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Abstract

In this paper we report rovibrational energy levels, transition frequencies, and intensities com-

puted for H2O-HF using a new ab initio potential energy surface and compare with available

experimental data. We use the rigid monomer approximation. A G4 symmetry-adapted Lanczos al-

gorithm and an uncoupled product basis are employed. The rovibrational levels are computed up to

J = 4. The new analytic 9-D potential is fit to 39771 counterpoise corrected CCSD(T)(F12*)/aug-

cc-pVTZ energies and reduces to the sum of uncoupled H2O and HF potentials in the dissociation

limit. On the new potential better agreement with experiment is obtained by re-assigning the R(1)

transitions of two vibrational states.
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I. INTRODUCTION

Molecular complexes play an important role in the chemistry of planetary atmospheres[1].

In this paper, we report a theoretical study of ro-vibrational energy levels of H2O-HF, which

is of considerable interest. There are many previous publications [2–16]. Excited intermolec-

ular low energy states have been observed and it is therefore possible to test extensive regions

of the potential energy surface (PES). The spectrum is complicated by a low inversion barrier

and tunnelling between two global minima. The barrier height is estimated from experimen-

tal data and a 1-D model to be about 70 cm−1 [7]. The global minima are pyramidal and

have Cs symmetry. The saddle point is planar and has C2v symmmetry.

From the intensities of hot band progressions in the band associated with the HF stretch-

ing vibration in the complex, Thomas et al.[3] obtained the fundamental transition frequen-

cies associated with H-bond deformations: 145 ± 50 cm−1 for the out of plane bending mode

νβ(o); 170 ± 50 cm−1 for the in plane bending mode νβ(i); and at 180 ± 30 cm−1 for inter-

molecular stretching νσ. These results have large uncertainties reflecting the poor quality of

the experimental method. However, two higher (νB(o) = 666 ± 30 cm−1 and νB(i)= 696 ±

30 cm−1) bending vibration frequencies were better determined by analyzing the partially

rotational-resolved low-resolution infrared absorption spectra. The results for these two

bands are still the most accurately determined experimental data and will be compared to

our calculated results. Bevan, Kisiel, and Legon et al. [2, 6, 7, 17] used relative intensities of

the microwave transitions to estimate the frequencies of three intermolecular modes: νβ(o)=

64 ± 10 cm−1; νβ(i) = 157 ± 10 cm−1; and νσ= 176 ± 15 cm−1. The uncertainties in the Kisiel

et al. experimental values are smaller than those of Thomas et al.[3] but still large because

the method they used to obtain the vibrational energies involves approximations. Future

direct measurements of the far-infrared transitions to the vibrational states are necessary to

obtain the accurate vibrational energies. However, the microwave R(1) triplet lines of many

vibrational states are assigned, but some vibrational state assignments are uncertain. These

valuable experimental data provide an opportunity to test the accuracy of theoretical spec-

trum calculated in this work. In this paper, we use the notation of previous papers for the

intermolecular modes[7]. In 2006, Belov et al. [16] published observed rotational frequencies

up to J = 24 for the ground state and one low-lying excited vibrational states obtained from
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a microwave study.

The purpose of this paper is to present a new 9-D H2O-HF potential energy surface

(PES) and calculated ro-vibrational frequencies, with corresponding symmetry labels, and

to compare them with experimental counterparts. To compute the spectrum the monomer

geometries are fixed at vibrationally averaged values and therefore we treat only five vibra-

tions. The intermolecular frequencies are much lower than intramolecular frequencies which

justifies this approximation. We use a Lanczos method and a large product basis.[18, 19]

In a very recent publication, Loreau et al. [20] presented the first global five-dimensional

ab initio H2O-HF potential energy surface. They calculated a few ro-vibrational states and

compared with experiment. We compute more vibrational states and states with J values

as large as 4. The ab initio method they used is the same as ours. The PES of this paper is

fit with an entirely different method. Our PES is 9-D, whereas the Loreau et al. is 5-D. We

use the same coordinates and the same primitive basis functions as Loreau et al.. However

our method differs from theirs in several respects: 1) they use Clebsch-Gordan coefficients

to couple the basis functions and we do not; 2) we use the Lanczos method to solve the

matrix eigenvalue problem without storing a Hamiltonian matrix; 3) we use quadrature for

potential matrix elements and they expand the PES in their basis functions so that they can

calculate matrix elements using exact formula. [21] We use wavefunction plots and symmetry

arguments to assign vibrational levels to the states we compute. We also compute intensities

which is useful for comparing with the microwave spectrum of Kisiel et al. [6–8].

II. COMPUTATIONAL METHOD

We use the kinetic energy operator (KEO) discussed initially by Brocks et al. [22]. It

is written in terms of angular momentum operators defined in monomer- and dimer-fixed

frames. The eight coordinates (α, β, αA, βA, γA, αB, βB and r0), where A=H2O and B=HF,

are illustrated in Figure 1. The z axis of the dimer-fixed (DF) frame is along the inter-

monomer vector. The monomer-fixed (MF) frame for HF is obtained by rotating the DF

frame first about z-axis by αB (leading to the red dashed frame in Fig. 1), and then about

the y-axis by βB. The MF frame attached to H2O is obtained by rotating the DF frame by

three successive angles (αA, βA, γA) following the z-y-z convention [23]. The monomer-fixed

3



z

x'
x

2

z

1

x

z

x

FIG. 1: The dimer-fixed coordinates used to compute rovibrationnal levels of HF-H2O. The

monomer-fixed (MF) frames attached to H2O and HF, respectively, are marked in blue. The

DF frame is marked in red. The MF frame of HF is obtained by rotating the DF frame first about

z-axis by αB (leading to the red dashed frame) and then about the y-axis by βB. The MF frame

of H2O is obtained by rotating the DF frame first about z-axis by αA and then about the y-axis

by βA, and finally about the z-axis by γA.

frame for H2O is a bisector frame with the z-axis along the bisector and the x-axis in the H2O

molecular plane. The z coordinate of O is positive and the x coordinate of H1 is positive.

The dashed OH bond is below the plane containing HF and O.

The basis functions we use are products of parity adapted functions and discrete vari-

able representation (DVR) function [24–26] for the intermonomer distance r0. The par-

ity adapted functions are linear combinations of uncoupled product functions, denoted

|jAkAmA; jB(mB); JKM〉 [18, 19, 27–29], which are√(
2jA + 1

8π2

)(
2jB + 1

4π

)(
2J + 1

4π

)
D∗jAmAkA(αA, βA, γA)D∗jBmB0(αB, βB, 0)D∗JMK(α, β, 0) (1)

and subject to the constraint K ≡ mA +mB. D∗JMK is a Wigner function.

Basis functions with even (odd) values of ka transform like the A (B) irreducible repre-

sentation of the G4 PI group. G4 contains four operations, G4 = {E,E∗} × {(12)}, where

{E,E∗} is the inversion group and (12) corresponds to the exchange of the two identical

hydrogen atoms of the water monomer.
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III. POTENTIAL ENERGY SURFACE

A. Electronic Structure

Tables I and II list the geometric parameters and harmonic wavenumbers of the Cs and

C2v stationary points optimised at the fc-CCSD(T)(F12*) level of theory[30–32] with the

aug-cc-pVXZ basis sets[33, 34] X=D,T,Q and using the frozen core (fc) approximation. We

use augmented basis sets because diffuse functions have been found to be important for an

accurate description of systems containing a fluorine atom and are also recommended for use

with F12 theory.[35, 36] The soft intermolecular potential is evidently sensitive to the basis

set used for the correlation treatment even when using the F12 method.

Table III reports how the energy difference between the Cs and C2v stationary points

on the CCSD(T)(F12*)/aug-cc-pVTZ potential changes when evaluating the energy with

larger basis sets, when applying a counterpoise correction and when adding corrections for

core-valence correlation and higher-body correlation effects. With the F12 method, the basis

set effect is saturated at quadruple-zeta level. Application of a counterpoise correction is

important for an accurate description of the potential energy surface when using the lower-

cost aug-cc-pVTZ basis. The shift in relative energy of the two characteristic points on

the potential surface due to post basis set limit fc-CCSD(T) contributions is small. As is

often observed[37] these effects often cancel each other and in this case the counterpoise

corrected fc-CCSD(T)(F12*)/aug-cc-pVTZ energy difference is within 1 cm−1 of the most

accurate value of 109 cm−1. To facilitate evaluation of the thousands of single point energies

required as data points when fitting a global 9-D potential energy surface, we therefore use

the counterpoise corrected frozen-core CCSD(T)(F12*) method with an aug-cc-pVTZ basis.

B. Data point generation

A data set of a total of 39771 geometries with energies up to 20000 cm−1 above the

global minima was generated for the purpose of fitting the 9-D potential surface. The

geometries were selected by randomly sampling the internal coordinates. Three separate

sampling schemes were used to generate sets of points designed to capture the behaviour of

the potential in the bonded, roaming and dissociated regimes.
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TABLE I: Parameters of Cs and C2v structures and optimised with fc-CCSD(T)(F12*) using aug-

cc-pVXZ basis sets (X=D,T,Q). Bond lengths are in bohr and angles in degrees and dissociation

energies in cm−1. Corresponding parameters for the analytic 9-D surface are also tabulated.

DZ TZ QZ PES

Cs R0 4.9902 4.9990 4.9986 5.0067

R1A 1.8135 1.8128 1.8117 1.8126

R1B 1.7645 1.7641 1.7633 1.7637

θA 105.43 105.44 105.50 105.46

βA 46.33 46.14 46.02 46.38

βB 2.50 2.53 2.51 2.69

De 3122.7 3074.0 3062.9 3005.5

C2v R0 5.0460 5.0514 5.0491 5.0568

R1A 1.8104 1.8096 1.8092 1.8096

R1B 1.7596 1.7595 1.7589 1.7593

θA 106.45 106.42 106.45 106.43

The first set, accounting for approximately half of the geometries, was constructed to

sample the bound region of the potential, including the C2v and Cs stationary points. First,

the ranges of internal coordinates within the 20000 cm−1 target window were determined

through 1-D scans of the potential. Then, displacements of internal coordinates were gen-

erated by randomly sampling from a distribution within that range, weighted towards low

energies, using the same approach as in Ref. [38].

The second set, accounting for approximately a quarter of the data points, was constructed

to ensure the potential dissociates into the sum of the potentials for H2O and HF. Here the

four internal coordinates of the fragments were displaced in a manner analogous to that for

the first set, but where the reference structure was the equilibrium geometry of the fragments

at 20 Å separation.

The third set was constructed to sample the roaming region of the potential. H2O and HF

geometries with small random displacements of their internal coordinates at the C2v equilib-
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TABLE II: Harmonic wavenumbers at Cs and C2v stationary points on fc-CCSD(T)(F12*)/aug-cc-

pVXZ (X=D,T,Q) potential energy surfaces and the analytic 9-D potential.

Mode Sym. DZ TZ QZ PES

Cs 1 a′ 278 240 197 219

2 a′′ 238 226 234 237

3 a′ 336 265 248 263

4 a′ 721 707 694 695

5 a′′ 844 825 824 823

6 a′ 1639 1653 1645 1650

7 a′ 3823 3786 3785 3796

8 a′ 3846 3837 3836 3840

9 a′′ 3940 3938 3944 3940

C2v 1 b2 207i 215i 203i 204i

2 b1 205 205 205 201

3 a1 232 229 230 228

4 b2 650 620 620 620

5 b1 787 773 770 763

6 a1 1646 1648 1647 1647

7 a1 3850 3845 3844 3851

8 a1 3861 3856 3854 3858

9 b1 3965 3963 3961 3963

rium were randomly oriented with respect to each other with intermolecular OH distances

in the range 1.5–3.5 Å.

C. 9-D analytic potential energy fit

The strategy we followed for obtaining an analytic 9-D potential energy surface that

closely reproduces the ab initio data is to first construct a simple model that captures the
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TABLE III: Single point energy differences in cm−1 at the fc-CCSD(T)(F12*)/aug-cc-pVTZ Cs

and C2v stationary points at different basis sets, with counter-poise correction (CC), and with

corrections for core-valence (CV) and high order correlation effects T, (Q).

Method Basis Energy

fc-CCSD(T)(F12*) aug-cc-pVTZ 126.6

fc-CCSD(T)(F12*) aug-cc-pVQZ 113.9

fc-CCSD(T)(F12*) aug-cc-pV5Z 113.3

fc-CCSD(T)(F12*) aug-cc-pwCVQZ 113.7

CC fc-CCSD(T)(F12*) aug-cc-pVTZ 108.6

CC fc-CCSD(T)(F12*) aug-cc-pVQZ 112.0

CC fc-CCSD(T)(F12*) aug-cc-pV5Z 112.7

CC fc-CCSD(T)(F12*) aug-cc-pV5Z 112.7

+ CV [CCSD(T)(F12*)] aug-cc-pwCVQZ 106.9

+ T-(T) [fc-CCSDT] cc-pVTZ 106.5

+ (Q) [fc-CCSDT(Q)] cc-pVTZ 109.3

broad features of the potential, and then to fit a correction surface to recover the finer details.

A similar approach has been found to be effective in fitting compact and accurate analytic

potentials for malonaldehye,[38] formic acid,[39, 40] and metaphosphosous acid.[41]

The form of the zeroth-order model potential was chosen to be

V0(r) =C + V MO
1 (rOH1) + V MO

1 (rOH2) + V MO
2 (rOH3) + V MO

3 (rFH3)

+ V Q
1 (rOH3) + V Q

2 (rH1H3) + V Q
2 (rH2H3) + V Q

3 (rOF ) + V Q
4 (rFH1) + V Q

4 (rFH2) (2)

with

V MO(r) = D2(1− exp(−α(r − re)))2 (3)

V Q(r) = q1q2/r + A2 exp(γ(rx − r)) (4)

The atom labelling is such that hydrogens 1 and 2 are bonded to the O atom and hydrogen

3 is bonded to the F atom and rOH1 is the distance between the oxygen and hydrogen 1,
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and so on. The potential is manifestly symmetric with respect to exchange of the H atoms

of the water moiety. The constant C, the three sets of Morse parameters D, α, re and four

sets of electrostatic and exchange repulsion parameters q1, q2, A, γ and rx were fit to the

data points. Steepest descent optimisation of the root mean squared deviations (RMSD)

was applied starting from parameters fit to ab-initio data along 1-D cuts of the potential.

Following earlier work,[38, 39] the correction surface was chosen to be a sum of multi-

variate Gaussians of atom-atom separations, with centres at grid points distributed over

the coordinate ranges relevant to the 0–20000 cm−1 energy window. The form of the final

potential is

V (r) = V0(r) +
∑
i

∑
µi

dµi (e−β
µ
i (ri−cµi )2 − sµi )

+
∑
i>j

∑
νij

dνij (e−β
ν
i (ri−cνi )2−βνj (rj−cνj )2 − sνij)

+ · · · (5)

with up to 4-body Gaussians included. The index µ labels a Gaussian centred at cµi with

width parameter βµi . The corresponding shift parameter sµi is fixed by imposing that func-

tions are standardised against the data for the fitting procedure. The non-linear parameters

were chosen such that the overall basis was composed of three sets of 1-D, 2-D, 3-D and

4-D grids of functions: a widely spaced grid of diffuse Gaussians to capture slowly varying

features, a medium grid, and a finer grid of compact Gaussians to capture the finer features

of the correction surface. The coefficients dµi of the resulting distributed Gaussian basis were

fit using the LASSO (least absolute shrinkage and selection operator) method,[42] which

selects only those functions from the set that have the largest effect on reducing the least

squares deviation from the ab initio data. Data was fit using weights wi = 100/(Ei + 100) to

ensure that the cumulative RMSD grows approximately linearly as a function of the energy

Ei above the reference, in cm−1. The LASSO optimisation was stopped after the RMSD

dropped below 0.15% over the 10000 cm−1 range. The quality of the fit for the resulting

potential is displayed in Fig 2 and the structures of the C2v and Cs stationary points on the

analytic fit are listed in Table I. The corresponding harmonic wavenumbers of the potential

are listed in Table II.
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FIG. 2: a) Cumulative root mean squared deviation of the analytic potential from the ab initio

data. b) Scatter plot of errors. c) Scatter plot of percentage errors. Blue points are from the

training set and red points are from the control set.

IV. PROPERTIES OF THE POTENTIAL ENERGY SURFACE

X

(180, 48, 90; 0, 3)

2

1

(0, 48, 270; 180, 3)
2

1

(180, 48, 270; 0, 3)

1

2

Y Y'

FIG. 3: The tunnelling path from X to Y. Y′ is obtained from Y by a rotation of the whole molecule,

Rπ(z). The dashed OH bond is behind the plane containing HF and O. The red dashed line connects

the centers of mass of the monomers. In brackets are the coordinates (αA, βA, γA, αB, βB).

The 9-D PES is converted to a 5-D PES, which we use in our calculations, by evaluating

it at fixed values of the intramolecular coordinates. The fixed values for H2O and HF were

computed from ab initio PESs. For the water molecule, we used the ground state values

〈r〉(O-H) = 1.8437015 Bohr and θ (H–O–H) = 104.430◦, given in Ref. [43] and in Table

2 of Ref. [44]. For HF, we use the ground state value 〈r〉 = r(H-F)=1.76286 Bohr (from

Table IV. of Ref. [45]). The stationary points of the H2O-HF are reported in Table IV. The

energy at the minimum of the 5-D PES is 109.955 cm−1 and the saddle point is 252.036
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TABLE IV: H2O-HF stationary points on the 5-D PES. Distances are in bohr and angles are in

degrees. Monomer A is H2O and B is HF. The coordinates of H2O are bond coordinates. V values

are with respect to the minimum of the 9-D PES. On our 5-D PES De = 3072.55 cm−1.

Minimum Saddle point

(αA, βA, γA) (180, 48.672, 90) (0, 0, 0)

(αB, βB) (0, 2.849) (0, 0)

R0 5.005 5.067

(R1A, R2A, θA) (1.844, 1.844, 104.43) (1.844, 1.844, 104.43)

R1B 1.76286 1.76286

V(cm−1) 109.955 252.036

cm−1, corresponding to a barrier height of 142.081 cm−1. The geometry of one of the global

minima (Cs symmetry) is shown in Fig. 1 and also in Fig. 3 (as X on the left). At the

global minimum, the hydrogen bond is not linear : if the O atom points downwards, H of

HF points slightly downwards. X, on the left in figure 3, and Y, in the middle of figure 3,

are two equivalent versions; Y = E∗X, where

E∗f(αA, βA, γA;αB, βB;α, β) = f(π − αA, βA, 2π − γA; π − αB, βB; π + α, π − β) . (6)

There is a tunnelling path between X and Y. Along the path H2O wags, which changes βA,

and the H of HF moves upward, changing βB. Y and Y’ are the same point on the PES.

A rotation of π about r0 links Y to Y′. (12) X = Y’. Because Y and Y’ are obtained by

applying E∗ and (12) to X, the symmetry of the lowest upper tunnelling level must be B−

where B indicates that a state is anti-symmetric with respect to the permutation of the two

H in the water molecule and − denotes the parity. More rigorously, to obtain irrep labels

of the states split by tunnelling, one follows Dyke [46] and decomposes A′, the Cs irrep of

the ground state, into the irreps of G4. This yields A′(Cs) = A+ +B−. The tunnelling path

is basically the same as the νβ(o)(B
−) normal coordinate. [7]. It is similar to the acceptor

switch tunneling path of (H2O)2 (see Fig. 3 of [47]).
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V. CALCULATIONAL DETAILS

The computational procedure is similar to that used in many papers. [18, 19, 19, 48–

50] Eigenvalues and eigenvectors are computed with the Lanczos algorithm and about 4000

iterations. Quadrature is used for potential matrix elements and matrix-vector products are

evaluated by doing sums sequentially. We have done calculations with different basis sizes

to test convergence. The final bend basis set has jmax = 15 for both H2O and HF and

the potential integrals are computed with 16 Gauss-Legendre quadrature points for βA and

βB coordinates and 32 evenly spaced quadrature points in [0,2π] range for γA and αA − αB
coordinates. For the stretch basis, we use Nr0=120 sine DVR functions in the range [4,11]

bohr. By comparing with results obtained from smaller bases, it was established that levels

we report are converged to 0.008 cm−1.

The rotational constants required in the KEO are ground vibrational state experimental

values: H2O (A = 27.8806 cm−1, B = 9.2778 cm−1, and C = 14.5216 cm−1)[51] and HF (B

= 20.5567 cm−1)[52]. The atomic masses used are: H (1.007 825 u), 16O (15.994 915 u), and

19F (18.9984 u) [53].

We use the NNR code, where NNR stands for nonlinear-nonlinear-rigid monomers.[54]

To evaluate the PES at our quadrature points we transform from the Euler angles we use to

Cartesian coordinates in the DF frame, i.e. we need XDF = XDF (αA − αB, βA, γA, βB, r0)

for each atom i. We use

XDF
Ai = St(αA, βA, γA)xMF

Ai ,

XDF
Bi = St(αB, βB, 0)xMF

Bi + (0, 0, r0)t ,
(7)

where S is the direction cosine matrix defined in Ref. [23]. The elements of xMF
A/Bi are the

Cartesian coordinates of atom i in the MF frame.

A. Intensity calculations

Computing intensities enables us to confirm assignments of Kisiel et al. [7, 8] and identify

new bands, which should be observable in microwave spectra. Intensities are calculated from
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FIG. 4: Definition of the extended angles β̃A, β̃B used for visualizing wavefunctions of H2O-HF.

eigenvectors. The line strength is defined as

Si′i = 3

∣∣∣∣∣∑
M,M ′

〈Ψi′ |µSF
0 |Ψi〉

∣∣∣∣∣
2

, (8)

where µSF
0 = µSF

Z is the space-fixed Z component of the dipole moment operator and Ψi is

a rovibrational wavefunction [55]. Because it is easiest to calculate the integral when Ψi is

a sum of primitive basis functions, Ψi, computed in the parity-adapted basis, is re-written

as a linear combination of primitive basis functions in Eq. 1. To compute line strengths one

then needs matrix elements [23, 55],

〈j′Ak′Am′A; j′Bm
′
B; J ′K ′M ′|µSF

0 |jAkAmA; jBmB; JKM〉

= µH2Oδj′B ,jBδm′B ,mB

1∑
σ=−1

(−1)k
′
A+m′A [j′A][jA]

(
j′A
−k′A

1

0

jA
kA

)(
j′A
−m′A

1

σ

jA
mA

)
× (−1)K

′+M ′ [J ′][J ]

(
J ′

−K ′
1

σ

J

K

)(
J ′

−M ′
1

0

J

M

)
+ µHFδj′A,jAδk′A,kAδm′A,mA

1∑
σ=−1

(−1)m
′
B [j′B][jB]

(
j′B
0

1

0

jB
0

)(
j′B
−m′B

1

σ

jB
mB

)
× (−1)K

′+M ′ [J ′][J ]

(
J ′

−K ′
1

σ

J

K

)(
J ′

−M ′
1

0

J

M

)
, (9)
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TABLE V: A+ and B− vibrational levels (in cm−1) computed using the basis defined by j1x =

j2x = 15, nr0 = 120, and r0 ∈ [4, 11] bohr. The vibrational levels are relative to the zero-point

energy (ZPE) at 1080.166 cm−1.

Assignment A+ Assignment B−

GS 0.000 νβ(o) 81.862

νσ 195.997 νσ + νβ(o) 281.782

2νβ(o) 238.228 3νβ(o) 394.781

2νσ 381.931 2νσ + νβ(o) 470.856

2νβ(i) 385.970 νβ(o) + 2νβ(i) 511.467

νσ + 2νβ(o) 436.626 νB(o) 577.164

3νσ 558.902 νσ + 3νβ(o) 590.151

4νβ(o) 563.212 3νσ + νβ(o) 649.258

νσ + 2νβ(i) 575.441 νσ + νβ(o) + 2νβ(i) 703.200

2νβ(o) + 2νσ 623.366 5νβ(o) 733.010

2νβ(o) + 2νβ(i) 675.914 νσ + νB(o) 757.782

νβ(o) + νB(o) 692.101 2νσ + 3νβ(o) 774.294

4νσ 725.752 4νσ + νβ(o) 817.293

4νβ(i) 746.954 3νβ(o) + 2νβ(i) 838.722

2νσ + 2νβ(i) 754.262 · · ·

νσ + 4νβ(o) 755.890 2νσ + νβ(o) + 2νβ(i) 883.646

3νσ + 2νβ(o) 799.049 νσ + 5νβ(o) 916.993

νσ + 2νβ(o) + 2νβ(i) 860.257 νβ(o) + 4νβ(i) 935.002

νσ + νβ(o) + νB(o) 873.641 3νσ + 3νβ(o) 947.107

5νσ 881.724 5νσ + νβ(o) 975.623

6νβ(o) 902.939 · · ·

3νσ + 2νβ(i) 920.450 νσ + 3νβ(o) + 2νβ(i) 1021.792

νσ + 4νβ(i) 933.625 3νσ + νβ(o) + 2νβ(i) 1053.281
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where [J ] =
√

2J + 1. Finally, when computing the line strength, the summation over M

and M ′ in Eq. (8) can be factored out and evaluated explicitly [56],∑
M,M ′

(
J ′

−M ′
1

0

J

M

)2

=
1

3
. (10)

The NNR code computes 〈µ〉 = 〈Ψi′ |µSF
0 |Ψi〉/

(
J ′

−M ′
1
0

J
M

)
/(−1)M

′
, which is independent

of M and M ′. The line strength is simply Si′i = |〈µ〉|2 due to Eq. (10). To determine

intensities from the line strengths one must multiply by the appropriate Boltzmann factor

and also by nuclear statistical weights. The weights are important as they enhance the

intensities of transitions from states with larger g values: gA+/A− = 1 and gB+/B− = 3. We

consider that the dipole moment of the complex is the sum of the dipole moments of H2O and

of HF and use vibrationally averaged permanent dipole values: for µH2O = 0.7277 ea0[57]

and for µHF = 0.7083 ea0[58].
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FIG. 5: Wavefunction cut (β̃A, β̃B) for the A+ state at 0.0 cm−1.

VI. RESULTS AND DISCUSSION

A. Assignment of vibrational states

Assigned vibrational energy levels are presented in tables V and VI. This is the first time

that many vibrational states have been computed from a 5-D intermolecular Hamiltonian.
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The most important tool we use to assign levels is wavefunction plots. The coordinates not

shown in the wavefunction plots are fixed at equilibrium values.
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FIG. 6: Wavefunction cut (β̃A, β̃B) plots for the νβ(o)(B
−) state (top left) and its overtones

2νβ(o)(A
+) (top right), 3νβ(o)(B

−) (bottom left), 4νβ(o)(A
+) (bottom right).
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FIG. 7: Wavefunction cut (αA − αB, γA) plots for the νβ(i) (B+) state whose energy is 196.131

cm−1 (on the left) and the νB(i) state at 679.791 cm−1 (on the right).

We plot in extended coordinates β̃A, β̃B, defined in the range [−π, π], because they make
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it possible to more easily visualize wavefunctions. Similar coordinates were used for H2O-

N2 dimer in Ref. [18]. To plot as a function of β̃A, β̃B, we need relationships between the

extended coordinates in all four quadrants and the dynamical coordinates βA, βB. They are

illustrated in Figure 4.

Figure 5 displays the ground state wavefunction in extended β̃k coordinates. The max-

imum of the wavefunction is at the top of a barrier (β̃A = 0◦) and the wavefunction has

significant amplitude in both wells.

Fig. 6 shows states with excitation in the inversion coordinate which is νβ(o). The νβ(o)

state (top left) has two lobes (the negative lobe has dashed contours) that are well separated

along β̃A. βA is essentially the tunnelling coordinate and we expect one node because νβ(o)

is a B state and anti-symmetric with respect to H-H exchange in the water molecule. Fig. 6

is similar to Fig. 8 of Loreau et al.’s paper [20] where polyspherical angles are used.
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FIG. 8: Wavefunction cut plots for the νB(o) (B−) state at 577.164 cm−1.

Fig. 7 shows wavefunction plots for the νβ(i) and νB(i) in-plane bend states. Both these

fundamentals have B+ symmetry. The first is a bending mode in which atoms at the two

ends of the hydrogen bond move in the same direction and the second is a bending mode in

which the same two atoms move in opposite directions. The 2D plots show that (αA−αB, γA)

are coupled. The νβ(i) state seems to correspond to motion that is slightly more along the

αA − αB coordinate; the νB(i) states seems to correspond to motion that is slightly more

along the γA coordinate. The νB(o) state in Fig. 8 is of B− symmetry and has a clear node

in βB. Fig. 9 shows the first excited state with A+ symmetry. It has stretch character and

is labelled νσ.
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TABLE VI: B+ and A− vibrational levels (in cm−1) computed using the basis defined by j1x =

j2x = 15, nr0 = 120, and r0 ∈ [4, 11] bohr. The vibrational levels are relative to the zero-point

energy (ZPE) at 1080.166 cm−1.

Assignment B+ Assignment A−

νβ(i) 196.131 νβ(o) + νβ(i) 299.073

νσ + νβ(i) 389.844 νβ(o) + νσ + νβ(i) 495.276

2νβ(o) + νβ(i) 459.312 3νβ(o) + νβ(i) 622.011

3νβ(i) 566.501 νβ(o) + 2νσ + νβ(i) 680.180

2νσ + νβ(i) 574.142 νβ(o) + 3νβ(i) 721.462

2νβ(o) + νσ + νβ(i) 652.936 νβ(i) + νB(o) 743.984

νB(i) 679.791 νβ(o) + νB(i) 794.478

3νσ + νβ(i) 743.350 3νβ(o) + νβ(i) + νσ 811.908

νσ + 3νβ(i) 755.495 νβ(o) + 3νσ + νβ(i) 854.195

4νβ(o) + νβ(i) 788.486 νβ(o) + νσ + 3νβ(i) 908.755

νσ + νB(i) 854.768 4νσ + νβ(o) + νβ(i) 1018.061

2νβ(o) + 3νβ(i) 882.465

4νσ + νβ(i) 905.960

5νβ(i) 940.476

νσ + 4νβ(o) + νβ(i) 973.043

· · ·

νσ + 2νβ(o) + 3νβ(i) 1054.489

5νσ + νβ(i) 1057.301

B. Computed rovibrational levels and their J(Ka,Kc) assignments

We computed ro-vibrational levels for J values up to J = 4 and the rotational transi-

tions are reported in Tables 1 and 2 of the supplementary material. Both tables include

comparisons with experimental values [12, 16] for ground, νβo, νβi and νσ states. Many of

our ro-vibrational levels can be assigned to particular vibrational states. The levels are la-
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FIG. 9: Wavefunction cut (β̃A, r0) for the A+ state at 195.998 cm−1.

belled by K, which is the quantum number for the projection of the angular momentum on

the inter-monomer. Assigning K labels is straightforward because our basis functions are

labelled by K. K = Ka in standard spectroscopic notation. H2O-HF is a nearly prolate

asymmetric rotor and we can therefore assign Kc values by assuming the standard prolate

energy order.

In the following three subsections, we focus attention on the three J = 2← 1 transitions

that occur within each of the vibrational states. These R(1) transitions are 212 ← 111, 211 ←

110 and 202 ← 101, forming R(1) triplets in which, in the absence of perturbations, the

K = 0 line is in the middle. Kisiel et al. observe and assign R(1) transitions to many

vibrational states using Stark effect patterns, relative intensity measurements, and nuclear

spin statistical weights. We organize the observed R(1) triple lines into three groups (See

Table IX). The first group consists of the R(1) lines of the ground state and νβo, and νβi

states. The second group consists of the R(1) lines of the 2νβo, 2νβi, νβo + νβi states. They

are transitions in vibrational states with two bend excitations and are in the same region

as those the first group, but about an order of magnitude weaker. In particular, we discuss

a possible reassignment of Kisiel et al.’s satellite A and B bands in this region. The third

group consists of the R(1) lines of vibrational states involving νσ. They are red-shifted from
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the region of the first and second groups. Wavefunction plots (for J = 0) and computed

intensities (for J > 0) are used to make the vibrational assignments. We compare our R(1)

triplet assignments with the experimental assignments of Kisiel et al.. Tables 3 and 4 of the

supplementary material give J ≤ 4 rotational levels for different vibrational states. Tables

VII and VIII give rotational transition frequencies for states up to J = 4, with corresponding

intensities, for the ground, νβo, νβi, νσ and 2νβo, 2νβi, 2νσ states.

TABLE VII: Computed intensities at T=230 K for rotational transitions up to J = 4, in the ground,

νβo, νβi. and νσ states. All rotational frequencies are given in cm−1 and intensities in (e a0)2.

GS νβo νβi νσ

Transition Freq. (cm−1) Intensity Freq. (cm−1) Intensity Freq. (cm−1) Intensity Freq. (cm−1) Intensity

1-01 < 0-00 0.4723 0.0023 0.4761 0.0012 0.4738 0.0007 0.4610 0.0006

2-02 < 1-01 0.9445 0.0182 0.9522 0.0277 0.9475 0.0155 0.9219 0.0050

2-12 < 1-11 0.9402 0.0372 0.9488 0.0065 0.9419 0.0034 0.9187 0.0102

2-11 < 1-10 0.9482 0.0378 0.9549 0.0065 0.9525 0.0035 0.9260 0.0104

3-03 < 2-02 1.4167 0.0610 1.4282 0.0926 1.4212 0.0518 1.3827 0.0167

3-13 < 2-12 1.4102 0.1477 1.4231 0.0256 1.4127 0.0136 1.3779 0.0405

3-12 < 2-11 1.4222 0.1502 1.4323 0.0259 1.4286 0.0139 1.3889 0.0413

3-22 < 2-21 1.4148 0.0238 1.4266 0.0396 1.4195 0.0187 1.3872 0.0065

3-21 < 2-20 1.4148 0.0238 1.4266 0.0396 1.4195 0.0187 1.3872 0.0065

4-04 < 3-03 1.8887 0.1431 1.9041 0.2178 1.8948 0.1216 1.8435 0.0392

4-14 < 3-13 1.8801 0.3654 1.8973 0.0633 1.8835 0.0337 1.8370 0.1002

4-13 < 3-12 1.8961 0.3717 1.9095 0.0641 1.9047 0.0344 1.8517 0.1018

4-23 < 3-22 1.8863 0.0755 1.9020 0.1254 1.8926 0.0593 1.8494 0.0206

4-22 < 3-21 1.8863 0.0755 1.9020 0.1254 1.8926 0.0593 1.8494 0.0206

4-32 < 3-31 1.8832 0.0849 1.8986 0.0170 1.8875 0.0069 1.8725 0.0231

4-31 < 3-30 1.8832 0.0849 1.8986 0.0170 1.8875 0.0069 1.8725 0.0231

C. Rotational transition frequencies in the ground state, νβo, νβi

There are extensive experimental results for the ground, νβo, and νβi states. The calcu-

lated (full lines) and observed (dashed lines) frequency positions for J = 2 ← 1 transitions

are given in Tab. IX and schematically illustrated in Fig. 10 by a stick spectrum computed

using intensities at T=230 K and including nuclear statistical spin weights. For all these

bands, we observe a strong R(1) triplet. The K = 0 transition is in the middle, as would be

the case for a rigid prolate top. The line strengths for K = 1 transitions are nearly equal.

The difference between theoretical and experimental frequencies comes from two sources.
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TABLE VIII: Computed intensities at T=230 K for rotational transitions up to J = 4, in the

2νβo, 2νβi and 2νσ vibrational states. All rotational frequencies are given in cm−1 and intensities

in (e a0)2.

2νβo 2νβi 2νσ

Transition Freq. (cm−1) Intensity Freq. (cm−1) Intensity Freq. (cm−1) Intensity

1-01 < 0-00 0.4741 0.0004 0.4683 0.0002 0.4548 0.0002

2-02 < 1-01 0.9482 0.0033 0.9368 0.0015 0.9093 0.0015

2-12 < 1-11 0.9447 0.0070 0.9433 0.0029 0.8944 0.0030

2-11 < 1-10 0.9492 0.0070 0.9552 0.0029 0.9016 0.0030

3-03 < 2-02 1.4223 0.0109 1.4057 0.0049 1.3633 0.0050

3-13 < 2-12 1.4170 0.0276 1.4149 0.0114 1.3416 0.0119

3-12 < 2-11 1.4237 0.0279 1.4328 0.0117 1.3525 0.0121

3-22 < 2-21 1.4149 0.0050 1.4253 0.0016 1.3471 0.0019

3-21 < 2-20 1.4149 0.0050 1.4253 0.0016 1.3471 0.0019

4-04 < 3-03 1.8963 0.0256 1.8750 0.0116 1.8167 0.0117

4-14 < 3-13 1.8893 0.0683 1.8864 0.0282 1.7886 0.0295

4-13 < 3-12 1.8981 0.0689 1.9102 0.0289 1.9025 0.0248

4-23 < 3-22 1.8864 0.0158 1.9000 0.0051 1.7959 0.0061

4-22 < 3-21 1.8864 0.0158 1.9000 0.0051 1.7959 0.0061

4-32 < 3-31 1.8592 0.0209 1.8097 0.0068 1.8964 0.0114

4-31 < 3-30 1.8592 0.0209 1.8097 0.0068 1.8964 0.0114

There is a rigid-rotor contribution; even if the molecule is rigid, theoretical and experimental

frequencies will differ if the theoretical geometry is not perfect. There is a ro-vibrational

contribution due to coupling between vibration and rotation. The rigid-rotor contribution is

clearly the same for all vibrational states. In the absence of resonances, the similarity of the

ro-vibrational contributions for two vibrational states will depend on the similarity of the

vibrations. The ro-vibrational contributions for two vibrational states will be more different

if one of the two states is more excited. The difference between theory and experiment for all

three of the R(1) transitions for the ground state is 0.016 cm−1 (see Obs-Calc in Tab. IX).

The difference between theory and experiment for the three R(1) transitions for νβo and νβi

are also close to 0.016 cm−1 (see Obs-Calc in Tab. IX). This means that the relative position

of the ground state, νβo, νβi are accurately predicted by our calculation, giving us confidence

that the relative position of the weaker vibrational bands would also be accurate. In Fig.

10, the computed frequencies for all three vibrational states are shifted by 0.016 cm−1.

Resonances might cause the theoretical and experimental frequencies to differ by an

amount different from 0.016 cm−1. Belov et al.[16] fit the spectrum by including a Coriolis
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FIG. 10: J = 2 ← 1 transitions of H2O-HF in the ground, νβo, and νβ(i) states. All calculated

positions are shifted by an average shift of 0.016 cm−1 calculated from R(1) GS transitions.

interaction between the ground and νβo states and revealed the existence of an important

resonance. As discussed by Cazzoli et al.[12] and later by Belov et al.[16], we observe that the

Ka = 3 level of the ground state (with energy of 125.905 cm−1) and the Ka = 2 level of the

νβo (with energy of 129.620 cm−1) for the rotational state J = 4 have very similar energies.

Belov et al. assign 423 ← 322 and 422 ← 321 to transitions at 57.9822 and 57.9322 GHz for

νβo, but this is probably a misprint, both should be 57.9822 GHz. Cazzoli et al. assigned

both 423 ← 322 and 422 ← 321 to transitions at 58.0317 GHz. Our calculations slightly favor

Belov et al’s assignment (see Obs.-Calc. of Table 1 of the supplementary material).

D. Assignment and R(1) rotational transition frequencies in the 2νβo, 2νβi, νβo+νβi,

and 3νβo states

Much weaker R(1) transitions, in the same region as those in Figure 10, are shown in

Figure 11. Kisiel et al. assign their A and B satellites to 2νβo and νβo+νβi, respectively.[7, 8]

Their 2νβo R(1) frequencies are higher than their νβo+νβi R(1) frequencies. In our calculated

spectrum the order is reversed. On the other hand, the order of the calculated and observed
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νβo and νβi lines is the same. This suggests that the PES and the calculate are accurate and

that Kisiel et al.’s assignment might be wrong. We suggest that it is possible that Kisiel

et al.’s assignment of the A and B satellites might be interchanged: satellite A could be

νβo + νβi and satellite B could be 2νβo. Interchanging the experimental assignments also

improves the agreement between the experimental and our calculated vibrational energies.

After exchanging the assignments the experimental vibrational energies of νβo+νβi and 2νβo

become 267±35 and 228±15 cm−1. Our calculated values are 299.1 and 238.2 cm−1.

Kisiel et al. prefer their assignment of satellites A and B for three reasons. The first

reason is based on observed dipole moments. Kisiel et al. observe that the dipole moments

of νβi and the ground state are very similar, indicating that exciting νβi has little effect on the

dipole moment. On the basis of this observation, they expect the dipole moment of νβo + νβi

to be close to the dipole moment of νβo. However, because νβo is the tunnelling mode, it is

risky to assume that because the dipole moment of νβo is significantly less than the dipole

moment of the ground state that the dipole moment of 2νβo will be significantly less than

the dipole moment of νβo. The second reason is based on the idea that for the satellite

that is 2νβo a ratio of differences of rotational constants should be similar for the B and C

rotational constants. In fact, ratios calculated from the B and C rotational constants we

compute (see section VI F and Table IX ) are similar for neither νβo + νβi nor 2νβo. Kisiel et

al.’s third reason is that if they assume that Satellite A is 2νβo, they find that their observed

ratio of rotational constant differences is consistent with the 1-D double well potential that

they extract from their νβo transition frequencies. This 1-D model might not be reliable.

Also in figure 11, for 2νβi the K = 0 transition is not between the two K = 1 transitions,

as it would be for a rigid rotor; this is a sure sign that perturbations are important. Ac-

cording to our calculations, (grey lines in Fig. 11) there are strong K=0 transitions in the

νβo + 2νβi, 2νβo + νβi and 3νβi states in same spectral region. There are no corresponding ex-

perimental values. Kisiel et al. assigned a weak line they called satellite C (p.164 of Kisiel’s

thesis [17]) to a B state with K = 0 and three quanta. We also tentatively assign it as 3νβo.

The 3νβi K = 0 is close, but it is a A symmetry line.
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E. R(1) transition frequencies for vibrational states involving νσ

Rotational transitions within all vibrational states with a contribution from νσ are red-

shifted with respect to the ground state transition frequencies (see Fig. 12). In our calculated

spectrum, we have assigned R(1) triplets for νσ, νβo+νσ, νβi+νσ, 2νσ, νσ+2νβo and 2νσ+2νβo

states. The experimental positions of the 3 R(1) lines are known only for νσ and for other

vibrational states some of the R(1) lines were not observed. The shifted spectrum agrees

well with the available experimental rotational transitions. In our calculation, the K = 0

νβi+νσ transition frequency is smaller than the two K = 1 frequencies. This is an indication

of important perturbations. Kisiel suggests that the νσ R(1) triplet is perturbed due to

possible anharmonic vibrations. We confirm that the K = 0 transition is not exactly in the

middle of the two K = 1 transitions, which again indicates a perturbation.

F. A, B, C rotational constants for vibrational states derived from J = 1 levels

For each vibrational state, we calculate rotational constants from the three J = 1 levels

assuming the J = 1 levels are solely determined by the rotational constants. The rotational

constants encode information about the rotational levels in a compact form. The derived

rotational constants are given in column 2 of Table IX. Unlike rotational constants B and

C, there are no experimental data for rotational constant A. We find that the variation of

the A rotational constant with respect to vibration is large. We find that, compared to the

ground state, A decreases for νβ(o), A increases for νβ(i), A does not change much for νσ.

The variations can be qualitative explained. Rotational constant A depends on how far the

hydrogen atoms are from the a-axis (approximately aligned with the inter-monomer axis).

For νβ(o), the ground state wavefunction (see Fig. 5) peaks at the saddle point of the double

well and the νβ(o) vibration takes all three H atoms away from the a-axis and hence causes A

to decrease. Since νσ is a stretch vibration, it does change A by much. For νβ(i), it is harder

to explain the increased A constant. From the wavefunction plot (Figure 7) it is apparent

that the νβ(i) vibration involves changing γA. It is somewhat similar to the acceptor twist

vibration of H2O dimer which also an increases the A constant[59]. The νβ(i) vibration also

involves changes in βA and αA − αB (the latter is shown in Fig. 7). Changing them from

their saddle point values decreases the distance of one H atom of H2O from the a-axis but
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increases the distance of the other H atom. On average, it must move the H atoms closer to

the axis.

G. Vibrational energies

There are large differences between our calculated vibrational energies and those of Kisiel

et al.[7] and Legon et al.[9]. The experimental vibrational energies are obtained from relative

intensity measurements and may have significant error. Kisiel et al.’s 2νβ(o) vibrational state

is at 267 ± 35 cm−1, and their νβo +νβi at 228 ± 15 cm−1. Our calculated energies are 238.2

cm−1 for 2νβo and 299.1 cm−1 for νβo+νβi. However in section VI D, we suggest interchanging

the experimental assignments of these bands. With this interchange, the order of these two

bands is the same in both theory and experiment. For the 2νβi vibrational state, Legon et

al.[9] give the energy of 330 ± 30 cm−1 which should be compared with our theoretical value

of 386.0 cm−1. Clearly, the differences for the 2νβo , 2νβi and νβ(o) + νβ(i) states are large.

For the two highest bending fundamentals νB(o) = 666 ± 30 cm−1 and νB(i)= 696 ± 30

cm−1 determined by Thomas et al.[3], our calculated values are 577.2 and 679.8 cm−1. Our

calculated νB(o) frequency is not within the uncertainty limits of the experimental result, but

our calculated νB(i) frequency is in good agreement with the experimental result.

H. Comparison with Loreau’s 5D PES [20]

While this study was being completed, Loreau et al. published a 5-D PES and calculated

some ro-vibrational levels. [20] We have done calculations on their 5-D PES. Loreau et al. use

standard polyspherical coordinates. For H2O, we use the same monomer geometry (averaged

over the ground-state vibrational wavefunction) as Loreau et al., but for rHF our bond length

is different. Loreau used 〈r−2〉−1/2 = 1.74952 bohr, derived from the experimental rotational

constant [60] whereas our rHF is 〈r〉 = 1.76286 bohr (see Table IV of Ref. [45] ). Our choice

is consistent because we use 〈r〉 for both HF and H2O. In Table X, we compare the published

bound states from Table I of Ref. [20] (with an estimated convergence error of 0.05 cm−1)

with our energies on the same PES and the energies on the PES of this paper. The two

PESs are evidently very similar. The vibrational band origin of the νβo band is 78.9 cm−1

on the Loreau et al. PES and 81.9 cm−1 on the PES of this paper.
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The only experimental determination of this band origin was made by Kisiel et al. To

obtain a band origin, Loreau et al. subtract the energy of the lowest ortho state assigned

to the ground vibrational state (14.00 cm−1) from their lowest νβo energy (78.92 cm−1).

However, Kisiel et al.’s band origin of 64 ±10 cm−1 is derived from the relative intensity of

two rotational transitions in the ground state and in νβo. Although this procedure involves

approximations, it yields the energy of νβo relative to the energy of the ground vibrational

state. To compare with experiment, one should not subtract the energy of the lowest ortho

state. Both our vibrational band origin and that of Loreau et al. are outside the range

determined by the error bars of the experimental value. It is clearly necessary to directly

measure the vibrational energy of this important tunnelling state via direct far-infrared

spectroscopy in order to determine whether the PES of this work or the PES of Loreau et

al. is more accurate, and whether a full dimensional (9D) calculation is required.

VII. CONCLUSION

In this paper we use a new PES to compute the rovibrational spectrum of H2O-HF.

The new PES is a 9-D surface, but we use the rigid monomer approximation to obtain the

spectrum. H2O-HF has two equivalent minima separated by a low barrier. It is therefore

important to use basis functions that have significant amplitude in large regions of the con-

figuration space of the molecule. Intensities help us to assign states we compute. To compare

with experimental results we focus on the R(1) transitions in various vibrational states. The

agreement between theory and experiments is good and the difference between theory and

experiment is nearly the same for many vibrational states. This allows us to confirm some

of the assignments made by experimentalists and suggest a possible reassignment for two

bands. Agreement between experimental and theoretical vibrational energies is less good.

Most of the experimental vibrational energies are obtained from relative intensity measure-

ments and are rather imprecise. H2O-HF is an excellent candidate for more experimental

high-resolution studies. 9-D calculations are possible.
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TABLE IX: R(1) transitions in different vibrational states. The ∆1 column contains Obs.- Calc.

values calculated using the experimental values and experimental assignments from Refs. [7, 12]

for GS, νβo, νβi, 2νβi, and νσ and from Kisiel’s thesis [17] for the other bands The ∆2 column

contains Obs.- Calc.values calculated using the same experimental values but the the new possible

assignment of this paper. The only entries in the ∆2 column are those for which the new assignment

differs. A,B,C rotational constants in the second column are calculated for each vibrational state

in cm−1 from the three J = 1 levels.

Vib.state A,B,C

(cm−1)

Transition Calc.(cm−1) Obs.(cm−1) Obs.(MHz) ∆1 ∆2 Intensity (e a0)2

GS A= 13.8221 2-02 A+ < 1-01 A− 0.9445 0.9608 ± 0.000005 28804.87 ±0.15 0.016 0.0182

GS B= 0.2381 2-12 B+ < 1-11 B− 0.9402 0.9564 ± 0.000005 28673.42 ±0.15 0.016 0.0372

GS C= 0.2341 2-11 B− < 1-10 B+ 0.9482 0.9647 ± 0.000005 28920.45 ±0.15 0.016 0.0378

νβo A=10.8227 2-02 B− < 1-01 B+ 0.9522 0.9684 ±0.00001 29033.28 ± 0.3 0.016 0.0277

νβo B=0.2396 2-12 A− < 1-11 A+ 0.9488 0.9650 ±0.00002 28930.5 ± 0.5 0.016 0.0064

νβo C=0.2365 2-11 A+ < 1-10 A− 0.9549 0.9714 ±0.00002 29121.8 ± 0.5 0.016 0.0065

νβi A=17.0142 2-02 B+ < 1-01 B− 0.9475 0.9631 ±0.00001 28872.5 ± 0.3 0.016 0.0155

νβi B=0.2395 2-12 A+ < 1-11 A− 0.9419 0.9594 ±0.00002 28761.7 ± 0.5 0.018 0.0034

νβi C=0.2342 2-11 A− < 1-10 A+ 0.9525 0.9663 ±0.00005 28968.0 ± 1.5 0.014 0.0035

2νβi A=21.7161 2-02 A+ < 1-01 A− 0.9368 0.0015

2νβi B=0.2372 2-12 B+ < 1-11 B− 0.9433 0.9631 ±0.0001 28872.0 ±3.0 0.020 0.0029

2νβi C=0.2312 2-11 B− < 1-10 B+ 0.9552 0.9682 ±0.00003 29026.5 ±1.0 0.013 0.0029

2νβo A=8.7511 2-02 A+ < 1-01 A− 0.9482 0.0033

2νβo B=0.2382 2-12 B+ < 1-11 B− 0.9447 0.9667 ±0.00002 28981.0 ±0.5 0.022 0.010 0.0070

2νβo C=0.2360 2-11 B− < 1-10 B+ 0.9492 0.9728 ±0.00002 29164.0 ±0.5 0.024 0.010 0.0070

νβo + νβi A=12.0502 2-02 A− < 1-01 A+ 0.9551 0.0023

νβo + νβi B=0.2401 2-12 B− < 1-11 B+ 0.9510 0.9552 ±0.00002 28637.4 ± 0.5 0.004 0.016 0.0048

νβo + νβi C=0.2375 2-11 B+ < 1-10 B− 0.9561 0.9604 ±0.00002 28791.1 ± 0.5 0.004 0.017 0.0048

3νβo A=12.4563 2-02 B− <1-01 B+ 0.9516 0.9601 ±0.00002 28781.8 ± 0.5 0.008 0.0032

3νβo B=0.2401 2-12 A− <1-11 A+ 0.9278 0.0010

3νβo C=0.2357 2-11 A+ <1-10 A− 0.9191 0.0009

νσ A=13.5290 2-02 A+ < 1-01 A− 0.9219 0.9424 ±0.00002 28253.7 ±0.5 0.021 0.0050

νσ B=0.2323 2-12 B+ < 1-11 B− 0.9187 0.9399 ±0.00002 28179.2 ±0.5 0.021 0.0102

νσ C=0.2287 2-11 B− < 1-10 B+ 0.9260 0.9472 ±0.00002 28397.2 ±0.5 0.021 0.0104

2νσ A=14.3358 2-02 A+ < 1-01 A− 0.9093 0.0015

2νσ B=0.2292 2-12 B+ < 1-11 B− 0.8944 0.9144 ±0.0001 27414.3±3.0 0.020 0.0030

2νσ C=0.2256 2-11 B− < 1-10 B+ 0.9016 0.9208 ±0.0001 27605.7±3.0 0.019 0.0030

νσ + νβo A=10.7342 2-02 B− <1-01 B+ 0.9267 0.9434 ±0.00002 28281.8±0.5 0.017 0.0075

νσ + νβo B=0.2332 2-12 A− < 1-11 A+ 0.9231 0.0017

νσ + νβo C=0.2301 2-11 A+ <1-10 A− 0.9293 0.0018

νσ + νβi A=12.0551 2-02 B+ < 1-01 B− 0.9213 0.9383 ±0.00002 28130.2±0.5 0.017 0.0043

νσ + νβi B=0.2310 2-12 A+ < 1-11 A− 0.9522 0.0008

νσ + νβi C=0.2297 2-11 A− < 1-10 A+ 0.9497 0.0008

νσ + 2νβo A=8.6074 2-02 A+ < 1-01 A− 0.9218 0.0009

νσ + 2νβo B=0.2315 2-12 B+ < 1-11 B− 0.9184 0.0019

νσ + 2νβo C=0.2294 2-11 B− < 1-10 B+ 0.9226 0.0019

2νσ + νβo A=10.7191 2-02 B− < 1-01 B+ 0.9006 0.0022

2νσ + νβo B=0.2266 2-12 A− < 1-11 A+ 0.8977 0.0005

2νσ + νβo C=0.2237 2-11 B− < 1-10 B+ 0.9035 0.0005
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FIG. 11: Observed and calculated R(1) transition frequencies in the 2νβo, 2νβi, νβo+νβi, 3νβo, νβo+

2νβi, 2νβo + νβi and 3νβi vibrational states. The stronger R(1) lines of the ground state, νβo, and

νβi also fall into this region (shown in Fig. 10) but are removed for clarity except that we keep the

K = 0 R(1) line of the ground state. Note that if Kisiel et al.’s assignment of satellite A(yellow)

and B(purple) is interchanged, the order of the calculated yellow and purple lines would match

that of the experiment.
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FIG. 12: Observed (top panel) and calculated (bottom panel) J = 2← 1 rotational transitions in

the νσ region.
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TABLE X: Comparison of vibrational levels with those of Ref. [20] (in cm−1). The Zero Point

Energy is relative to the 5-D De.

K, Sym, State J(Ka,Kc) Ref.[20]’s calc. Ref.[20]’s PES, our calc. This work

pH2O-HF K=0, A+, GS 0(0,0) 0.0 (-2079.6) 0.0 (-2079.56) 0.0 (-1992.38)

K=2, A+, GS 2(2,0) 55.35 55.317 55.586

K=2, A−, GS 2(2,1) 55.35 55.317 55.586

K=1, A+, νβ(o) 1(1,1) 90.07 90.054 92.921

K=1, A−, νβ(o) 1(1,0) 90.07 90.057 92.924

oH2O-HF K=1, B−, GS 1(1,1) 14.00 13.991 14.056

K=1, B+, GS 1(1,0) 14.00 13.995 14.060

K=0, B−, νβ(o) 0(0,0) 78.92 78.920 81.862
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