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Abstract

Machine learning methods have garnered much attention and use in computational

catalysis. Previous studies have demonstrated rapid and accurate prediction of a va-

riety of catalytic properties as well as the underlying potential energy landscapes. In

particular, d-band center, defined as the first moment of the d-projected density of

states, has been widely used as the key descriptor of activity trends for reactions cat-

alyzed by metal surfaces. In this work, we construct a gradient boosting regression

(GBR) model for prediction of the d-band center of bulk binary transition metal alloys.

An accurate model is obtained using a dataset of over 1200 alloys from the Materials

Project database spanning the entire d-block of the periodic table. The d-band centers,

periodic groups, and relative compositions of the constituent metals are determined

to have the highest feature importance scores, consistent with the underlying physics

of the alloy. The regression model presented here offer a promising strategy of rapid

property prediction with physical interpretability to aid the optimization and discovery

of efficient heterogeneous catalysts.
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Introduction

Over 90% of energy-intensive chemical production relies on heterogeneous catalysis. The

ultimate goal in catalytic science is to accurately predict trends in catalytic activity using

the electronic structure of metals, which will enable rational design of surfaces with specific

catalytic properties without extensive trial-and-error experiments.1 Previous studies have

established a good correlation between catalytic activity and the d-band center.2,3 As such,

computed d-band centers can be used to predict the activity trends of different metal sur-

faces.4,5 To model surfaces, first-principles calculations based on density functional theory

(DFT) are employed. However, given the large computational cost and the static nature of

the method, alternative data-driven approaches have the potential to accelerate the rational

catalyst design efforts.

Machine learning (ML) methods are widely employed in materials science6 and engineer-

ing.7,8 Given sufficient training set and proper training method, ML models can ultimately

bypass expensive DFT calculations while maintaining high accuracy. As such, they can be

applied to prediction of various physical and chemical properties that remain unknown or

too complex for analytical modeling. In computational catalysis, ML methods have been

applied to screen the materials space in terms of structure and composition of bulk materials

for desired catalytic properties. For example, Takigawa et al. used ML methods to predict

the d-band center for eleven metals (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au) and

their pairwise bimetals.1 Andersen et al. employed SISSO (Sure Independence Screening

and Scarifying Operator) to predict adsorption energies of atomic and molecular species on

mono- and multi-metallic surfaces with root mean square errors within 0.2 eV.9 Surrogate

models have also been used to accelerate the exploration of energy landscapes, such as the

optimization of atomic structures. Hammer et al. employed supervised learning to enhance

global optimization algorithms of molecular structures.10 Peterson et al. utilized convoluted

neural networks to alleviate the cost of nudged elastic band calculations.11 Overall, fast com-

binatorial materials screening and acceleration of traditional optimization algorithms are two
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main trends of ML in computational catalysis.12

In transition metals, unoccupied d-orbitals can act as electrophiles, whereas occupied

d-orbitals provide electrons as nucleophiles in chemical reactions to form intermediate sur-

face products, thereby reducing the activation energy and promoting the reaction kinetics.

In transition metal oxides, metal cations have strong redox properties due to the ease of

losing or seizing the d-electrons. Both transition metal oxides and transition metals can be

used as redox catalysts. In chemical industry, heterogeneous catalysts typically consist of a

combination of a metal with other metals, nonmetals, or metalloids. Specific physical and

chemical properties can be enhanced in multimetallic alloys compared to their monometallic

counterparts. For example, alloy steel, which contain significant amounts of elements other

than iron and carbon, has enhanced toughness, hardness, corrosion resistance, and ductility

compared to the non-alloy steel. In catalysis, single-atom alloy catalysts have garnered much

attention due to the promotion of the activity by a dilute amount of an active metal and the

selectivity by an inert host metal.13,14

In this work, we construct a regression model for prediction of the d-band center of binary

transition metal alloys as a baseline for future research on the performance of alloy catalysts.

Building on the previous study of eleven metals,1 we use a dataset of over 1200 alloys from the

Materials Project database spanning the entire d-block of the periodic table. We discover

three most important descriptors of the constituent metals that determine the electronic

property of the corresponding alloy: (1) the d-band center, (2) relative composition, and

(3) periodic group. The proposed model offers a strategy for fast, accurate, and physically

interpretable prediction of a key catalytically relevant property for binary alloys.
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Methods and data

Dataset

For atomic descriptors, we use the data of Pauling electronegativity,15–17 d-band center (εd),

the number of electrons, and the atomic radii, which can be obtained from the periodic table,

the CRC handbook,18 and the Materials Project database19 (Table 1). The d-band center

is calculated as the first moment of the d-projected density of states:

εd =

! EF

−∞ εnd(ε)dε
! EF

−∞ nd(ε)ε
, (1)

where EF is the Fermi energy, ε is the energy, and nd(ε) is the density of states. The Pearson

correlation coefficients for the descriptors (Fig. 1) are calculated using MATLAB.

Table 1: Input features (descriptors) of transition metals used for prediction, including
atomic number (AN), period (P), group (G), Pauling electronegativity (EN), covalent radii
(Rcov) in Å, and d-band center (εd) in eV. All d-band centers are obtained from the density
of states available in the Materials Project database.19

Metal AN P G EN Rcov(Å) εd(eV) Metal AN P G EN Rcov(Å) εd(eV)

Sc 21 4 3 1.36 1.59 1.59 Ru 44 5 8 2.20 1.36 −1.33
Ti 22 4 4 1.54 1.48 0.96 Rh 45 5 9 2.28 1.34 −1.82
V 23 4 5 1.63 1.44 1.15 Pd 46 5 10 2.20 1.30 −1.89
Cr 24 4 6 1.66 1.30 −0.10 Ag 47 5 11 1.93 1.36 −4.11
Mn 25 4 7 1.55 1.29 −0.59 Cd 48 5 12 1.69 1.40 −8.78
Fe 26 4 8 1.83 1.24 −1.65 Hf 72 6 4 1.30 1.64 0.98
Co 27 4 9 1.88 1.18 −2.11 Ta 73 6 5 1.50 1.58 1.55
Ni 28 4 10 1.91 1.17 −1.75 W 74 6 6 2.36 1.50 0.28
Cu 29 4 11 1.90 1.22 −2.48 Re 75 6 7 1.90 1.41 −0.09
Zn 30 4 12 1.65 1.20 −7.29 Os 76 6 8 2.20 1.36 −1.47
Zr 40 5 4 1.33 1.64 0.94 Pt 78 6 10 2.28 1.30 −2.27
Nb 41 5 5 1.60 1.56 1.00 Au 79 6 11 2.54 1.30 −3.53
Mo 42 5 6 2.16 1.46 0.10 Hg 80 6 12 2.00 1.32 −5.35
Tc 43 5 7 1.90 1.38 −0.22

1211 binary alloys (AmBn) involving all 29 transition metal elements (Sc, Ti, V, Cr, Mn,

Fe, Co, Ni, Cu. Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au

and Hg) were obtained from the Materials Project database (Fig. 2a).19 After imposing the
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Figure 1: The correlation matrix of 6 descriptors for transition metals in Table 1. The
values range from −1 to +1; the larger the magnitude, the redder the color of the block.

criterion of energy above hull (Ehull) per atom to be less than 10−6 eV, 580 thermodynamically

stable alloys were obtained (Fig. 2b). Only 1004 and 504 alloys had DOS data available

for calculation of the d-band center, without and with the stability criterion, respectively.

For ternary alloys (AmBnCp), we obtained 1396 and 386 without and with the restriction,

respectively.
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Figure 2: Number of binary alloys (AmBn), indicated at the center of each block as well as
the color (blue to red), for each element as the majority host. If m and n are equal, both
are counted as the host. (a) Total search results from the Materials Project database. (b)
Search results after imposing stability criterion based on the energy above hull.
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Machine learning method

We build our machine-learning models using the gradient boosting regression (GBR)20

method as implemented in the scikit-learn package.21 GBR learns from its mistakes by

integrating poor learning algorithms with small confidence interval and concentrated data.

As an ensemble model of boosted regression trees, GBR can provide accurate and stable

predictions.1 The model parameters are set to n_estimators = 1000, max_depth = 6,

min_samples_split = 5, and learning_rate = 0.01. The parameter random_state is set

to 42 to maintain the same training and test set composition across all cases.

Results and discussion

Model prediction with different test/training split

Using datasets without and with the stability criterion (Fig. 2a and b), we first determine

the optimal size of the training set. For a binary alloy AmBn, there are total 14 descriptors

for prediction: six for A, six for B, and the relative composition of each element (xm, xn).

We made predictions for the cases without and with the stability criterion, respectively. The

parity plots of GBR-predicted vs. DFT-computed d-band centers with different test/training

ratios (25/75, 50/50, and 75/25) are shown in Fig. 3. Without the stability criterion, we

have total of 1004 data points, which provide test/training set sizes of 251/753, 502/502,

and 753/251 for the three ratios, respectively. With the stability criterion, 504 data points

Table 2: The accuracy, mean squared error (MSE), and goodness of fit (R2) of the GBR
model on the test set, using the dataset (a) without and (b) with the stability criterion (Fig.
2a and b, respectively). The corresponding parity plots are shown in Fig. 3.

Case (a) Full dataset (b) Dataset with the stability criterion

Test/Training Model accuracy MSE R2 Model accuracy MSE R2

25/75 0.9778 0.0905 0.9780 0.9652 0.1360 0.9658
50/50 0.9667 0.1455 0.9671 0.9337 0.2447 0.9358
75/25 0.9515 0.2063 0.9516 0.9258 0.2953 0.9266
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Figure 3: GBR vs. DFT-computed d-band center of binary alloys without the stability
criterion using all 14 descriptors. The subplot is the convergence of the model accuracy over
boosting iterations. Blue and red points represent training and test set, respectively. The
best performance is achieved with test/training split of 25/75. (a) Full dataset. (b) Dataset
with the stability criterion.

are available, providing the respective sizes of 126/378, 202/202, and 378/126. The model

accuracy, mean squared error (MSE), and goodness of fit (R2) on the test set are listed in

Table 2. The larger the training set, the more accurate the model prediction. As such, all

following analyses are performed using the test/training ratio of 25/75.

Descriptor and permutation importance for GBR prediction

Next, we investigate the importance of the 14 descriptors listed in Table 1. GBR is based

on "boosting" technique, which adaptively combines a large number of relatively simple

regression-tree models that recursively partition the data using a single selected descriptor.

From this process, feature-importance score can be obtained as a weighted average of the

number of times that a given descriptor is selected for the partitioning. The statistical

importance of descriptors may vary with the ML method used.

The feature-importance scores of all 14 descriptors are shown in Fig. 4. Without the
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stability criterion, the top three sets of descriptors from mean decrease in impurity (MDI)

are: (1) d-band center, (2) relative composition, and (3) periodic group of the two constituent

metals. With the stability criterion, d-band center remains the most important descriptor,

but the order of the other two descriptors is flipped. The variation of a given feature

importance between the host and the guest metal is rather small. The top descriptors

remain the same from permutation importance. Overall, the observed trend is consistent

with the underlying physics: the alloy d-band center is determined by the energetic proximity

of the d-band centers of individual components. These values are influenced by the number

of electrons determined by the periodic group, i.e. the more to the right of the periodic table

an element is located, the more electrons it has, and the lower the d-band center becomes.

Model prediction with different numbers of descriptors

To determine the optimal number of descriptors for GBR prediction, we train different models

using top 6, 4, and 2 descriptors from Fig. 4 with test/training ratio of 25/75 and compare

against the model with all 14 descriptors. The three-performance metrics for each model are

listed in Table 3, and the corresponding parity plots are shown in Fig. 5. Using the full

dataset, the model accuracy decreases from 0.9778 with all 14 descriptors to 0.9761, 0.9722,

and 0.7646 with the top 6, 4, and 2 descriptors, respectively. The model accuracy remains

a b

Figure 4: Feature importance from mean decrease in impurity (MDI) and the permutation
importance of the descriptors (Table 1, including the relative composition x of each com-
ponent) on the test set, using the full dataset (Fig. 2a) with the test/training split of 25/75
(Table 2a). The subscripts "h" and "g" refer to the host and guest metal, respectively.
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high (∼0.97) down to the top 4 descriptors but suffers when only the top 2 descriptors

are used. Using the smaller dataset with the stability criterion, the prediction performance

remains high down to the top 6 descriptors.

Table 3: The accuracy, mean squared error (MSE), and goodness of fit (R2) of the GBR
model on the test set, using the dataset (a) without and (b) with the stability criterion (Fig.
2a and b, respectively). The corresponding parity plots are shown in Fig. 5.

Case (a) Full dataset (b) Dataset with the stability criterion

Number of descriptors Model accuracy MSE R2 Model accuracy MSE R2

All (14) 0.9778 0.0905 0.9780 0.9652 0.1360 0.9658
Top 6 0.9761 0.0972 0.9764 0.9702 0.1166 0.9705
Top 4 0.9722 0.1130 0.9725 0.8132 0.7306 0.8153
Top 2 0.7646 0.9580 0.7723 0.7993 0.7849 0.8040

a

b

Figure 5: GBR vs. DFT-computed d-band center of binary alloys without the stability
criterion using all 14, top 6, top 4, and top 2 descriptors. The subplot is the convergence
of the model accuracy over boosting iterations. Blue and red points represent training and
test set, respectively. (a) Full dataset. (b) Dataset with the stability criterion.
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Conclusion

We propose a fast, accurate, and physically interpretable gradient boosting regression (GBR)

model for prediction of the d-band center of bulk binary transition metal alloys based on

three sets of readily available descriptors – d-band center, relative composition, and periodic

group. We use a dataset of over 1200 alloys from the Materials Project database spanning

all 29 transition metals, with and without the stability criterion of energy above hull; the

full dataset exhibits better prediction performance. The method presented here can also

be applied to catalytically relevant properties of surface alloys, which include not only the

d-band center, but also other structural and chemical properties such as lattice constant,

miscibility, and short- and long-range order parameters. Other more data-intensive methods

such as neural networks and reinforcement learning can also be considered for larger datasets

involving other types of materials beyond alloys.
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