liquid densities in the range

0.014–0.021 g/cm3 and heats of vaporisation between 0.24–0.48 kcal/mol. The lowest density

error is observed when virtual sites are used in combination with the B3LYP-D3(BJ)/DZVP

QM method (model 5d), and the lowest energy errors when used with rescaled Lennard-Jones

interactions (model 5b). Although there is no significant trend in the fit Rfree
i parameters on

the heavy atoms for these force field protocols (Table 2), interestingly there is a consistent

shift of the van der Waals radii of the polar hydrogen atoms to higher values (1.27–1.46 Å)

when used in combination with virtual sites. This makes intuitive sense since these atoms

are likely to be involved in hydrogen bonds with anisotropic polar atoms, like oxygen and

nitrogen. The virtual sites will move the centre of electron density closer to the van der

Waals surface of the heavy atom, meaning that the Lennard-Jones repulsion should increase

to compensate the increase in electrostatic attraction. The improved condensed phase prop-
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erties seem to indicate that this is a more physically-reasonable balance than the traditional

atom-centred point charge approach.

Relative training set accuracy is retained in the test set

Table 3: Test set accuracy. MUE in density (ρ) and heat of vaporisation (∆Hvap) for 51
molecules in the test set. 95% confidence intervals are included.

Force Field ρ (g/cm3) ∆Hvap (kcal/mol)
Parsley 0.0380.048

0.028 1.181.53
0.87

Model 0 0.0330.043
0.024 1.531.87

1.17

Model 1a 0.0410.052
0.030 1.331.58

1.11

Model 5b 0.0360.046
0.027 0.690.86

0.51

Model 5d 0.0310.041
0.022 1.021.33

0.73

To test the accuracy of the designed force fields on molecules outside the training set,

we ran simulations of the condensed phase properties of a separate test set of 51 molecules

containing H, C, N and O atoms only. The force fields brought through for study were models

0, 1a, 5b and 5d. The first two were chosen as our simplest (but also amongst the least

accurate) protocols, differing only by the choice of underlying QM method. In both cases, we

see a drop in overall accuracy, compared to the training set, which is to be expected for the

larger, more complex molecules found in the test set (Figure S3). Again, we do not observe

a strong dependence of the results on the choice of QM method, and so the computationally

less expensive model 1a, based on the B3LYP–D3(BJ)/DZVP method, should make a good

compromise force field. For comparison, we have also run the test set using the Open Force

Field Parsley force field11 using identical protocols. The accuracy in the simulated densities

(0.038 g/cm3) is similar to our first two protocols, and the error in the heat of vaporisation

(1.18 kcal/mol) is slightly lower. The Parsley force field is based around the AM1-BCC charge

scheme, with Lennard-Jones parameters largely retained from the SMIRNOFF99Frosst force

field.70 Thus, there is scope for further refinement of the Lennard-Jones parameters within

the current functional form, albeit with many more adjustable parameters than we use here

(the five Rfree
i parameters in Table 2).
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Figure 3: Correlation between experimental and calculated (model 5b) physical properties
of liquids in the test set.

Two additional force field protocols were chosen for further investigation based on low

training set errors. Model 5d uses the B3LYP–D3(BJ)/DZVP method, and virtual sites to

model anisotropic electron density. In this case, we see moderate improvement in test set

accuracy for both density and heat of vaporisation. Model 5b uses our default quantum

chemistry method, virtual sites and re-scaled Lennard-Jones interactions. With approxi-

mately the same density error, the error in the heat of vaporisation is significantly reduced

to around 0.7 kcal/mol (Figure 3). Only two compounds have heat of vaporisation errors

exceeding 2 kcal/mol, and these are two relatively long chain molecules containing hydroxyl

groups (SMILES: OCCCCCO and CC(C)(O)CCC(C)(C)O).

It is difficult to pinpoint reasons for improvement in accuracy, since the physical properties

are derived from many competing effects. However, Figure 4 shows some of the force field

parameters for molecules that show differences in performance between our best model (5b),

and Parsley. Figure 4(a) shows 1,3-benzodioxolane, which has ∆Hexper
vap = 13.1, ∆HQUBE

vap =

13.8 and ∆Hparsley
vap = 15.3 kcal/mol. The net charge and Lennard-Jones ε parameter is

similar for both QUBE and Parsley, but the former has the charge roughly evenly spread

over the atom centre and two virtual sites, showing the benefits of modelling anisotropy in

the electron density. Figure 4(b) shows heptane, and in this case both force fields are in

excellent agreement with each other and experiment (∆Hexper
vap = 8.8, ∆HQUBE

vap = 8.4 and
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Figure 4: A comparison of selected force field parameters between QUBE (model 5b), and
Parsley. Charges on the atom centre and virtual sites (if applicable) are shown, along with
the Lennard-Jones ε parameter (kcal/mol).

∆Hparsley
vap = 8.7 kcal/mol). There are some small differences in charges on the terminal

methyl hydrogen atoms, which add up to a large difference in charge on the carbon atoms,

but this does not seem to significantly affect the liquid properties. Figure 4(c) shows methyl

isocyanate, for which QUBE model 5b is in much better agreement with experiment than

Parsley (∆Hexper
vap = 6.9, ∆HQUBE

vap = 6.7 and ∆Hparsley
vap = 11.0 kcal/mol). This seems to be

a general issue with the atom-centred fixed charge force fields, since using our model 0, we

obtain ∆HQUBE
vap = 10.1 kcal/mol. Indeed, QUBE model 5b has a smaller net charge on the N

atom of methyl isocyanate than Parsley, but some of the charge is spread onto a virtual site.

Finally, Figure 4(d) shows piperidine, for which slightly improved agreement with experiment

is again obtained (∆Hexper
vap = 9.2, ∆HQUBE

vap = 8.9 and ∆Hparsley
vap = 10.5 kcal/mol) with a

smaller net charge and a virtual site on the N atom.

We can compare the accuracy of the protocols developed here with other force fields tested

on the same or similar test sets. Using the RESP2 charge assignment method, which is based

on fitting to the QM electrostatic potential in implicit solvent, with optimised Lennard-
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Jones parameters, the density and heat of vaporisation errors on an identical test set are

0.024 g/cm3 and 1.67 kcal/mol.22 Thus, substantial improvement in energetics is obtained

in the current study, at the expense of a slight degradation in liquid density prediction. In

that study, only a subset of ten Lennard-Jones parameters (the well depth and radius for

each of C, O, N, H and polar H) were optimised for efficiency, though this is still more

parameters than our most complex protocol (model 5b has seven adjustable parameters).

Kantonen et al have used a similar QM-to-MM parameter mapping approach. They derive

Lennard-Jones parameters from the MBIS partitioned atomic electron densities, with two

fitting parameters (used to map the electron density decay constants onto the Lennard-Jones

σ and ε) for each of C, O, N, H, and polar H. These QM-derived Lennard-Jones parameters

are used alongside the AM1-BCC charge model, and GAFF bonded parameters. On a

test set of 23 small organic molecules, they report MUEs of 0.027 g/cm3 and 1.1 kcal/mol

in density and heat of vaporisation, respectively, which is similar in performance to our

model 5d protocol. Visscher and Geerke have used an AIM-based QM-to-MM mapping

scheme, using both C6 and C8 dispersion coefficients, in combination with an ESP-based

charge scheme and a charge-on-spring polarisable model.34 Our strategy of fitting a small

number of Rfree
i parameters was also employed there, but no off-site charges were used.

Encouraging root-mean-square deviations from experiment of 0.024 g/cm3 and 0.39 kcal/mol

in ρ and ∆Hvap were reported on a combined train/test set of 49 small organic molecules.34

With our automated methods for force field derivation and training, it appears that further

accuracy gains can be expected by moving in future to polarisable and beyond-Lennard-Jones

models.

Discussion and Conclusions

Force field design is a lengthy process, often requiring large teams of researchers working over

a period of many years. Design decisions are typically made early in the process, and any
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inaccuracies stemming from these assumptions propagate through to the final force field.

Even the minimal Parsley force field has a set of 35 Lennard-Jones parameters,11 and so

large training sets are required to cover sufficient chemical space. Repeatedly performing

the full training process to investigate alternative design decisions would substantially slow

down the time to science. Furthermore, as we inevitably move to more complex and accurate

functional forms, the size of the parameter space and danger of over-fitting will only become

worse.

To solve this problem, we and others have advocated making use of QM-to-MM mapping

procedures to significantly reduce the number of parameters that require fitting to experi-

mental physical properties, while retaining a small amount of empiricism to ensure accurate

condensed phase properties. Though there are isolated examples in the literature, QM-to-

MM mapping potentials are not widely available for general use in deriving full MM force

fields for organic molecules. In QUBEKit, and its interface with ForceBalance, we provide

here a means to train, test and apply these force fields, deriving parameters for all (includ-

ing bonded) terms in the force field from QM. By using AIM-based charges, Lennard-Jones

parameters and virtual sites, we have a consistent set of non-bonded parameters derived

from a single set of atomic electron densities, available through widely-used quantum chem-

istry software packages. By coupling these parameter sets through QUBEKit, we can derive

bonded parameters that are specific to the molecule under study, and fully consistent with

the non-bonded parameter set. We estimate that for the 51 molecules in the test set, a

total of around 20 k parameters are derived from QM, while only seven parameters are fit to

experiment (in model 5b). Despite this minimal fitting approach, the model achieves highly

competitive accuracy on a challenging test set of liquid property data.

We have used this design and train cycle to answer a number of fundamental questions

about force field design protocols. It was shown that the details of the underlying QM

method and implicit solvent model have negligible effect on the accuracy of condensed phase

modelling with the designed force fields. That is not to say that any set of charges gives
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identical results, but rather that as long as the charges and Lennard-Jones parameters are

co-optimised, the overall accuracy of the force field is insensitive to the particular choice of

model. In this case, future efforts should focus on the cheapest QM methods that continue

to give reliable results. It is well known that there is no unique method to partition the

total molecular electron density into atom-centred basins. We have therefore investigated

two variants of the DDEC AIM method, and the MBIS approach. Surprisingly, the older

DDEC3 method showed improvements over DDEC6, but given the improvements in the

latter in robustness and transferability of the charges, we continue to use this approach.

The MBIS method provides a useful alternative AIM approach, available through the open

source PSI4 software package. Once atomic electron densities are assigned, the details of

the Lennard-Jones parameterisation also makes a difference to force field accuracy. Based

on our data, we advocate setting non-zero Lennard-Jones parameters on polar hydrogen

atoms, and re-scaling the strength of the QM-derived dispersion parameter. The latter

approach gives not only an improvement in accuracy, but brings QM-derived and Parsley

empirical Lennard-Jones parameters into closer agreement. Finally, consistent improvement

in both training and test set accuracy is achieved by introducing a small number of off-site

charges to model anisotropy in the QM electron density. It is encouraging that improving

the underlying physics of the force field model, with minimal costs to run time, results in

such improvements.

In the current study, we have focused on liquid density and heat of vaporisation as

measures of force field accuracy. In future, additional properties, such as enthalpies of

mixing,71 could be used to extend the confidence in the range of application of the force fields.

More complex properties, such as free energies of hydration or even protein-ligand binding

could be included (at least for testing), but would require infrastructure improvements to

allow for virtual sites. The current study gives confidence that this investment of time would

be worthwhile.

A notable feature of the current study is the number of force field models that can be
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rapidly designed. We have generated here 15 different models, with varying assumptions,

which can be contrasted with the handful of general purpose small molecule force fields

that are otherwise available. This opens up the possibility of new research into consensus

property predictions using force field ensembles, which has been shown to be advantageous,

for example, in recent protein-ligand binding free energy studies.72

More broadly, we envisage QM-to-MM mapping potentials, such as these, providing

synergy with traditional force fields. For example, our conclusions concerning force field

design protocols can be fed into large-scale fitting efforts, such as the Open Force Field

Initiative, to focus efforts in areas where accuracy improvements are expected. This will be

particularly important as the community moves towards more advanced functional forms,

for which the number of parameters to be fit will only increase. With the advent of machine

learning models for parameterising force fields,73 the force fields developed here could be

used to provide regularisation of the parameter fits, to avoid unphysical predictions by the

models. Or conversely, machine learning models could be trained to reproduce the outputs

of our QM-to-MM mapping procedures to substantially reduce the computational cost of the

parameterisation stage.74 All software required to derive the designed force fields is freely

available at https://github.com/qubekit/QUBEKit.

Acknowledgement

C.R. is grateful for International Partnership Seed Funding from Newcastle University.

D.J.C. and J.H. acknowledge support from a UKRI Future Leaders Fellowship (grant MR/T019654/1).

We thank the Open Force Field Initiative and PSI4 developers for scientific software support.

This work made use of the facilities of the N8 Centre of Excellence in Computationally In-

tensive Research (N8 CIR) provided and funded by the N8 research partnership and EPSRC

(grant EP/T022167/1).

30



Supporting Information Available

References

(1) Dawson, J. A.; Canepa, P.; Famprikis, T.; Masquelier, C.; Islam, M. S. Atomic-Scale

Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-

State Batteries. Journal of the American Chemical Society 2017, 140, 362–368.

(2) Franco, A. A.; Rucci, A.; Brandell, D.; Frayret, C.; Gaberscek, M.; Jankowski, P.;

Johansson, P. Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or

Reality? Chemical Reviews 2019, 119, 4569–4627.

(3) Yang, L.; Horton, J. T.; Payne, M. C.; Penfold, T. J.; Cole, D. J. Modeling Molecular

Emitters in Organic Light-Emitting Diodes with the Quantum Mechanical Bespoke

Force Field. Journal of Chemical Theory and Computation 2021, 17, 5021–5033.

(4) Olivier, Y.; Sancho-Garcia, J.-C.; Muccioli, L.; D’Avino, G.; Beljonne, D. Computa-

tional Design of Thermally Activated Delayed Fluorescence Materials: The Challenges

Ahead. The Journal of Physical Chemistry Letters 2018, 9, 6149–6163.

(5) Nyman, J.; Pundyke, O. S.; Day, G. M. Accurate force fields and methods for modelling

organic molecular crystals at finite temperatures. Physical Chemistry Chemical Physics

2016, 18, 15828–15837.

(6) Huggins, D. J.; Biggin, P. C.; Dämgen, M. A.; Essex, J. W.; Harris, S. A.; Hench-

man, R. H.; Khalid, S.; Kuzmanic, A.; Laughton, C. A.; Michel, J.; Mulholland, A. J.;

Rosta, E.; Sansom, M. S. P.; van der Kamp, M. W. Biomolecular simulations: From

dynamics and mechanisms to computational assays of biological activity. WIREs Com-

putational Molecular Science 2018, 9 .

(7) Mey, A. S.; Allen, B. K.; Macdonald, H. E. B.; Chodera, J. D.; Hahn, D. F.; Kuhn, M.;

Michel, J.; Mobley, D. L.; Naden, L. N.; Prasad, S.; Rizzi, A.; Scheen, J.; Shirts, M. R.;

31



Tresadern, G.; Xu, H. Best Practices for Alchemical Free Energy Calculations [Article

v1.0]. Living Journal of Computational Molecular Science 2020, 2 .

(8) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and

testing of a general amber force field. Journal of Computational Chemistry 2004, 25,

1157–1174.

(9) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Dar-

ian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; MacKerell Jr., A. CHARMM Gen-

eral Force Field (CGenFF): A force field for drug-like molecules compatible with the

CHARMM all-atom additive biological force fields. J. Comp. Chem. 2010, 31, 671–690.

(10) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the

OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic

Liquids. Journal of the American Chemical Society 1996, 118, 11225–11236.

(11) Qiu, Y. et al. Development and Benchmarking of Open Force Field v1.0.0—the Parsley

Small-Molecule Force Field. Journal of Chemical Theory and Computation 2021, 17,

6262–6280.

(12) Boulanger, E.; Huang, L.; Rupakheti, C.; MacKerell, A. D.; Roux, B. Optimized

Lennard-Jones Parameters for Druglike Small Molecules. Journal of Chemical Theory

and Computation 2018, 14, 3121–3131.

(13) Yin, J.; Henriksen, N. M.; Slochower, D. R.; Shirts, M. R.; Chiu, M. W.; Mobley, D. L.;

Gilson, M. K. Overview of the SAMPL5 host–guest challenge: Are we doing better?

Journal of Computer-Aided Molecular Design 2016, 31, 1–19.

(14) Xu, P.; Guidez, E. B.; Bertoni, C.; Gordon, M. S. Perspective: Ab initio force field

methods derived from quantum mechanics. The Journal of Chemical Physics 2018,

148, 090901.

32



(15) Unke, O. T.; Chmiela, S.; Sauceda, H. E.; Gastegger, M.; Poltavsky, I.; Schütt, K. T.;
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