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Abstract

We present HylleraasMD (HyMD), a comprehensive implementation of the recently pro-

posed Hamiltonian formulation of hybrid particle-field molecular dynamics (hPF). The method-

ology is based on tunable, grid-independent length-scale of coarse graining, obtained by filter-

ing particle densities in reciprocal space. This enables systematic convergence of energies and

forces by grid refinement, also eliminating non-physical force aliasing. Separating the time

integration of fast modes associated with internal molecular motion, from slow modes associ-

ated with their density fields, we implement the first time-reversible hPF simulations. HyMD

comprises the optional use of explicit electrostatics, which, in this formalism, corresponds to

the long-range potential in Particle-Mesh Ewald. We demonstrate the ability of HhPF to per-

form simulations in the microcanonical and canonical ensembles with a series of test cases,

comprising lipid bilayers and vesicles, surfactant micelles, and polypeptide chains, comparing

our results to established literature. An on-the-fly increase of the characteristic coarse graining

length significantly speeds up dynamics, accelerating self-diffusion and leading to expedited

aggregation. Exploiting this acceleration, we find that the time scales involved in the self-

assembly of polymeric structures can lie in the tens to hundreds of picoseconds instead of the

multi microsecond regime observed with comparable coarse-grained models.
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1 Introduction

Hybrid particle-field simulations (hPF) are computationally efficient approaches for studying mesoscale

soft matter systems with molecular resolution.1–5 In hPF models, intermolecular pair interaction

potentials are replaced by particle-field interactions that functionally depend on particle densities.

The low computational cost of particle-field interactions and their soft nature make them efficient

for sampling equilibrium statistics of challenging systems involving kinetic traps, molecular en-

tanglement, and crowding.

Starting from early density-field models where mesoscopic densities in condensed systems

were optimized by self-consistent procedures, and through pioneering hybrid models by Zuck-

ermann coupling particles through density fields,6 hPF models have reached maturity through

Particle-Mesh implementations (PM) with a sampling of the conformational space either by Monte

Carlo single chain in mean field 1,2,7 or by molecular dynamics.3,4 Successful examples of the

methodology span from polymer melts,3,8,9 lamellar and non-lamellar phases of lipids and surfac-

tants,10–12 percolation properties of nanoparticles and carbon nanotubes13,14 to charged surfactants

and polypeptides.15–18

Recently, two of us presented a new Hamiltonian formulation for the hPF-MD approach (HhPF),

where the microscopic forces acting on the particles are directly obtained by the spatial derivative

of the interaction energy functional.19 Importantly, the level of coarsening in hPF methods is de-

termined by the density spread associated with the molecular moieties. Such spread is commonly

defined by adopting coarse grids on which particle-mesh operations are defined.3,4 In the new

HhPF formalism, we decouple the density spread from the grid refinement by employing filtered

densities with an intrinsic filtering scale. This procedure, similar to the Gaussian spread of point

charges in the Ewald method,20 decouples the model’s resolution from the operations associated

with evaluating the density and density gradients, thus allowing for systematic numerical conver-

gence of the hPF forces.19 In particular, testing HhPF on ideal monoatomic systems, it was possible

to demonstrate a systematic reduction of aliasing as well as excellent conservation of energy by

increasing the number of mesh points.19
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Given the apparent advantages of the filtered formulation of hPF simulations, it is of great

interest to further pursue this approach beyond toy systems to realistic molecular assemblies at the

mesoscale. A proper analysis of the HhPF framework as applied to realistic soft matter systems

necessitates an implementation beyond the preliminary code presented in ref.19 Specifically, coarse

grained simulations of macromolecules require intramolecular bending, stretching, and torsional

potentials. Moreover, explicit handling of long-range electrostatic forces may be needed for a

range of biologically important molecules, such as charged lipids, proteins or long polyanionic

nucleic acids. Specific to hPF modeling of peptides,18 we implement topological reconstruction of

permanent dipoles, which has been shown to reproduce all-atom electrostatic forces.21

Uncoupling the spatial evaluation of the densities from the computational grid allows for an

arbitrary definition of the density spread, which acts as the coarse graining parameter.19 Here

we check the effect of the particle spread on the dynamic behavior of test molecular systems.

In particular, we explore the possibility of tuning the density spread on-the-fly to significantly

accelerate the aggregation dynamics of self-assembling systems.

A big advantage of hybrid particle-field models is the sped-up dynamics of collective processes

of supramolecular structures, such as the self-assembly of biological lipids. The fast aggregation

is partly due to the intrinsic softness of the hPF potential and partly due to the coarse-grained

representation of the molecules. Through tuning of the latter by varying the spread of the grid-

independent window function, even further speed-up of aggregation dynamics is achieved. We

demonstrate ultra-fast self-assembly processes for large filtering scales beyond comparable coarse-

grained simulations previously reported. This enables us, in principle, to probe aggregation of

molecular structures not normally accessible in hPF-MD frameworks.

The current state-of-the-art parallelization approach for hPF simulations, including implemen-

tations by Müller and Milano,22,23 and the GPU-based Galamost code24,25 is the shared memory

strategy. In this strategy, molecules are permanently assigned to MPI-tasks, and all MPI-tasks

share the whole density-field grid. Communication is only needed when combining the densities

from the different MPI-tasks. In this regime, the combination of using a low spatial resolution
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representation of the grid, and infrequent update, has allowed applications with excellent scaling

behavior demonstrated in hPF benchmark studies.22,23

The HhPF approach requires a higher number of grid points in order to achieve increased ac-

curacy and better numerical control over the hybrid particle-field dynamics. The shared memory

strategy is not well suited for an efficient implementation in the new framework because the serial

computational costs associated with the grid computation quickly become the bottleneck. For the

current implementation, we opted for a domain-decomposition strategy, in which the grid opera-

tions are performed jointly by all processors handling individual subsets of the entire simulation

box.

In the following, we validate the HhPF formulation for realistic molecular systems, using

selected soft matter systems as test cases. We demonstrate the HhPF scheme’s ability to accu-

rately model the aggregation and equilibrium structures of lamellar and non-lamellar phospholipid

phases, charged lipids, charged organic surfactants, and model peptides. We also benchmark the

first full implementation of a HhPF-MD code. We name the code presented here Hylleraas MD

(HyMD hereafter), after the Hylleraas Centre for Quantum Molecular Sciences, where the HhPF

approach has been first formulated and developed.

2 Theory and Methods

2.1 Hamiltonian Hybrid Particle-Field

In HhPF, we consider a system of N particles in M molecules subject to the Hamiltonian

H({r}) =
M

∑
m=1

H0({r, ṙ}m)+W [φ̃ ]+Wel.[ρ̃]. (1)
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Here, H0 is the Hamiltonian of a single non-interacting molecule m, and W [φ̃ ] is an interaction

energy functional depending on the filtered particle number densities φ̃(r),

φ̃(r)≡
∫

φ(x)H(r−x)dx, φ(r) =
N

∑
i=1

P(r− ri), (2)

where H is a filter function, and P is a window function used to distribute the particles in the space.

The Wel.[ρ̃] term denotes the electrostatic interaction energy functional, depending on the filtered

charge density, ρ̃(r), and the particle charges, qi:

ρ̃(r)≡
∫

ρ(x)H(r−x)dx, ρ(r) =
N

∑
i=1

qiP(r− ri). (3)

The sampling of the phase space associated with equation 1 using MD requires computing the

forces due to H0, W , and Wel.. The forces due to bonded interactions terms of single molecules

(denoted U({r}m)) are computed by

Fb,i =−
∂U({r}m)

∂ri
, (4)

while forces due to particle-field interactions, in the presence of a local energy functional of the

form: W =
∫

w(φ̃(r))dr, are obtained as:19

FHhPF,i =−
∫

∇V (r)P(r− ri)dr, V (r) =
∫

∂w
∂ φ̃

(y)H(r−y)dy. (5)

Here, V is the external potential acting on the particles. Since the implementation of the bonded

forces is no different from in any other MD software (see ref.26), we only describe how the HhPF

forces are computed.

Computation of density on a grid The estimation of discrete densities is done using a cloud-

in-cell (CIC) window function P, which distributes particles on the nearest grid points by trilinear
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interpolation. The density is computed at grid point i jk by

φi jk =
N

∑
k=1

P(ri jk− rk). (6)

Determination of the external potential Considering functionals locally dependent on φ̃ , the

first step is to obtain φ̃(r). A straightforward way of obtaining it is by Fast Fourier Transform

(FFT):

φ̃i jk = FFT−1 [FFT(φ)FFT(H)] , (7)

where we have used the convolution theorem. Next, we find the external potential as

Vi jk = FFT−1
[

FFT
(

∂w(φ̃(r))
∂ φ̃

)
FFT(H)

]
. (8)

The derivative of V is computed in Fourier space,

∇Vi jk = FFT−1
[

ik FFT
(

∂w(φ̃(r))
∂ φ̃

)
FFT(H)

]
. (9)

Force interpolation The forces are computed by interpolating back the derivative of the external

potential onto the particles through equation 5 by

F j =−∑
k

∇VjkP(r jk− r j)h3, (10)

where jk are the neighbouring vertices of particle j and h3 is the volume of a single cell.

Interaction energy functional As a model for intermolecular interactions we consider the stan-

dard energy mixing potential commonly adopted in hPF-MD3 and SCMF,1 this time defined using

filtered densities:

W [φ̃ ] =
1
φ0

∫

∑

k<`

χ̃k`φ̃k(r)φ̃`(r)+
1

2κ

(
∑
`

φ̃`(r)−φ0

)2

dr, (11)
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where χ̃k` is the Flory-Huggins mixing parameter between particle species k and `, κ is a com-

pressibility parameter and φ0 is the average density of the system. The corresponding external

potential is given by:

Vk(r) =
1
φ0

∫
∑
`

(
χ̃k`φ̃`(x)+

1
κ

(
∑
`

φ̃`(x)−φ0

))
H(x− r)dx. (12)

The full specification of the model requires defining H, the grid independent window function.

Following ref.,19 we implemented a Gaussian filter

H(x) =
1√

2πσ
exp
(
− x2

2σ2

)
, with Ĥ(k) = exp

(
−σ2k2

2

)
, (13)

where the standard deviation σ is an indication of the space occupied by the particle, that is, the

level of coarsening by the density representation.

The formalism described here is entirely Hamiltonian-agnostic; likewise is the developed HyMD

code, where symbolic differentiation in the SymPy library27 is used to obtain forces derived from

any Hamiltonian functional form (local or otherwise). Additionally, this also holds for the win-

dow function, any function specified as a filter may be used and is automatically handled by the

software.

2.2 Electrostatic hPF interactions

In the usual Ewald formulation, a set of point charges are screened with Gaussian charge distri-

butions giving rise to a short-range electrostatic interaction. The addition of the compensating

Gaussian charges yields a smoothly varying charge density, producing the long-range part of the

electrostatics. Unlike in standard hPF implementations,15,28 within the HhPF formalism, the parti-

cle beads are intrinsically smeared, filtered density distributions. In the case of a Gaussian window

function, this gives rise to only a long-range part of interacting screening charges akin to the long-

range part of the Ewald summation. Circumventing the short-range part altogether enables us to

compute the electrostatic potential and electric field entirely in reciprocal space. In terms of the
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filtered charge densities ρ̃ , we obtain the grid charge densities via

ρ̃i jk = FFT−1 [FFT(ρ)FFT(H)] , (14)

and the electrostatic potential Ψi jk as

Ψi jk = FFT−1
[

4πke

εr|k|2
FFT(ρ)FFT(H)

]
, (15)

where ke denotes the Coulomb constant ke = 1/4πε0, and εr denotes the relative permittivity. The

electric field is found through

Ei jk = FFT−1 [−ikFFT(Ψ)] , (16)

with the forces obtained by trilinear interpolation of the electric field from grid values back onto

particle positions,

F j = ∑
k

q jE jkP(r jk− r j)h3. (17)

2.3 Angular-torsional potential and dipole reconstruction for peptide simu-

lations

Following up on recent hPF developments for the simulation of peptide chains,18 in HyMD we im-

plement a combined bending-torsional potential to describe the mechanics of the backbone atoms

of polypeptides

Vγ,φ =Vp(φ)+
1
2

k(φ)(γ− γ0(φ))
2 , (18)

with k(φ ) and Vp(φ) both being represented by cosine series of the dihedral angle and γ0(φ) adapted

from ref.29 The propensity potential Vp(φ) determines the presence and the relative energy of any

minima along φ , while k(φ) governs the strength of the harmonic deviations of the bending angle

γ from the ideal γ0(φ) value.
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As shown in ref.,21 from the positions of the Cαs along the peptide backbone it is possible to

topologically reconstruct dipoles mimicking the presence of peptide–peptide interactions. In the

simulation the dipoles are represented as a pair of ghost charges of strength ±q located at

r± =
1
2

r±δ d̂µ(γ), (19)

where r is the Cα–Cα position vector, δ is the half distance between the dipole charges, and

the unit vector d̂µ is the direction of the dipole moment, which depends on the angle γ between

triplets of successive Cαs.21,30 The electrostatic forces acting on the dipoles are then projected

onto the backbone atoms so that the charge positions do not have to be propagated with molecular

dynamics.18,30

2.4 Implementation strategy

Parallelization strategy Parallelization of the computational operations involved in hPF-MD is

essential to model systems at experimentally relevant length and time scales. On the one hand,

the most costly operations, including grid operations, most notably FFT and bonded forces, need

to be parallelized. On the other hand, the overhead associated with the parallelization, which

impairs the performance, must be reduced to a minimum. Our parallelization approach exploits

simplifications that are provided by the a multiple time step algorithm to satisfy both aspects.

Specifically, we have two layers (see Figure 1). In the domain-decomposition layer, we divide the

particles and the density-grid into MPI-domains in a pencil grid arrangement according to their

spatial location.31 This provides scalability for large systems while reducing communication, by

minimizing the amount of data transferred between MPI domains after each 1D Fourier transform.

This layer computes particle-field forces and assigns particles to MPI tasks. Next, we have a serial

MPI layer. This layer computes bonded forces and integrates the equations of motion. Since the

particle-field forces are constant in this layer, there is no communication between processors. This

layer thus exhibits excellent scaling behavior.
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Density estimation
{r} → {ϕ}

Particle—field forces
{ϕ} → {∇V} →

{
FhPF

}

Outer rRESPA impulse{
FhPF(t)

}
→ {v(t)}

Bonded forces{
r
(
t + i∆t

n

)}
→
{

Fbond

(
t + i∆t

n

)}

Inner rRESPA steps{
Fbond

(
t + i∆t

n

)}
→

{
r
(
t + (i+1)∆t

n

)}

→
{

v
(
t + (i+1)∆t

n

)}

i + 1 < n ?

Domain-decomposition layer

Particles: {r} →
{
{r}1, . . . , {r}n-MPI

}

{v} →
{
{v}1, . . . , {v}n-MPI

}

Grid: {∇V} →
{
{∇V}1, . . . , {∇V}n-MPI

}

MPI-domains
PFFT pencil grid

Serial MPI layer

No communication

No Yes

Figure 1: Simulation protocol using the reversible-RESPA integrator with a domain-decomposition
parallelization strategy. Domain-decomposition is typically done every hundred of thousands of
time steps. During integration, the estimation of the density field and the computation of particle-
field forces is the only part of the algorithm which requires inter-node MPI communication. The
inner rRESPA steps, typically done tens–hundreds of times for each field update, are entirely serial
and embarrassingly parallel in nature.

Multiple time step algorithm We implement a reversible reference system propagator algorithm

(rRESPA) integrator.32 Starting from the decomposed Liouville operator in two parts iL = iL1 +

iL2, the Trotter factorization33 gives the classical time propagator

ei(L1+L2)t =
[
eiL1∆t/2eiL2∆teiL1∆t/2

]P
+O(t3/P2), (20)
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where ∆t = t/P. The resulting discrete time propagator takes the form

G(∆t) =U1

(
∆t
2

)
U2(∆t)U1

(
∆t
2

)
, (21)

which is unitary and hence time reversible by virtue of U1 and U2 being individually unitary.

Considering a clever factorization of the full Liouville operator into a reference system of intra-

molecular forces FM, and a part which describes the deviation of the reference system from the full

system by the field forces FF. With iLM = ∑ j ẋ j∂/∂x j +FM(x j)∂/∂ p j being the intra-molecular

Liouville operator, the full Liouvillian takes the form

iL = iLM +∑
j

FF(x j)
∂

∂ p j
, (22)

which becomes

GrRESPA(∆t) = e(∆t/2)FF∂/∂ p
[
e(δ t/2)FM∂/∂ peδ tẋ∂/∂xe(δ t/2)FM∂/∂ p

]n
e(∆t/2)FF∂/∂ p, (23)

by application of the Trotter factorization. Equation 23 dictates integration of the intra-molecular

forces by Velocity-Verlet in increments of the inner time step δ t = ∆t/n, n times. The slowly

varying field forces are applied as infrequent impulses once per full time step of length ∆t. As the

field force impulse only corrects the velocities of the reference system, the force is unchanged at

the start of the subsequent time step and no re-computation of the field force is necessary for the

initial pulse at the start of the next step. The implemented rRESPA algorithm is presented in figure

1.

In total, n calculations of the intra-molecular forces FM are required per ∆t of integration, in

addition to one computation of FF. In the limit of n = 1, the rRESPA integrator becomes a simple

Velocity-Verlet integrator.
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2.5 Implementation details

The HyMD HhPF code is the expansion of an early implementation developed in ref.19 HyMD

is written almost purely in python with MPI parallelization through the mpi4py library.34 Its key

functionality is implemented as follows. The PM computations needed to compute particle-field

forces are done by using the PMESH library.35 The PMESH library has MPI parallelized rou-

tines for interpolating density and forces. The most costly operation, the FFT, is computed by the

highly scalable PFFT package tailored for dealing with huge grids.31 MD trajectories and energy

information is stored using the H5MD format,36 based on the HDF5 file format,37 using the python

package h5py38 with the MPI driver. This file format enables efficient parallel input/output for pro-

duction runs in application studies involving large amounts of data. Finally, the rRESPA integrator,

bonded forces (including stretching, bending, and dihedral potentials), electrostatic interactions,

and Canonical Sampling by Velocity Rescale (CSVR) thermostat39 have been implemented.

HyMD is publicly available under a GNU Lesser General Public License v3.0 (LGPLv3) at our

GitHub website https://github.com/Cascella-Group-UiO/HyMD. The LGPLv3 open source

software license allows anyone to freely use and modify the software, as long as the changed code

is also made freely available under an equivalent license.

2.6 Simulation details

We consider as a prototypic test case the coarse-grained dipalmitoylphosphatidylcholine (DPPC)

lipid model. In addition to this fully satured phospholipid, we also use a mono-unsaturated di-

oleoylphosphatidylcholine (DOPC) lipid, along with a short model poly-peptide consisting of sin-

gle bead alanine (ALA) amino acids that is hydrophobic in the core and hydrophilic in the ends.

To test the implementation of hPF electrostatics, we further consider a coarse-grained Lipid A

model. The phospholipid systems use parametrizations previously reported by us,40 while the

lipid A parameters are developed by De Nicola et al.41 In both cases, the four-to-one heavy atom

Martini42,43 mapping, with explicit solvent is used. Finally, we test the aggregation of charged

4-butyl-4-(3 trimethylammoniumpropoxy)-phenylazobenzene (AzoTMA) surfactant using a finer
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two-to-one heavy atom mapping (also with explicit solvent) to account for the ring structures. The

mapping is based on ref.44 (Figure S1, in Supplementary Information) and χ̃ parameters were de-

veloped by us. All interaction energy parameters used in the present work are presented in Table

S1 in Supplementary Information.

The incompressibility parameter is fixed at κ−1 = 7.45RT , in correspondence with what has

previously been reported to reproduce particle–particle CG density fluctuations.11 Whenever the

canonical ensemble is sampled, a CSVR thermostat with characteristic coupling time 0.1ps is used,

and unless otherwise noted, the time step of the inner rRESPA steps (bonded forces) is 0.01ps in

accordance with the stability criterion of the intramolecular forces. Table 1 shows the composition

of all systems simulated. The phospholipid systems are all generated using Charmm-gui,45–47

and Martini simulations as well as CHARMM3648,49 all-atom simulations are performed with the

Gromacs50 software package.

An overview of the different systems simulated in this work is presented in table 1. All phos-

pholipid systems are first equilibrated under constant pressure conditions in either all-atom or CG

(Martini) simulations. The box size is then averaged over several tens of nanoseconds, and fixed

for use in constant volume simulations in HyMD. Constant pressure sampling has been recently

introduced within the hPF-MD formalism.51 Its further development and implementation within

the new HhPF framework will be described in a forthcoming publication.

3 Results and Discussion

3.1 Conservation of energy and center of mass momentum

We report the first ever constant energy hybrid particle-field simulation of a solvated phospholipid

system. As validation of the implementation of HyMD, we present in figure 2 the energy of the

DPPC5 system (table 1). During HhPF simulations the energy is well conserved, with an average

relative drift of 0.0015% per nanosecond. Likewise, the center of mass momentum accumulates

0.024amu m s−1 per nanosecond per particle (Figure S2, in Supplementary Information). As with

14



Table 1: Overview of simulated systems

Counter- Box size [nm3]
System Molecules Method Solventa ions (x/y, z) Ensemble

DPPC1 318 DPPC All-atom–PMEb 19711 - 10.03d NPT
DPPC2 318 DPPC All-atom–PMEb 19711 - 9.832×10.15 NVT
DPPC3 318 DPPC Martini–RFc 4927 - 9.832×10.15 NVT
DPPC4 318 DPPC HhPF 4927 - 9.832×10.15 NVT
DPPC5 1272 DPPC HhPF 50757 - 20.042×19.39 NVE/NVT
LIPIDA 644 Lipid A HhPF–PME 211555 644 Ca2+ 30.03 NVT
AZOTMA1 90 AzoTMA Martini–RFc 5833 90 Cl− 9.03d NPT
AZOTMA2 90 AzoTMA HhPF–PME 5833 90 Cl− 9.03 NVT
PEPTIDE 1148 DOPC, HhPF–PME 51159 - 19.702×19.46 NVT

30 ALA
MELT1 22499 HPf HhPF - - 303 NVT
MELT2 53331 HPf HhPF - - 403 NVT
MELT3 104162 HPf HhPF - - 503 NVT
a Solvent denotes coarse grained four-to-one waters, except for DPPC1 and DPPC2 for which TIP3 water is used.
b All-atom simulations performed using the CHARMM3648,49 force field.
c Martini simulations use Reaction Field (RF) electrostatics.
d Starting simulation box size, prior to constant pressure equilibration.
e All-atom simulations use TIP3 water.
f MELTN systems contain homopolymers (HP) of length 10.

any molecular dynamics approach, the level of energy and momentum conservation is determined

by the time step and floating-point precision used. As the main computational load of the HyMD

program is due to the fast Fourier transforms, it is prudent to employ single-precision floating

point numbers to represent positions and velocities. This choice yields marginally worse conser-

vation of energy, but has no apparent effect on the conservation of total momentum. As previously

noted by us,19 the degree of energy conservation is in large part also determined by the level of

coarse-graining, σ , and the grid spacing, h. A larger ratio of σ/h yields more stable energies and

momenta.

3.2 Multiple time step integration

When using coarse grids (many particles per grid point) or filtering on coarse length scales, the

external potential is slowly evolving compared to the internal motions within molecules, such

as stretching and bending motions. This difference in time scales has been algorithmically ex-

ploited in both the Monte Carlo-based SCMF2 and in the MD-based formulation,3,4 applying the
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Figure 2: Representative snapshot from a HhPF simulation, along with the energy per particle
(total, kinetic, field) for a DPPC bilayer test system with solvent water beads shown in silver
(DPPC5 system, see Table 1). A fine grid spacing of σ/h = 4.7 was used, with an equilibration
period of 20 ns before the sampling was started.

quasi-instantaneous approximation, where the external potential is kept constant for multiple time

steps. We recently demonstrated that just using larger time steps in the integration of the field

forces yields superior conservation of energy, while also avoiding unphysical production of net

momenta.19 In contrast to the quasi-instantaneous approximation used in previous formulations

of hybrid particle-field, the reversible reference frame integration algorithm yields time reversible

equations of motion integration, giving favourable integration accuracy and increased stability.

Increasing the number of intermediate rRESPA steps has an almost linear impact on simulation

speed-up because of the embarrassingly parallel nature of the intramolecular force calculation. For

efficiency it is thus important to use the maximum allowable number of inner integrator steps.

In order to gauge how long the inner rRESPA step can be, without decreasing the quality of the

microscopic mechanics, we report in figure 3 the energy conservation of the DPPC test system

for varying values of the field update time, tu. Larger σs give rise to smoother and more slowly

varying density fields, allowing longer update intervals before the scheme breaks down. This is

exemplified at σ = 0.236 nm, with the necessary update time being around 0.25 ns, while in the
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more coarse case of σ = 0.472 nm, a longer interval of approximately 0.3 ns is acceptable. In each

case of σ , the region in which the energy conservation breaks down is approximately unchanged

for the different grid spacings used. Thus a higher ratio of the coarse-graining parameter to the

HhPF grid spacing yields better overall energy conservation, but does not appear to have a big

impact on the stability of the energy with respect to tu.
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Figure 3: Absolute energy drift per particle per nanosecond for a DPPC bilayer test system
(DPPC4, see Table 1) under constant energy conditions as function of the update interval of
the field forces, tu. Full lines represent simulations at the hPF-matching coarse-graining level
σ = 0.236 nm, while dotted lines represent σ = 0.472 nm simulations.

3.3 Hamiltonian hPF-MD simulations of phospholipid bilayers

An approximate equivalence may be established between the smoothed-out density approach in the

HhPF framework with a Gaussian filter and the hPF-MD formulation of Milano and Kawakatsu.3,4

Calibrating the grid independent window function width σ to match hPF forces and energies (at a

standard grid length of 0.5875nm), yields the best match value at σ0 = 0.236 nm±0.00098 nm.

This is illustrated in figure 4, where the potential energy of a simple two-particle system in both

frameworks is shown. Note that the fitting is done using a grid-converged HhPF, i.e. a Gaussian

core model.19 Using this value of the window function width, σ0 ≡ 0.236nm, re-optimization

of the interaction energy parameters χ̃i j may be circumvented, while still retaining the structural

properties of the system under canonical hPF.
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Transferability of interaction parameters While energy conservation provides an internal vali-

dation of both the approach and the software implementation, it does not provide external measure-

ment of the quality of the model. Thus, we verify the transferability of standard hPF χ̃i j parameters

from literature data40 to the HhPF formulation by constant temperature simulations of the same

DPPC bilayer system. Figure 4 shows comparisons of lateral number density profiles for DPPC

membranes for unfiltered hPF and HhPF MD. Employing the target σ0 value, the HhPF framework

satisfactorily reproduces the structures found with hPF, with a relative difference (relative to the

total number density) of no more than 6%. This result indicates that literature hPF parameters are

highly transferable to HhPF simulations, provided σ is adequately calibrated.
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Figure 4: Left: Field-potential energy in standard hPF (blue) compared to grid-converged HhPF
(yellow) for varying inter-particle distances in a simple two-particle system at the best fit σ . Right:
Symmetrized partial density profiles for unfiltered hPF (full lines) and HhPF with σ = 0.236 nm
(dotted lines) simulations of solvated DPPC membranes at 323K (DPPC5, see Table 1). The
absolute value difference relative to the total number density is shown on the right.

Comparison of HhPF structure and that of all-atom and Martini In order to further assess

the quality of the HhPF bilayer system using the hPF-like σ = σ0, we compare it to all-atom

(CHARMM3648,49 force field) and coarse-grained Martini structures. Figure 5 presents partial

density profiles of the three cases. The Martini model appears too stiff to capture the small wave-

length undulations present in the all-atom simulation. Such small fluctuations smooth out the

calculated profiles when averaging the coarse-grained representation over many trajectory steps.

The intrinsically softer HhPF model is better able to capture this flexibility of the membrane struc-

ture, yielding overall very satisfactory agreement between the all-atom and HhPF densities of lipid
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heads and glycerol groups (N, P, and G coarse-grained beads). The major discrepancy in the HhPF

model is related to less water penetration into the lipid bilayer, likely due to a too high χ̃ value be-

tween the carbon and water beads. The better agreement of HhPF to all-atom data than the Martini

is surprising, especially because these hPF parameters were originally optimized with respect to

Martini data.40 This effect is likely due to error compensation—hPF potentials are in general softer

than two-body ones, therefore it is expected that hPF simulations result in softer density profiles

than the (excessively sharp) Martini one.

3.4 Effect of σ on molecular assemblies

We have shown that at the matching coarse-graining, σ = σ0, the new framework reproduces well

the bilayer structures of underlying particle–particle simulations. To further assess the effect of

the coarse-graining parameter σ in the HhPF scheme, we report density profiles of the DPPC

bilayer system in figure 6. As expected, the smoother potential resulting from higher σ has a

smearing effect on the membrane and the resulting density profiles. It is evident that the increased

σ yields stronger phase separation between the hydrophobic lipid carbon tails and the solvent.

This is in accordance with previously reported results for phospholipid bilayers in the hPF-MD

model, wherein increasing the grid spacing (effectively increasing the range of the non-bonded

field interaction) results in a more severe carbon–water segregation and a narrowing of the density

profiles.11 The more extreme cases of σ = 3σ0 and σ = 4σ0 show artificial buildups of solvent

outside the boundaries of the bilayer, resulting from the strong carbon–water interaction through

the bilayer head groups, because of the increased effective range of the χ̃-interactions.

In large part, the deformed density profile at larger σ -values is a result of the carbon–water χ̃

interaction. The appropriate value used at the σ = σ0–level of coarse-graining is too extreme for

the quadrupled σ case. If extensive simulations at the new level of coarse-graining are desired, a re-

optimization of the χ̃-matrix is warranted, using e.g. our previously reported Bayesian optimization

scheme.40 However, note carefully that even though the large-σ bilayer structure is distorted with

regards to the all-atom reference simulation, the lamellar phase is stable and retains its overall
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organization.
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Figure 5: Symmetrized partial density profiles for all-atom (left), HhPF with σ = σ0 (this work,
middle), and Martini43,52 (right) simulations of solvated DPPC membranes at 323K (DPPC1,
DPPC3, and DPPC5 systems, respectively, see Table 1). The all-atom trajectory was coarse-
grained with the four-to-one heavy atom Martini mapping before the profile was calculated. The
HhPF (middle) and Martini simulations were both run using the same coarse-graining level. In
each case, an equilibration time of at least 20ns was allowed before sampling for at least 80ns.
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at 323 K (DPPC5 system, see Table 1) for different values of the coarse-graining parameter σ . In
each case, an equilibration time of at least 20ns was allowed before sampling for at least 80ns.

3.5 Self-assembly of lipid bilayers

Phospholipids spontaneously aggregate into bilayer structures in aqueous environments, and self-

assembly of model phospholipids have been observed in numerous coarse-grained and all-atom

molecular dynamics simulations.53–62

The spontaneous assemblage of biological membranes is currently difficult to observe experi-

mentally, however uni-, or multilamellar membrane structures at equilibrium have been thoroughly
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Figure 7: Total energy per particle and representative snapshots from a self-assembly simulation
of a DPPC bilayer (DPPC5 system, see Table 1). Bottom-left: Cumulative probability distribution
of time to reach a bilayer conformation, T , FT = P(T ≤ t), for 400 test DPPC bilayer membrane
simulations for different values of the coarse-graining parameter σ .

studied for decades.63–67 As such, verification of molecular force fields and simulation procedures

is normally done by comparison with equilibrium properties, e.g. easily accessible lateral electron

density profiles across the resulting membrane.

The time scale of bilayer aggregation reported in CG-MD simulations is usually on the order

of hundreds of nanoseconds.53,57–59 After a rapid initial phase of lipid–water separation, a proto-

bilayer is formed containing aqueous pores. Closure of these pores then takes place in the tens to

hundreds of nanoseconds regime. In all-atom simulations, the corresponding aggregation time is

usually reported in the same hundreds of nanoseconds to microseconds range.68,69

In the present formulation of the HhPF scheme, self-assembled bilayer structures appear much

more rapidly than in corresponding CG simulations reported in the literature—in the sub-nanosecond

regime. Figure 7 reports time to aggregate a perfectly symmetric bilayer from a randomized start-

ing arrangement for select values of the coarse-graining parameter σ . We observe the tunable

acceleration of the dynamics with varying σ . For the baseline σ = σ0, 22.5% of a trial of 200 test

simulations ended up coalescing into a unilamellar structure within the first 2ns. The correspond-
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ing ratio for 2σ0 and 4σ0 were 88% and 100%, respectively. Whenever immediate unilamellar

aggregation does not occur, the system is stuck in a meta-stable proto-bilayer state which persists

on the hundreds of nanoseconds time scale.

We may exploit this remarkably fast self-assembly procedure. As the soundness of the resulting

structure is chiefly important, rapid structure aggregation is very beneficial. The organization

arising from the spontaneously assembled bilayer with the transferred χ̃i j interaction strengths

depends on σ : Values closer to σ0 will yield better structures.

Since the desired structure is not always achieved within the first few nanoseconds in the high-

resolution low-σ regime, we may utilize the capability of changing σ on the fly. A coarse-graining

parameter of exactly σ0 yields the best fitting structure, but only instantaneous aggregation in about

a quarter of trial simulations. Whereas the conformations obtained from 4σ0 simulations are not

as good, but self-assembly happens consistently. Utilizing the strengths of both approaches, we

may start out simulations in a coarse representation, while rapidly decreasing σ over the first few

nanoseconds. Tests of this scheme shows an approach that always results in immediate aggregation

to a bilayer conformation of the best fit.

The speed-up of assembly dynamics as compared to literature hPF is dramatic, and represents

the only major discrepancy between hPF and HhPF we encounter in the present work. Besides

the explicit impact of the coarse-graining parameter σ , we attribute much of this speed-up to the

choice of temperature control. hPF temperature control has traditionally been done by application

of the Andersen thermostat, which has the direct advantage that no inter-CPU communication of

local kinetic energy is necessary to calculate the instantaneous temperature. On the other hand, the

Andersen coupling violates Galilean invariance and can eventually lead to unphysical disruption

of transport properties,70,71 for example significantly lowering self-diffusion of macromolecules,

as demonstrated by e.g. Basconi et al.72 This choice of temperature coupling therefore may hinder

the inherently fast aggregation dynamics in hPF-MD by cooling translational degrees of freedom

of supramolecular structures, frustrating e.g. micellar or vesicular fusion processes central in self-

assembly events. The choice of a CSVR thermostat39 avoids the problematic aspects of the An-
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dersen at the cost of slightly increased inter-node communication during thermostat application.

Despite that, these additional computational costs are more than compensated by recovering the

ultra-fast aggregation dynamics expected in hPF models.

3.6 Self-assembly of non-lamellar lipid phases

PC type phospholipids are the most abundant lipids in biological membranes. In eukaryotic cells,

these appear in large-scale cellular-, or organelle-enclosing bilayer conformations. The bending

rigidity of PC phospholipid aggregates hinders the formation of small-scale vesicles, on the con-

trary, facilitated by mixing with different lipids and sterols.

On the other hand, the poly-acylated bacterial Lipid A liposaccharide is charactersied by a

sufficient plasticity that enables its fast aggregation into regular vesicles, as inferred by dynamic

Light scattering experiment.73 A recent hPF model by De Nicola et al.41 demonstrated how such

an approach can be effective in studying both lamellar and non-lamellar phases of such complex

lipids. In particular, they were able to predict the co-existence of micellar and vesicular structures

of Lipid A just above the critical micellar concentration, and suggested the (meta)stability of reg-

ular spherical vesicles formed by more than 600 lipids. Lipid A is thus an excellent test system

to verify the ability of the HhPF approach toward the description of self-aggregation of complex

charged systems.

In our test, we start from 664 dispersed Lipid A/Ca2+ molecules in water. This number cor-

responds to the largest pre-constituted vesicle studied by De Nicola et al.41 During HhPF simula-

tions, we observe a sudden phase separation between the water and the lipid phases. Within the

first 100 ns, light-molecular weight micelles coalesce to form small collapsed vesicles that even-

tually fuse into a single unit. Across a further 1 µs, the vesicle swells by slow water permeation

into the inner core, gradually acquiring a spherical shape. The final structure, reached after around

1.3 µs has an external radius of∼15.5 nm and a thickness of∼3.6 nm, in excellent agreement with

all-atom74 and hPF simulations.41 The final self-assembled vesicle is formed by 202/442 Lipid A

units in the inner/outer leaflet, respectively, strikingly close to the lipid partitioning (204/440) of
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the pre-assembled vesicle used by De Nicola et al.41

Dispersed state

0 ns

Micelle
aggregation

10 ns

Collapsed vesicles

72 ns
Vesicle fusion

100 ns
Vesicle swelling

670 ns

Final
spherical vesicle

1.3 µs

Figure 8: Sequence of snapshots showing the formation of a water-filled vesicle of Lipid A. (LIP-
IDA system, see Table 1) The aggregation happens through early condensation into micelles, mi-
cellular fusion into collapsed vesicles, which further fuse into one larger unit that swells through
water permeation across the vesicular wall. Solvent and counter-ions, present in the simulations,
are omitted for clarity, except for the last snapshot which shows a (zoomed in) quarter cutout of
the final vesicle with the enclosed water displayed in dark blue.

Aggregation of charged surfactants into micelles The photosensitive surfactants 4-butyl-4-(3

trimethylammoniumpropoxy)-phenylazobenzene (AzoTMA) have been reported to form spherical

micelles in aqueous solutions.75 However, due to the strong electrostatic repulsion between small

micellar units, it remains challenging to observe the aggregation of AzoTMA into micelles from

a dispersed state in coarse-grained MD simulations in the microsecond time scale. In figure 9, we

report the relative clustering size of AzoTMA micelles as a function of time obtained by perform-

ing HhPF or Martini simulations using the parameter sets in ref.44 (AZOTMA1 and AZOTMA2

systems, see Table 1). The Martini model fails to produce spherical micelles in the microsecond

time-scale, yielding only smaller oblate aggregates. On the contrary, adopting the same coarse-

grained mapping as the Martini, HhPF captures the expected micellar structure in the nanosecond

time scale, resulting in an aggregation acceleration of at least more than three orders of magnitude.

The radius of the final micelle structure in the HhPF simulation is 3.2 nm, in excellent agreement

with the experimental dynamic light scattering value of 3.1 nm± 0.6 nm.75 The lowered micelle

fusion barrier likely results from the replacement of point-charge to smoothed charge interactions.
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Figure 9: Clustering of AzoTMA into micelles, starting from random conformations (AZOTMA1
and AZOTMA2 systems, see Table 1). Resultant structures for HhPF (left inset) and Martini (right
inset) are shown as snapshots of the last frames of their respective simulations. A density-based
spatial clustering of applications with noise clustering algorithm from sci-kit learn76,77 was used to
identify and classify clusters. The resulting N̄/N was subsequently smoothed by a Savitzky–Golay
filter78 with polynomial order unity.

3.7 Polypeptide–lipid membrane interaction

Additionally, we test the reliability of a recent hPF model for peptides18 within the HyMD im-

plementation of the HhPF framework. Here we simulate a 30 residues-long helical polypeptide,

where the last 3 amino acids on each end of the chain are hydrophilic, while the core region is

hydrophobic, inserted in a DOPC membrane. The HhPF scheme is prefectly able to reproduce the

peptide-bilayer interaction in agreement with previous hPF-MD simulations,18 with the peptide

remaining embedded inside the lipid bilayer in a trans-membrane configuration, and retaining its

helical structure for the whole length of the simulation (Figure 10).

Figure 10: Snapshot of a 30 AA long helical polypeptide (hydrophilic ends shown in yellow,
hydrophobic core shown in green) embedded in a DOPC bilayer (PEPTIDE system, see Table 1).
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3.8 Computational scaling
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Figure 11: Left: Particle-steps per second for intramolecular bonds. Homopolymer test systems
MELT1, MELT2, and MELT3 (see table 1) are used, with 224990 (red crosses), 533310 (black
triangles), and 1041620 (blue dots) particles respectively. Right: Relative speed-up for the FFT-
based intermolecular field force calculations for different FFT mesh sizes. Due to memory limi-
tations, it was not possible to run the 20483 grid points simulation for < 4 MPI ranks, hence the
speed-up of the 20483-mesh grid case is shown relative to 4 CPUs.

Figure 11 resumes the computational performance of this first release of the HyMD code. The

inner rRESPA steps pertaining to the intramolecular bonded force calculation are inherently em-

barrassingly parallel (figure 1). However, due to a non-negligible overhead, increasing the number

of CPUs beyond a certain fraction of particles per MPI rank will not yield increased performance.

As can be seen in figure 11 (left), this ceiling is reached at approximately 200 particles per CPU.

While this incurs a limit on the strong scaling behaviour of the software, it is in reality incon-

sequential. In absence of particle–field interactions, the peak performance—on a modest 5000

MPI ranks—of the bonded terms exceeds 13 µs sampled per day for the test system containing one

million particles (MELT3, see table 1).

The reciprocal space code performance is presented on the right hand side of figure 11. De-

pending on the mesh grid size used in the 3D FFTs, we find limited scaling up to 2048 CPUs.

Near-optimal scaling behaviour is found only in the smallest tested MPI configurations. The 2D

pencil grid domain decomposition used in the PMESH35 library theoretically scales to N2 CPUs

for 3D Fourier transforms of linear dimension N.79 In fact, the PMESH backend PFFT found near-

ideal scaling for 2563 total grid points up to approximately 16000 MPI ranks.31 Despite limitations

in the efficiency of the present version of the HyMD code, we are nonetheless able to reach a sam-
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pling time of approximately 2.0 µs per day for systems containing one million particles using a

stable rRESPA configuration. While this is not an optimal performance, it is already enough to

probe the physics of interesting molecular soft systems in a coarse-grained representation. The

significant discrepancy between the current performance of HyMD and the underlying PMESH

libraries indicate great potential for further optimization of the code, which will be the aim of its

next release.

The main objective of the present work is to validate the HhPF formalism on realistic molecular

systems, also providing a computational platform to exploit the method. For this first released

version of the HyMD software, comparatively less attention has been devoted to the optimization

of the performance. We fully expect the efficiency to drastically increase in the coming months as

we enter the next phase of development.

4 Conclusion

In this work, we present the validation and full implementation of the recently proposed Hamil-

tonian formalism of the hybrid particle-field model framework. We verify that HhPF reproduces

microcanonical dynamics equations in the presence of molecular moieties, in particular adopting

a rRESPA multiple-time step algorithm splitting the intramolecular and field interactions. We find

that the necessary time interval of the outer loop is solely dependent on the density spread σ .

We demonstrate how the efficiency of the inherently accelerated HhPF dynamics can be har-

nessed to rapidly achieve near-equilibrated self-assembled structures. Following this formulation,

the level of coarse-graining may be changed on the fly to yield better results during a sampling

phase. Alternatively, the model may be exchanged altogether for a particle-particle model at the

same coarse grained level.

Simulations of a range of different surfactants yield unilamellar and non-lamellar structures

corresponding well to those of literature hPF simulations, of higher accuracy approaches, or of

experiments. We propose how avoiding kinetic traps in self-assembly may be done by increas-
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ing the coarse-graining parameter σ , or through a simple simulated annealing strategy involving

scheduled raising and lowering of σ on the fly.

The new formalism is compatible with existing formulations of the hybrid particle-field scheme,

facilitating the mutual exchange of optimized parameter sets, regardless of the original approach

used during optimization. The agreement between hPF and HhPF models depends on the grid

spacing used in the canonical hPF and the σ parameter in HhPF. The use of symbolic differenti-

ation renders the code agnostic with respect to the specific form of the energy functional, easily

opening up to the implementation any other modelling of the hPF interactions.16,80 Thanks to the

possibility of systematically controlling the numerical error associated to grid operations, yielding

correct microcanonical mechanics, the HhPF implementation in HyMD promises to be an excel-

lent tool for cross-validation and benchmarking of different density functional-based simulation

methods. Moreover, the reciprocal-space implementation of non-covalent interactions provides an

excellent setup toward interfacing with particle-based codes in a multi-resolution manner.81

The current version of HyMD code has been fully validated for constant volume simulations

only. In fact, recently schemes for hybrid particle-field simulations at constant pressure have been

proposed.51,82,83 This much needed addition to the theory opens up the formalism to a range of im-

portant applications for which constant volume conditions are not the most appropriate. Here, we

anticipate that the development of constant pressure HhPF equations and their implementation into

the HyMD code has been recently achieved, and will be the topics of a forthcoming publication.

While this early software implementation is fast enough to be useful, it nevertheless suffers

from inefficiencies when compared to the computational scaling of the underlying FFT library. The

HyMD code is currently an order of magnitude off of the reported scaling behaviour of PFFT,31

however we fully expect to match that CPU scaling in the long term.

Finally, HyMD is the first released modulus of the Hylleraas Software Platform (HSP) https:

//gitlab.com/hylleraasplatform/hylleraas. With the aim to cover the research activities

at the Hylleraas Centre, HSP is developed into a unified framework for the study of molecular

systems and their interaction with external forces and fields. The Python-based framework couples
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various in-house and external chemistry codes, and allows for the study of systems spanning a

wide range of size and time scales. In addition to the focus on research, the platform is also

developed to become a tool in support of teaching activities in chemistry and related disciplines

at all undergraduate levels. Within the HSP, we aim to progressively include a variety of multi-

scale tools into HyMD, covering the molecular/mesoscale dimensionalities, including dissipative

particle dynamics, Brownian dynamics, and Monte Carlo-based methods.

5 Data availability statement

HylleraasMD is provided with a LGPLv3 open source software license, and is accessible at our

GitHub website https://github.com/Cascella-Group-UiO/HyMD.
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• HhPF interaction energy parameters χ̃ for DPPC, DOPC, Lipid A, AzoTMA, and the model

Alanine peptide; coarse-grained mapping for AzoTMA; and DPPC5 (see table 1) momentum

conservation.
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