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Abstract 

Modern operando spectroscopy and microscopy, and kinetic investigations have 

provided qualitative evidence for active site dynamics, catalyst surface dynamics and 

charge transport. On the macroscale, intraparticle and interparticle mass and heat 

transfer can be tuned to optimise selectivity over heterogeneous catalysts. On the 

microscale, adsorbate-induced restructuring, adsorbate mobility, surface composition, 

oxidation states, charge transport, band gap, and the degree of coordination of the 

active site have been identified for controlling product selectivity. There exists, 

however, limited physics-based and data-driven multiscale models that can assimilate 

these qualitative descriptors in an integrated manner to extract quantitative catalyst 

activity, stability and product selectivity descriptors. A multiscale model, which 

describes the evolution of gas species, adspecie accumulation due to reactivity, 

stability, lifetime, and mobility, charge transport involving electrons and holes, heat 

transfer for non-isothermal conditions due to reaction exothermicity, and the changing 

catalyst states is provided. Dynamical effects are included into these models to bridge 

the gap between laboratory scale studies and industrial technical reactors.  
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1. Introduction 

 Rapid developments in the use of characterisation techniques to observe 

individual catalytic turnovers at the atomic scale have led to huge progress in the use 

of microscopy1-3, structural characterization, and data handling4 to provide clarity on 

the dynamics of particle shapes and sizes, catalyst surfaces on each facet of the 

particle shape, and the local environment of the active site. Correspondingly, there has 

been a parallel evolution in molecular computational catalysis to quantify the 

aforementioned operando studies.5  

 On the molecular level, selectivity over mixed metal oxides depends on the 

catalyst surface structure6-8, catalyst shape and size9, and active site dynamics10.  

Selectivity depends on adsorbate-induced restructuring, adsorbate mobility, the 

reactivity of reaction intermediates, surface composition, oxidation states, and charge 

transport.11 Product selectivity can only be established if the reaction network is 

determined. Selectivity can be tuned, on the macroscale level, by careful adjustment 

of intraparticle and interparticle heat and mass transfer.12  Other factors include the 

degree of coordination of the active site, band gap of the oxide, acid-base properties, 

chemical bonding, defect sites, site-isolation and domain size, water influence, metal 

oxide support and ligand effects.13 Grasselli further postulated seven descriptors such 

as lattice oxygen, metal-oxygen bond, host structure, redox capability, 

multifunctionality of active sites, site isolation, and phase cooperation that could control 

catalyst design and synthesis.14  

Various forms of dynamics could be experienced during heterogeneous 

catalysis. First, nanoparticles could exhibit overlayer formation or periodic 

reconstructions during catalytic reactions which prevents the use of the standard model 

of catalysis.15 Second, the local environment along the axial length of a fixed bed 
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reactor has an intricate connection to the catalyst state and performance.16-18 Third, 

the nature of the active site could change upon chemisorption due to geometric 

(ensemble) and electronic (ligand) effects.19, 20 Fourth, mobility of active sites could 

occur at elevated temperatures10. The changing nature and mobility of active sites 

during catalysis leads to substantial changes in quantity of active sites.  

The changing catalyst surface (due to overlayer formation and periodic 

reconstructions), local environment (differential or integral reactor conditions), and 

quantity of active sites (nature, mobility) all influence of the adsorption constant of 

educts, intermediates, and products during oxidation catalysis. Consequently, the 

adsorption constant of each specie is related in a complex fashion to its coverage, the 

coverage of the most abundant surface specie during overlayer formation, time on 

stream due to aperiodic or periodic reconstructions21 and the local chemical potential.  

Although, molecular and macroscopic factors that control selectivity have been 

distinguished qualitatively, there exists no quantitative framework in terms of data-

driven physical models that can capture the entire range of complexity experienced 

from atomic level to reactor level. Focusing on oxidation catalysis, many studies have 

investigated surface and shape dynamics22-25. Using state-of-the-art surface science 

techniques, the catalyst composition during operando conditions have been 

elucidated. For instance, during the selective oxidation of propane over MoVTeNbOx 

catalysts, enrichment of the catalyst surface by tellurium has been observed in the 

presence of steam.26, 27 Surface enrichment has also been observed during oxidative 

dehydrogenation of propane over MnWO4 nanorods28 and selective oxidation of 

propylene to acrolein over multi-component BiMo catalysts.29 Although an increasing 

effort is placed on the use of ab-initio density functional theory calculations to represent 
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the changing nature and mobility of the active site during catalytic reactions10, 19, there 

are limited integrated approaches which incorporate dynamical effects.  

 At this juncture, it is important to clarify what we mean by dynamics. Active site 

dynamics is not a new phenomenon in catalysis. Indeed, Thomas and Thomas12 

provided extensive details on dynamic modelling during catalyst deactivation. Ertl30, 

Kobayashi31-34, Dauenhauer35, 36, Carroll37, 38 and Boudart39, 40 studied reaction 

dynamics. Warshel41-45 investigated the dynamic phenomena during enzyme catalysis 

and observed that the duration of the kinetics of catalytic transformation is much 

smaller than conformational dynamics. In this paper,  dynamics during heterogeneous 

oxidation catalysis is emphasised with respect to catalyst surface changes, local 

chemical potentials, and changing nature and mobility of active sites.  

 During oxidation catalysis over mixed metal oxide catalysts, active site 

representation is particularly complex due to multiple atoms and intricate functionalities 

available on the terminated catalyst surface. Surface metal bonds are relatively 

unsaturated compared to cations in the catalyst bulk. Several complexities are 

experienced during oxidation catalysis over mixed metal oxide catalysts. These 

include: (1) intricate reaction network, (2) multifunctionality of the different metal 

cations on the catalyst surface, (3) the various oxygen species which further expands 

the possible pathways in the reaction network, (4) changing active sites, (5) charge 

transport, and the (6) evolving catalyst surface. Due to the changing nature of the 

active sites and catalyst surfaces, a set of physics-based and data-driven multiscale 

computational models for heterogeneous catalysis could be assembled to obtain 

quantitative descriptors.  

A systematic approach considering active site dynamics, surface dynamics and 

charge transport phenomena is followed in this work. First, active site dynamics due to 
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the changing nature, mobility, and quantity of the active sites are investigated. This 

approach is particularly useful for selective oxidation reactions over multi-functional 

and multi-component mixed metal oxide catalysts where representations of the active 

site is challenging, albeit to which active site dynamics have been observed from 

modern operando characterisation methods such as transmission electron microscopy 

and other spectroscopic techniques.26, 27, 46, 47 In order to understand active site 

dynamics, open catalytic cycles (single, and multiple) are proposed. Second, catalyst 

surface dynamics due to changing surface composition and termination, metal ion 

coordination, and the evolving different site distribution is provided. Wulff construction 

method48, 49 is typically used to provide equilibrium catalyst structures in density 

functional theory calculations. However, a revision of an old concept called “homotattic 

patch models” was sufficient enough to incorporate catalyst surface dynamics. Third, 

due to the oxygen reduction mechanism and charge transfer to the catalyst surface, 

charge transport is considered.  

The set of models presented here should, at a minimum, describe the molecular 

and macroscopic factors that govern activity, stability, and selectivity during 

catalysis.11-13, 50 These models consider not only elementary reaction steps, but 

accumulation of surface species, changing catalyst state and charge transport.  
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2. Active Site Dynamics  

A useful starting point for the incorporation of active site dynamics into reaction 

kinetics is to revisit the concept of closed catalytic cycles. The influence of facile 

adsorption is decoupled from changes due to electronic or geometric factors as given 

in scheme 1:  

1. 𝐴 +∗⇌ 𝐴 ∗ - - - Facile adsorption on a static surface 

2. 𝐴 ∗ ⇌ 𝐴∎  - - - Formation of an adsorption complex due to dynamicity 

The traditional concept of a catalytic cycle, based on static sites, is given as:13   

 
Figure 1: Schematic illustration of the catalytic cycle of reaction events for the 
decomposition reaction of N2O (closed catalytic cycle). Image reproduced from Ref. 13  
 
The active site dynamics concept leads to:   

 
Figure 2: Schematic illustration on an open catalytic cycle of reaction events that 
considers active site dynamics 
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 In the revised concept of an open cycle, the adsorption process (A*) on the 

original active site (OAS) is decoupled from electronic or geometric modifications (A■). 

Subsequent reactions occurs where B specie reacts with (A■) to form (AB■). Following 

diffusion, desorption occurs such that a modified active site (MAS) is obtained, which 

could be involved in the next cycle (Figure 3).  

 
Figure 3: A series of consecutive open catalytic cycles onto which the same reactants 
and products are formed 

Eventually in the absence of deactivation, multiple open catalytic cycles may 

lead to a closed catalytic cycle (Figure 4).  

 
Figure 4: A series of consecutive open catalytic cycles leading finally to an open 
catalytic cycle during which reactants and products are formed 
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In Figures 2 – 4, the original active site (OAS) could be quantified using, e.g., 

pyridine Fourier Transform Infrared Spectroscopy. For open catalytic cycles, the OAS 

changes on each catalytic turnover to MAS and so on. Consequently, a titration of 

MAS is required. Boudart51 defined the turnover frequency as the molecules converted 

by catalytic active site per second. Consequently, in one second, it is the number of 

molecules converted by a catalytic active site, assuming of course that this site retains 

its nature. However, if the catalytic active site changes its nature due to the adsorption 

of molecules, then a re-definition is required, and quantification is provided.  

 

2.1. Quantification: Active site dynamics  

The revised concept of an open catalytic cycle requires that the modified active 

sites (MAS) after adsorption of a specie is titrated. During an open catalytic cycle, the 

number of original active sites change to modified active sites with each turnover.  

In the closed catalytic cycle concept, we start with a basic assumption: that the 

quantity of the OAS is a root (i.e., a solution) of the function of the number of active 

sites with each catalytic turnover time. Subsequent cycles in the closed catalytic cycle 

concept ensures that one root in the relationship between number of active sites and 

turnover is obtained and maintained. In the open catalytic cycle concept, however, we 

could envisage that multiple roots in that functional relationship between the number 

of active sites and turnover are obtained. Furthermore, each catalytic cycle could be 

an attempt to return to the original root of this relationship or diverge from this original 

root. Consequently, the Newton and Raphson52 iterative equation suffices to obtain 

that convergence towards the original root. Another relationship may be used to obtain 

the divergence from the original root of this functional dependence. In our 
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consideration below, we use the Newton-Raphson iterative equation to restrict our 

analysis towards the convergence towards the original root.  

For one open catalytic cycle, we obtain:  

𝑀𝐴𝑆 = 𝑂𝐴𝑆 −  
𝑓(𝑂𝐴𝑆)

𝑓′(𝑂𝐴𝑆)𝑂
                                                                                                            (2.1) 

For multiple open catalytic cycles, we obtain:  

𝑀𝐴𝑆2 = 𝑀𝐴𝑆 −
𝑓(𝑀𝐴𝑆)

𝑓′(𝑀𝐴𝑆)𝑜
                                                                                                            (2.2) 

𝑀𝐴𝑆3 = 𝑀𝐴𝑆2 −
𝑓(𝑀𝐴𝑆2)

𝑓′(𝑀𝐴𝑆2)𝑜
                                                                                                         (2.3) 

𝑀𝐴𝑆4 = 𝑀𝐴𝑆3 −
𝑓(𝑀𝐴𝑆3)

𝑓′(𝑀𝐴𝑆3)𝑜
                                                                                                        (2.4) 

𝑀𝐴𝑆𝑛 = 𝑀𝐴𝑆(𝑛−1) −
𝑓(𝑀𝐴𝑆(𝑛−1))

𝑓′(𝑀𝐴𝑆(𝑛−1))
𝑜

                                                                                          (2.5) 

For a finite series, we obtain:  

𝑀𝐴𝑆4 = 𝑂𝐴𝑆 −
𝑓(𝑂𝐴𝑆)

𝑓′(𝑂𝐴𝑆)𝑜
−

𝑓(𝑀𝐴𝑆)

𝑓′(𝑀𝐴𝑆)𝑜
−

𝑓(𝑀𝐴𝑆2)

𝑓′(𝑀𝐴𝑆2)𝑜
−

𝑓(𝑀𝐴𝑆3)

𝑓′(𝑀𝐴𝑆3)𝑜
                                (2.6) 

𝑀𝐴𝑆𝑖+1 = 𝑂𝐴𝑆 − ∑
𝑓(𝑀𝐴𝑆𝑖)

𝑓′(𝑀𝐴𝑆𝑖)𝑜

3

𝑖=0

                                                                                                  (2.7) 

For an infinite series, this is equal to:  

𝑀𝐴𝑆𝑛+1 = 𝑂𝐴𝑆 − ∫
𝑓(𝑀𝐴𝑆𝑛)

𝑓′(𝑀𝐴𝑆𝑛)𝑜

𝑛

0

𝑑(𝑀𝐴𝑆𝑛)                                                                                 (2.8) 

By integration using u-substitution for 𝑓(𝑀𝐴𝑆𝑛), we obtain:  

𝑀𝐴𝑆𝑛+1 = 𝑂𝐴𝑆 − ∫
𝑢

𝑑𝑢

𝑛

0

𝑑𝑢 = 𝑂𝐴𝑆 − [
𝑢2

2
]

0

𝑛

= 𝑂𝐴𝑆 −
𝑛2

2
                                                     (2.9) 

𝑀𝐴𝑆𝑛+1 = 𝑂𝐴𝑆 −
𝑓(𝑀𝐴𝑆𝑛)2

2
                                                                                                      (2.10) 
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The solution to the open catalytic cycle proposed in Equation 2.10 shows that 

the number of modified active sites of an (n+1)th cycle can be titrated using the original 

active sites and the function of modified active sites of an nth cycle during the catalytic 

turnover involving adsorption, desorption, diffusion, and reaction of species. The main 

challenge is the titration of the modified active sites which is dependent on the 

turnover. Finally, for multiple open catalytic cycles leading to a closed catalytic cycle, 

we obtain:  

𝑀𝐴𝑆 = 𝑂𝐴𝑆 −
𝑓(𝑂𝐴𝑆)

𝑓′(𝑂𝐴𝑆)𝑜
                                                                                                             (2.11) 

𝑀𝐴𝑆2 = 𝑀𝐴𝑆 −
𝑓(𝑀𝐴𝑆)

𝑓′(𝑀𝐴𝑆)𝑜
                                                                                                          (2.12) 

𝑀𝐴𝑆3 = 𝑀𝐴𝑆2 −
𝑓(𝑀𝐴𝑆2)

𝑓′(𝑀𝐴𝑆2)𝑜
                                                                                                       (2.13) 

𝑀𝐴𝑆4 = 𝑀𝐴𝑆3 −
𝑓(𝑀𝐴𝑆3)

𝑓′(𝑀𝐴𝑆3)𝑜
                                                                                                       (2.14) 

𝑂𝐴𝑆 = 𝑀𝐴𝑆4 −
𝑓(𝑀𝐴𝑆4)

𝑓′(𝑀𝐴𝑆4)𝑜
 

For a closed finite cycle, we obtain:  

𝑂𝐴𝑆 = 𝑂𝐴𝑆 −
𝑓(𝑂𝐴𝑆)

𝑓′(𝑂𝐴𝑆)𝑜
−

𝑓(𝑀𝐴𝑆)

𝑓′(𝑀𝐴𝑆)𝑜
−

𝑓(𝑀𝐴𝑆2)

𝑓′(𝑀𝐴𝑆2)𝑜
−

𝑓(𝑀𝐴𝑆3)

𝑓′(𝑀𝐴𝑆3)𝑜
−

𝑓(𝑀𝐴𝑆4)

𝑓′(𝑀𝐴𝑆4)𝑜
 

𝑓(𝑂𝐴𝑆)

𝑓′(𝑂𝐴𝑆)𝑜
= − ∑

𝑓(𝑀𝐴𝑆𝑖)

𝑓′(𝑀𝐴𝑆𝑖)𝑜

4

𝑖=0

   

For a closed infinite series, this is equal to:  

𝑓(𝑂𝐴𝑆)

𝑓′(𝑂𝐴𝑆)𝑜
= − ∫

𝑓(𝑀𝐴𝑆𝑛)

𝑓′(𝑀𝐴𝑆𝑛)𝑜

𝑛

0

𝑑(𝑀𝐴𝑆𝑛)                                                                                     (2.15) 

By integration using u-substitution for 𝑓(𝑀𝐴𝐸𝑛), we obtain:  

𝑓(𝑂𝐴𝑆)

𝑓′(𝑂𝐴𝑆)𝑜
= − ∫

𝑢

𝑑𝑢

𝑛

0

𝑑𝑢 = − [
𝑢2

2
]

0

𝑛

= −
𝑛2

2
                                                                             (2.16) 
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𝑓(𝑂𝐴𝑆)

𝑓′(𝑂𝐴𝑆)𝑜
=  −

𝑓(𝑀𝐴𝑆𝑛)2

2
                                                                                                             (2.17) 

Substituting this in 2.10, we obtain: 

𝑀𝐴𝑆𝑛+1 = 𝑂𝐴𝑆 −
𝑓(𝑂𝐴𝑆)

𝑓′(𝑂𝐴𝑆)𝑜
                                                                                                        (2.18) 

Equation 2.18 implies that the modified active sites can be titrated based on the 

number density of the original active sites. A functional that describes the change of 

the number of original active site with one catalytic turn-over and a differential of that 

functional is required.  

 

3. Beyond the Standard Model of Catalysis 

The Langmuir model assumes a uniform surface characterized by a constant 

energy of adsorption (Figure 5a). The concept of biographical heterogeneity appeared 

over 80 years ago. Taylor53 examined metallic hydrogenation catalysts using X-rays. 

A terrace-ledge-kink (TLK) model of heterogeneous catalytic surfaces was 

proposed.51, 54-56 The Langmuir model can be derived from kinetic or statistical 

mechanical considerations. From kinetic considerations, we obtain:57 

 𝑓(𝜃) = 1 − 𝑓′(𝜃)                                                                                                                              (3.1) 

Where f(θ) and f’(θ) represent, respectively, the fraction of surface that is vacant and 

the fraction of the vacant surface that is covered, say for instance by specie A. The 

fraction of molecules adsorbed of the total number of molecules striking a surface is:  

 𝑋(𝑇, 𝐸) = exp (−𝐸 𝑘𝐵𝑇)⁄                                                                                                               (3.2) 

Where kB is the Boltzmann constant and E is the activation energy. The rate of 

adsorption then is:  

𝑟𝑎 = 𝑘𝑎exp (−𝐸 𝑘𝐵𝑇)⁄ 𝑓(𝜃)𝑝 
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𝑘𝑎 =
𝑠

(2𝜋𝑚𝑘𝐵𝑇)1 2⁄
 

Where “s” is the orientation factor to account for the fact that not all potentially 

successful encounters are actually successful. The rate of desorption is given by:  

𝑟𝑑 = 𝑘𝑑𝑓′(𝜃)exp (−𝐸′ 𝑘𝐵𝑇)⁄                                                                                                          (3.3) 

Where kd is the rate constant and E’ is the activation energy of desorption. Equating 

the rate of adsorption to the rate of desorption, we obtain:  

𝑓′(𝜃)

𝑓(𝜃)
= 𝐾𝑂[exp (𝑄 𝑘𝐵𝑇⁄ )]𝑝                                                                                                            (3.4) 

𝐾𝑂 =
𝑠

𝑘𝑑(2𝜋𝑚𝑘𝐵𝑇)1 2⁄
                                                                                                                     (3.5) 

Q is the negative of the heat of adsorption and is given by (E’-E). When one adsorption 

site is required for each adsorbate molecule: 𝑓(𝜃) = 1 − 𝜃 and 𝑓′(𝜃) = 𝜃 and thus,  

𝜃 =
𝐾𝑝

1 + 𝐾𝑝
; 𝐾 = 𝐾𝑂[exp (𝑄 𝑘𝐵𝑇⁄ )]                                                                                             (3.6) 

Following statistical mechanical considerations, Fowler and Guggenheim58 

derived the isotherm assuming the molecules to be locally adsorbed on a square array 

of sites on a uniform surface without mutual interactions. The equation derived from 

statistical mechanical considerations is of the same form as from chemical kinetics, 

but “K” has a more fundamental definition as the ratio of partition function of the 

adsorbed molecule to that of the gaseous molecules at infinite separation, with KO 

given by:  

𝐾𝑂 = [
ℎ

(2𝜋𝑚𝑘𝐵𝑇)1/2
]

3

(
𝑞𝑉

𝑘𝐵𝑇
)                                                                                                        (3.7) 

and qv being the vibrational partition function.  

The Langmuir isotherm can also be expressed in terms of enthalpy and entropy 

functions:59  
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𝜃 =
1

1 + (
𝑏𝑜

𝑝⁄ ) exp (− 𝑄 𝑘𝐵𝑇⁄ )
; 𝑜𝑟 𝑝 = 𝑏𝑂 (

𝜃

1 − 𝜃
) exp(− 𝑄 𝑘𝐵𝑇⁄ )                              (3.8) 

𝑏𝑂 = 𝑒
∆𝑠∗

𝑘𝐵
⁄

; Δs* represents all entropy changes excluding configurational entropy.  

We use the homotattic patch model60 to develop the fundamental equations for 

the overall isotherm for a surface with biographical heterogeneity leading to the 

adsorption integral equation. The homotattic patch model postulates different patches 

of different heats of adsorption to account for surface heterogeneity. The Langmuir 

isotherm for a single patch is integrated between selected upper and lower limits of 

the heat of adsorption for a given distribution of the adsorption heat. The homotattic 

patch model consists of sites grouped in patches where each patch contains a 

sufficiently large number of sites that can be regarded as a separate thermodynamic 

entity (Figure 5b). We consider the adsorption integral equation to represent such 

heterogeneity.  

The Langmuir equation for a homogeneous surface when summed over n 

patches is:57  

𝜃𝑚(𝑝) = ∑
𝐾𝑝

1 + 𝐾𝑝
𝑖

                                                                                                                        (3.9) 

Following statistical mechanical considerations,58   

𝐾 = [
ℎ

(2𝜋𝑚𝑘𝐵𝑇)1/2
]

3

(
𝑞𝑉

𝑘𝐵𝑇
) 𝑒𝑥𝑝 (

𝑄

𝑘𝐵𝑇
)                                                                                  (3.10) 

θm in this equation is the overall isotherm for the entire surface, and K may be regarded 

as the ratio of the adsorbate to gas phase partition functions for the ith patch. The 

summation sign is replaced by an integration sign when the number of patches is large. 

Equations 3.9 and 3.10 can be rewritten differently if the heat of adsorption 

varies from patch to patch (heterogeneous surface). The adsorption integration 

integral is given as:  
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𝜃𝑚(𝑝) = ∫ 𝜃𝑙𝑖(𝑝, 𝑄)𝛿(𝑄)𝑑𝑄
𝑄2

𝑄1

                                                                                                   (3.11) 

𝛿(𝑄) is the fraction of surface with heats between Q and dQ. 𝜃𝑙𝑖(𝑝, 𝑄) is the local 

isotherm which varies with the partial pressure and the heat of adsorption. Equation 

3.11 is written for a static and rigid homotattic patch.  

However, when the surface is dynamic, general temporal variations in the 

fraction of surfaces, 𝛿, may be important. These temporal variations may be due to 

changes in surface area of each patch, while the total surface area is conserved or not 

conserved in the case of strong-metal-support-interactions (for metal catalysts). The 

dynamic surface where the fraction of surface with heats between Q and dQ is 

considered such that:  

𝜃𝑚(𝑝, 𝑡) = ∫ 𝜃𝑙𝑖(𝑝, 𝑄)𝛿(𝑄, 𝑡)𝑑𝑄
𝑄2

𝑄1

                                                                                            (3.12) 

𝜃𝑙𝑖(𝑝, 𝑄) is still represented by the Langmuir isotherm for a homotattic patch. Effects 

of lateral interactions (induced heterogeneity) can be used to modify 𝜃𝑙𝑖(𝑝, 𝑄). 𝛿(𝑄, 𝑡) 

represents the temporal variation of the fraction of surfaces in each homotattic patch, 

which is also dependent on the heat of adsorption.  

The above equation can be solved in two ways: either by obtaining the site-

energy distribution that corresponds to the overall adsorption integral equation (class-

II solutions) or using the observed adsorbed integral equation to obtain solutions of 

the site-energy-distribution (class-I). In class-I solutions, various isotherms have been 

observed:57 Freundlich Isotherm61, generalised Freundlich Isotherm62, Langmuir-

Freundlich Isotherm, Toth Isotherm63-65, Temkin-Pyzchev isotherm/Shlygin-Frumkin 

Isotherm66-69, Radke-Prausnitz-Jaroneic Isotherm70, 71, Marczewski-Jaroniec Isotherm 

72, Knowles-Moffat Isotherm73, 74, Dubinin-Radushkevich Isotherm75-78, Dubinin-

Astakhov Isotherm79, Freundlich-Dubinin-Radushkevich Isotherm80. In the class-I 
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solutions, however, the variation with adlayer formation and restructuring that evolves 

with time cannot be considered.  

This is represented in class-II solutions where the site-energy distribution is 

assumed, and the adsorption integral equation is produced for inclusion in statistical 

rate equations used in kinetic modelling. The site energy distributions are generally 

grouped into four categories:57 positive exponential, negative exponential (simple, 

truncated, modified, and hyperbolic), constant, Gaussian/skewed-Gaussian (normal, 

Log-normal, sinusoidal, Maxwell-Boltzmann, γ-Type).  

Considering, for instance, the skewed-Gaussian site-energy distribution, 

specifically the positive sinusoidal function that varies with time, equation 3.11 can be 

modified as: 

𝛿(𝑄, 𝑡) = 𝑠𝑖𝑛2(
𝜋𝑄

2𝑄𝑚
) ∫ 𝑓(𝑡)

𝑡

0

𝑑𝑡                                                                                                  (3.13) 

Where Qm is a general parameter characterising the distribution. F(t) is a function that 

regulates the amplitude and phase behaviour of the sinusoidal wave representing the 

dynamic site-energy-distribution. The overall isotherm (representing the dynamic 

adsorption integral equation) is then given as:  

𝜃𝑚(𝑝, 𝑡) = ∫ 𝑓(𝑡)
𝑡

0

𝑑𝑡 ∫ 𝜃𝑙𝑖(𝑝, 𝑄)𝑠𝑖𝑛2(
𝜋𝑄

2𝑄𝑚
)𝑑𝑄

𝑄2

𝑄1

                                                                 (3.14) 

But θm represents one site for one specie.  

Using the mass action formalism for a simple adsorption reaction, that is, 

 𝐴 + ∗ ⇌ 𝐴 ∗, where * is denoted as a static active site, we obtain:  

𝜃𝐴,𝑣 = 𝐾𝐴𝑃𝐴𝜃𝑉                                                                                                                                    (3.15) 

Where θv is the fraction of vacant sites available. For a homogeneous surface, onto 

which a local Langmuir isotherm is observed, we note that:  
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𝜃𝑚(𝑝) = ∫ 𝜃𝑙𝑖(𝑝, 𝑄)𝛿(𝑄)𝑑𝑄
𝑄2

𝑄1

                                                                                                    (3.16) 

As the heat of adsorption stays constant; 𝜃𝑚(𝑝) = 𝜃𝑙𝑖(𝑝) = 𝜃𝐴(𝑝) 

Accounting for dynamics, the mass action formalism still remains as:  

𝜃𝐴 = 𝐾𝐴𝑃𝐴𝜃𝑉  𝑜𝑟 𝜃𝐴 =
𝐾𝐴𝑃𝐴

1 + 𝐾𝐴𝑃𝐴
; 𝑤ℎ𝑒𝑟𝑒 𝜃𝑣 = 1 − 𝜃𝐴                                                            (3.17) 

We further consider two scenarios for the temporal variation of the fraction of active 

sites on each patch in the homotattic patch model.  

 

3.1. Periodic surfaces  

With a sinusoidal dynamic belonging to the skewed/Gaussian or Gaussian 

distribution and a modulating time distribution, we obtain (Figure 5c):  

𝜃𝑚(𝑝, 𝑡) = ∫ 𝑓(𝑡)
𝑡

0

𝑑𝑡 ∫ 𝜃𝑙𝑖(𝑝, 𝑄)𝑠𝑖𝑛2(
𝜋𝑄

2𝑄𝑚
)𝑑𝑄

𝑄2

𝑄1

                                                                (3.18) 

The time dependent ∫ 𝑓(𝑡)
𝑡

0
𝑑𝑡 is due to varying patch surface areas, which 

allowing for a conserved total surface area should be used to define θA,B or KA,B. The 

positive sinusoidal function is given in Figure 5d. Equation 3.18 highlights the physical 

description of the active site dynamics while the mass action law highlights chemical 

kinetic method. To merge both, we note that the chemical kinetic formalism would have 

to be modulated as:  

𝜃𝐴 =
𝐾𝐴(𝑄, 𝑡)𝑃𝐴

1 + 𝐾𝐴(𝑄, 𝑡)𝑃𝐴
 𝑜𝑟 𝜃𝐴 = 𝐾𝐴(𝑄, 𝑡)𝑃𝐴𝜃𝑉                                                                            (3.19)  
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3.2. Modified surfaces  

We represent 𝜃𝐴,𝐵 as the coverage of A on modified surface, B (Figure 5e). We 

note that for a multi-component specie in which the surface changes, the adsorption 

constant will be dependent on the surface (on the ith patch). This definition requires 

methods of measuring sublayer coverage which may be representative of adlayer or 

restructuring function. The physical description necessitates adsorption on changed 

surfaces. While the standard model uses:  

𝜃𝐴,𝑣 = 𝐾𝐴,𝑣(𝑄, 𝑡)𝑃𝐴𝜃𝑉                                                                                                                     (3.20)    

where 𝜃𝐴,𝑣 is the coverage of A on vacant sites. The coverage of A on surfaces that 

are modified by species B will be given as:  

𝜃𝐴,𝐵 = 𝐾𝐴,𝐵(𝑄, 𝑡)𝑃𝐴𝜃𝑉                                                                                                                    (3.21)  

where 𝜃𝑉 is modified accordingly to 𝜃𝑣 = 1 − 𝜃𝐴 − 𝜃𝐵 − 𝜃𝐴,𝐵 (in the case of competitive 

sorption on both surfaces). 

If two pseudo surfaces are involved, namely the “clean” surface and “modified” 

surface, with site conservation on both surfaces and in the case of non-competitive 

sorption on the “clean” surface we have: 

 𝜃𝑣,𝑠 = 1 − 𝜃𝐴,𝑣 − 𝜃𝐵,𝑣                                                                                                                  (3.22)  

On the “modified” surface, we have: 

 𝜃𝑣,𝑠𝑠 = 1 − 𝜃𝐴,𝐵 − 𝜃𝐵,𝐵                                                                                                                (3.23)  

We assume that there is no competition between surfaces such that each 

surface behaves independently. Thus, the adsorption constants are defined with 

respect to adsorption on a “clean” surface and “modified” surface (Figure 5e). This 

distinction allows for variation of the adsorption constants with time on stream, as the 

proportion of modified surface varies with reaction progress. The time integral 
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∫ 𝑓(𝑡)
𝑡

0
𝑑𝑡 here is due to modified patches which evolves with reaction progress and 

used to define θA,B or KA,B. 

 For a first order reaction of A on a vacant site, the rate is given as: 

𝑟 = 𝑘𝑎𝐾𝐴,𝑣(𝑄, 𝑡)𝑃𝐴𝜃𝑉 = 𝑘𝑎𝐾𝐴,𝑣(𝑄, 𝑡)𝑃𝐴𝜃𝑉                                                                                (3.24)   

For the reactions of A on surfaces modified by B, the rate is given as:  

𝑟 = 𝑘𝑎𝐾𝐴,𝐵(𝑄, 𝑡)𝑃𝐴𝜃𝑉  = 𝑘𝑎𝐾𝐴,𝐵(𝑄, 𝑡)𝑃𝐴𝜃𝑉                                                                               (3.25)   

The site-energy distribution is reflected in the variation of adsorption equilibrium 

constants with respect to process conditions and time on stream.  

Mechanistic information on the catalytic action occurring on the catalyst surface 

can be obtained by kinetic studies or the direct study of the catalyst under operando 

working conditions. Langmuir81 postulated that the clean surface of a solid crystalline 

body must consist of atoms or molecules arranged in a surface lattice. The catalyst 

surface is regarded as containing elementary spaces where some spaces are vacant, 

and others are covered with adsorbed atoms or molecules. However, realistic 

depictions of catalyst surface are heterogeneous consisting of terraces, ledges, and 

kinks (TLK model). Taylor53 observed that only a small fraction of the surface is active 

which is sensitive to heat treatment and to the action of poisons, and the catalyst 

surface has a varying adsorption capacity. Further X-ray examination of metallic 

hydrogenation catalysts showed that there are groups of atoms in which the 

crystallization process is not complete. As opposed to flat clean surface observed by 

Langmuir, a degree of unsaturation is observed for atoms on the catalyst surface. In 

the Langmuir isotherm used for a homogeneous surface, the heat of adsorption stays 

constant with coverage. The heat of adsorption could exhibit various functional 

distributions with coverage including an exponential,82 or a linear distribution.83 
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Former consideration of the adsorption integral equations were based on 

invariant static patches. “Temporal/periodic” variation in patches has been considered 

by differing patch surface areas (Figure 5c) while the total surface area is conserved 

or not conserved (in the case of strong metal support interactions for metals) and the 

evolution of “modified” surfaces (Figure 5d).  

 
A. Homogeneous surface  
 

 
B. Heterogeneous surface with static 

sites 

 
C. Heterogeneous surfaces with active site/surface dynamics (changing fraction of 

sites, while ensuring conservation of catalyst surface area) 
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D. A positive sinusoidal function of the fraction of sites with heat of adsorption with 
constant amplitude and frequency representing a static surface (-). A dynamic 
surface is accounted for by changes in the fraction of sites with heat of adsorption 
at continuously changing amplitudes and frequencies (-) 

 
E. Heterogeneous surface with active site/surface dynamics (incorporating “clean 

(green)” surfaces and “modified (brown)” surfaces 

Figure 5: Various constructs used in the formulation of the adsorption integral 
equation following the homotattic patch model.  
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4. Multiscale Microdynamic Models  

Boudart84 stated that: “the steady-state approximation can be considered as 

the most important general technique of applied chemical kinetics”. A formal proof of 

this “hypothesis” that is applicable to all reaction mechanisms is not available because 

the rate equations for complex systems are often impossible to solve analytically.85 

For a simple adsorption mechanism and with constant molar volume reactions where 

no expansion in the gas phase occurs, equations 4.1 and 4.2 are applicable:   

𝑮𝒂𝒔: 𝜀𝑏

𝜕𝐶𝑖,𝑔

𝜕𝑡
= 𝐷𝑖,𝑔

𝜕2𝐶𝑖,𝑔

𝜕𝑧2
− 𝑢

𝜕𝐶𝑖,𝑔

𝜕𝑧
− 𝛤𝑡𝑆𝑣(1 − 𝜀𝑏)(𝑘𝑎𝑐𝑖 − 𝑘𝑑𝜃𝑖𝑍)                                  (4.1) 

𝑺𝒖𝒓𝒇𝒂𝒄𝒆: 
𝜕𝜃𝑖,𝑠

𝜕𝑡
=

𝐷𝑖,𝑠

𝑟2
(𝑟2

𝜕2𝜃𝑖,𝑔

𝜕𝑟2
) + 𝑘𝑎𝑐𝑖 − 𝑘𝑑𝜃𝑖𝑍                                                                  (4.2) 

where ka is the adsorption coefficient (m3 mol-1 s-1), ci is the concentration of gas phase 

component, i (mol m-3), 𝜀𝑏 is bed porosity (-); u is the superficial velocity, (m s-1); z is 

the bed length, (m); t is time, (s); 𝛤𝑡 is the concentration of active sites per unit surface 

area of catalyst (mol mcat
-2); Sv is the catalyst surface area per unit volume (mcat

-1); kd 

is the desorption rate coefficient (s-1); θi is the fractional surface coverage of the 

adsorbed specie; Di,g is the gas-phase dispersion coefficient (m2 s-1); Di,s is the surface 

diffusivity (m2 s-1); r is the radius of the catalyst pellet (m).  

For the scenario (section 3.2) where competitive surface adsorption on a 

modified surface occurs, equations 4.1 and 4.2 can be modified as:   

𝑮𝒂𝒔: 𝜀𝑏

𝜕𝐶𝑖,𝑔

𝜕𝑡
= 𝐷𝑖,𝑔

𝜕2𝐶𝑖,𝑔

𝜕𝑧2
− 𝑢

𝜕𝐶𝑖,𝑔

𝜕𝑧
− 𝛤𝑡𝑆𝑣(1 − 𝜀𝑏)(𝑘𝑎𝑐𝑖 − 𝑘𝑑𝜃𝑖𝑍 − 𝑘𝑑𝜃𝑖,𝑗)                 (4.3) 

𝑺𝒖𝒓𝒇𝒂𝒄𝒆: 
𝜕𝜃𝑖,𝑠

𝜕𝑡
=

𝐷𝑖,𝑠

𝑟2
(𝑟2

𝜕2𝜃𝑖,𝑔

𝜕𝑟2
) + 𝑘𝑎𝑐𝑖 − 𝑘𝑑𝜃𝑖𝑍  − 𝑘𝑑𝜃𝑖,𝑗                                                 (4.4) 
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The following equations can be further modified if the concentration of active 

sites per unit surface area also changes in accordance with active site dynamics 

(Section 3.1). A linear change is expressed as:  

𝛤𝑡 = 𝛤𝑡,𝑜 − 𝛼𝑡                                                                                                                                       (4.5) 

Where 𝛼 is a parameter characterising the linear variation and “t” is time on stream. A 

logarithmic variation is given as:  

 𝛤𝑡 = 𝛤𝑡,𝑜 − 𝛽𝑙𝑛𝑡                                                                                                                                  (4.6) 

Where 𝛽 is a parameter characterising the logarithmic variation. 

This set of equations can be reduced (by using the steady-state approximation) 

to the conventional differential-algebraic-equations provided by Dumesic and co-

workers.86 Equations 4.3 and 4.4 could however be solved without these assumptions 

where the variation of gas species with reactor bed length and time on stream is 

provided.   

A realistic kinetic model for selective oxidation reactions should include the 

inclusion of adsorption constants that vary over fresh, activated and working catalysts 

at specified times on stream (“clean”, “modified” and “periodic” surfaces) and the 

specification of the distribution of metal-oxygen species as initial conditions for catalyst 

state as a result of the oxygen adsorption deconvolution and its modulation.   

Catalyst states could be obtained as a function of the local chemical potentials 

of oxygen and steam leading to restructuring. The catalyst state is represented by the 

number density of surface vacancies. If [∗]𝑂 represents the number density of all 

adsorption sites (vacant and occupied) on a catalyst surface, then:87  

[∗]𝑂 = [∗] + [𝑖 ∗]                                                                                                                              (4.7) 

𝜃𝑖 =
[𝑖 ∗]

[∗]𝑂
                                                                                                                                            (4.8) 
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[∗] represents vacant sites, [𝑖 ∗] represents sites occupied by “i”. 𝜃𝑖 is the fractional 

surface coverage defined as the fraction of total surface adsorption sites that are 

occupied by “i”.  

The number density of surface vacancies [∗] i.e., catalyst state, varies along 

the bed length due to different chemical potentials and “gas-mediated” dispersive 

factors. Consequently, the following equations are obtained:  

𝑮𝒂𝒔: 𝜀𝑏

𝜕𝐶𝑖,𝑔

𝜕𝑡
= 𝐷𝑖,𝑔

𝜕2𝐶𝑖,𝑔

𝜕𝑧2
− 𝑢

𝜕𝐶𝑖,𝑔

𝜕𝑧
− 𝛤𝑡𝑆𝑣(1 − 𝜀𝑏)(𝑘𝑎𝑐𝑖 − 𝑘𝑑𝜃𝑖𝑍 − 𝑘𝑑𝜃𝑖,𝑗)                 (4.3) 

𝑺𝒖𝒓𝒇𝒂𝒄𝒆: 
𝜕𝜃𝑖,𝑠

𝜕𝑡
=

𝐷𝑖,𝑠

𝑟2
(𝑟2

𝜕2𝜃𝑖,𝑠

𝜕𝑟2
) + 𝑘𝑎𝑐𝑖 − 𝑘𝑑𝜃𝑖𝑍  − 𝑘𝑑𝜃𝑖,𝑗                                                  (4.4) 

𝑺𝒊𝒕𝒆 𝒃𝒂𝒍𝒂𝒏𝒄𝒆: [∗]𝑂 = [∗] + [𝑖 ∗]                                                                                                 (4.7) 

𝑪𝒂𝒕𝒂𝒍𝒚𝒔𝒕 𝑺𝒕𝒂𝒕𝒆: 
𝑑𝜃𝐿

𝑑𝑡
=

𝐷𝑖,𝐿

𝑟2
(𝑟2

𝜕2𝜃𝑖,𝐿

𝜕𝑟2
) + 𝑓(𝑃𝑖, 𝜃𝑖 , 𝑇𝑖)                                                         (4.9) 

Selective oxidation catalysis involves an oxygen reduction mechanism with 

electron transfer to the catalyst surface. The physical principles governing oxidation 

catalysis sits at the corridor between combustion physics and semiconductor physics. 

To account for electron transfer, a set of physics-based models first presented by Van 

Overstraeten are tenable: 88, 89 

Poisson equation: The Poisson equation is essentially the third Maxwell 

equation and is valid for all materials with a time dependent permittivity. 𝜀 is 

permittivity, 𝑞 is the elementary charge, 𝑝 is the positively charged hole concentration, 

𝑛 is the negatively charged electron concentration and 𝐶 is an additional concentration, 

𝜑 is the electrostatic potential.  

𝑑𝑖𝑣 𝑔𝑟𝑎𝑑 𝜑 =  
𝑞

𝜀
∙ (𝑛 − 𝑝 − 𝐶)                                                                                                     (4.10) 

 

 



 

24 December 20, 2021 

Continuity equations for electrons  

The conduction current density 𝐽  can be split into a component caused by electrons, 

𝐽𝑛
⃗⃗⃗⃗  and a component caused by holes, 𝐽𝑝

⃗⃗⃗⃗ . In 4.11 and 4.12, it is further assumed that 

all charges, except the mobile carrier electrons and holes are time invariant. The 

influence of charged defects, e.g., vacancies, dislocation, deep recombination traps, 

which may change their charge state with time are negligible (
𝜕𝐶

𝜕𝑡
= 0) 

𝑑𝑖𝑣 𝐽𝑛
⃗⃗⃗⃗ − 𝑞 ∙

𝜕𝑛

𝜕𝑡
= 𝑞. 𝑅                                                                                                                     (4.11) 

Continuity equations for holes  

𝑑𝑖𝑣 𝐽𝑝
⃗⃗⃗⃗ + 𝑞 ∙

𝜕𝑝

𝜕𝑡
= 𝑞. 𝑅                                                                                                                     (4.12) 

“R” can be understood as a function describing the net generation or recombination of 

electrons or holes. Positive R means recombination and negative R means generation.  

Current relations for electrons 

𝐽𝑛
⃗⃗⃗⃗ = 𝑞 ∙ 𝑛 ∙ 𝜇𝑛 ∙ 𝐸𝑛

⃗⃗ ⃗⃗⃗ + 𝑞 ∙ D𝑛 ∙ 𝑔𝑟𝑎𝑑 𝑛                                                                                        (4.13) 

Current relations for holes 

𝐽𝑝
⃗⃗⃗⃗ = 𝑞 ∙ 𝑝 ∙ 𝜇𝑝 ∙ 𝐸𝑝

⃗⃗⃗⃗⃗ − 𝑞 ∙ D𝑝 ∙ 𝑔𝑟𝑎𝑑 𝑝                                                                                         (4.14) 

Where 𝜇𝑛 and 𝜇𝑝 are effective carrier mobilities for electrons and holes respectively. 

𝐸𝑛
⃗⃗ ⃗⃗⃗ and 𝐸𝑝

⃗⃗⃗⃗⃗ are the electric field for the drift current components of electron and hole 

current density, respectively. Dn and Dp are the diffusion constants for electrons and 

holes, respectively. 
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By substituting the current relations for electrons and holes into the Poisson 

equation and the continuity equations for electrons and holes, we obtain a system of 

three partial differential equations with the dependent variables φ, n, p. 

Poisson equation 

𝑑𝑖𝑣 𝑔𝑟𝑎𝑑 𝜑 −
𝑞

𝜀
∙ (𝑛 − 𝑝 − 𝐶) = 0                                                                                                 4.10 

Continuity equation for electrons  

𝑑𝑖𝑣 (𝐷𝑛 ∙ 𝑔𝑟𝑎𝑑 𝑛 −  𝜇𝑛 ∙ 𝑛 ∙ 𝑔𝑟𝑎𝑑 𝜑) − 𝑅(𝜑, 𝑛, 𝑝) =
𝜕𝑛

𝜕𝑡
                                                         4.13 

Continuity equation for holes 

𝑑𝑖𝑣 (𝐷𝑝 ∙ 𝑔𝑟𝑎𝑑 𝑝 +  𝜇𝑝 ∙ 𝑝 ∙ 𝑔𝑟𝑎𝑑 𝜑) − 𝑅(𝜑, 𝑛, 𝑝) =
𝜕𝑝

𝜕𝑡
                                                          4.14 

To solve the charge equations using differential equations, “div” and “grad” in the basic 

equations are written explicitly:  

Poisson equation 

𝜆2 ∙ (
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
) − 𝑛 + 𝑝 + 𝐶 = 0                                                                                               4.10 

Continuity equations for electrons  

𝜕

𝜕𝑥
(𝐷𝑛 ∙

𝜕𝑛

𝜕𝑥
− 𝜇𝑛 ∙ 𝑛 ∙

𝜕𝜑

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷𝑛 ∙

𝜕𝑛

𝜕𝑦
− 𝜇𝑛 ∙ 𝑛 ∙

𝜕𝜑

𝜕𝑦
) − 𝑅(𝜑, 𝑛, 𝑝) = 0                          4.13 

Continuity equations for holes 

𝜕

𝜕𝑥
(𝐷𝑝 ∙

𝜕𝑝

𝜕𝑥
− 𝜇𝑝 ∙ 𝑝 ∙

𝜕𝜑

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷𝑝 ∙

𝜕𝑝

𝜕𝑦
− 𝜇𝑝 ∙ 𝑛 ∙

𝜕𝜑

𝜕𝑦
) − 𝑅(𝜑, 𝑛, 𝑝) = 0                           4.14 

Heat flow equation (for non-isothermal reactor conditions) 

𝜌 ∙ 𝑐 ∙
𝜕𝑇

𝜕𝑡
− 𝐻 = 𝑑𝑖𝑣 𝑘(𝑇) ∙ 𝑔𝑟𝑎𝑑 𝑇                                                                                             (4.15) 

Specific to equation 4.15 is the following nomenclature: 𝜌 𝑎𝑛𝑑 𝑐 are the specific mass 

density and specific heat of the material. T is temperature, t is time. K(T) and H denote 

the thermal conductivity and the locally generated heat.  
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Equations 4.3 to 4.15 represent a multiscale model for heterogeneous catalysis which 

considers the evolution of gas species, adsorbed species, catalyst states, and charge 

transport with catalyst bed length and time on stream.  
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5. Conclusions 

In order to account for microscopic and macroscopic factors governing selectivity, a 

multiscale model is presented to extract descriptors and correlations. Active site dynamics 

is considered by introducing open catalytic cycles. Catalyst surface dynamics is accounted 

for by incorporating the homotattic patch model. Semiconductor physics is used in 

incorporating the effects of charge transport. Adspecie accumulation due to surface diffusion 

and reactivity is considered. Catalyst state variation due to the changing local chemical 

potential along the reactor bed length and the temporal and spatial evolution of gaseous 

species are considered. The multiscale models are useful for simulating transient, steady-

state, and deactivation kinetics during heterogeneous catalysis to obtain catalyst activity and 

lifetime, as well as product selectivity descriptors.  
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