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Abstract 

Passive permeability of a drug-like molecule is a critical assay early in a drug discovery campaign 
that informs a medicinal chemist how well a compound can traverse biological membranes, such 
as gastrointestinal epithelial or restrictive organ barriers, so it can perform a specific therapeutic 
function. However, the challenge that remains is the development of a method, experimental or 
computational, which can both determine the permeation rate and provide mechanistic insights 
into the transport process to help with the rational design for any given molecule. Typically, one 
of three methods are used to measure membrane permeability: (1) experimental permeation assays 
acting on either artificial or natural membranes; (2) quantitative structure-permeability relationship 
(QSPR) models that rely on experimental values of permeability or related pharmacokinetic 
properties of a range of molecules to infer those for new molecules; (3) estimates of permeability 
from the Smoluchowski equation, where free energy and diffusion profiles along the membrane 
normal are taken as input from large-scale molecular dynamics simulations. While all these 
methods provide estimates of permeation coefficients, they provide very little information for 
guiding rational drug design. In this study, we employ a highly parallelizable weighted ensemble 
(WE) path sampling strategy, empowered by cloud computing techniques, to generate unbiased 
permeation pathways and permeability coefficients for a set of drug-like molecules across a neat 
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) membrane bilayer. Our WE 
method predicts permeability coefficients that compare well to experimental values from an 
MDCK-LE cell line and PAMPA assays for a set of drug-like amines of varying size, shape, and 
flexibility. Our method also yields a series of continuous permeation pathways weighted and 
ranked by their associated probabilities. Taken together, the ensemble of reactive permeation 
pathways, along with the estimate of the permeability coefficient, provides a clearer picture of the 
microscopic underpinnings of small molecule membrane permeation. 
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Introduction 
The ability of a drug candidate to cross (or permeate) lipid membranes is essential for achieving 
the required absorption, distribution, metabolism, excretion, and toxicity (ADME/tox) profile.1 
Understanding the mechanism by which membrane permeation can occur is invaluable for the 
rational improvement of drug bioavailability. While active transport via transmembrane proteins 
can contribute to ADME/tox properties2 of charged endogenous compounds,3,4 passive diffusion 
across lipid bilayers is believed to be the predominant mechanism for membrane transport of drug 
candidates in a variety of cell types.  

Given the time-consuming and costly nature of in vitro experiments5–8 for measuring passive 
membrane permeation, there has been great interest in theoretical strategies for predicting drug 
permeability. The first theoretical model of permeation was based on Overton’s rule9 developed 
over a century ago,10 which proportionally relates passive membrane permeability to the oil-water 
partition coefficient11. In this model, permeability is correlated with the ability to partition into the 
lipid phase, assuming that permeation is driven only by a molecule's inherent lipophilicity. More 
sophisticated qualitative structure permeability relationship (QSPR) models have also emerged 
that are built from experimentally derived permeability measurements, along with a set of input 
physiochemical descriptors from a database of training molecules.12 QSPR models typically rely 
on properties like polar surface area, molecular weight, hydrogen bond count, and the octanol-
water partition coefficient to statistically infer new permeability coefficients for drug-like 
compounds.13 Over the last few years, advanced machine learning techniques have also been 
applied to predict permeability from either molecular descriptors or fingerprints. Reviews of ML 
applications to predict permeability exist elsewhere14 and will not be covered in detail here, yet 
some examples of ML approaches worth mentioning include models for PAMPA-like assays,5 
models for Caco-2 cell permeability,15 as well as blood-brain barrier16 and CNS17 permeability 
models. Although ML and QSPR methods can be fast, cheap, and accurate within the domain of 
chemical space of the training set, such models have not provided any mechanistic insights to 
guide drug design to favor permeation. 

In principle, molecular dynamics (MD) simulations can provide the most detailed mechanistic 
insights of membrane permeation. While MD simulations have captured small-molecule 
permeation processes that occur within a µs,18 membrane permeability of drug-like molecules can 
be orders of magnitude beyond this timescale. To access these longer timescales, many simulation 
studies have used a method by Marrink and Berendsen19 that is based on an inhomogeneous 
solubility-diffusion (ISD) model in which the permeability coefficient of a small molecule is 
estimated from the free energy and diffusion rate profiles across the membrane. Such studies have 
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used enhanced sampling techniques that apply either external biasing forces or modified 
Hamiltonians (e.g., adaptive biasing force method,20 free energy perturbation,21 restrained 
potential of mean force (PMF) calculations,22 constant pH simulations23, and umbrella sampling24). 
A caveat of such studies, however, is that the results rely on the free energy profile, which is a 
function of the chosen reaction coordinate and may miss potential rate-limiting steps in orthogonal 
coordinates.25,26 Alternatively, a few simulation studies have employed methods that combine 
short discontinuous trajectories to estimate long-timescale observables (e.g., milestoning27,28 and 
Markov State Models29). While all the above studies have revealed some microscopic details of 
the permeation process, they have not provided pathways of membrane permeation processes that 
are both unbiased in the dynamics and continuous. 

To bridge the gap between computation and experiment in a quantitative manner, we combine the 
WE path sampling strategy with cloud-based computing to not only provide direct estimates of 
permeability coefficients, but also continuous, atomistic permeation pathways of drug-like 
compounds across a model lipid bilayer. We focus initially on tacrine, a rigid small-molecule 
inhibitor of acetylcholinesterase (zero rotatable bonds), to evaluate the efficiency of several WE 
protocols for estimating permeability coefficients. We then apply the most efficient protocol to 
zacopride and sotalol, which are substantially more complex, flexible molecules (3 and 6 rotatable 
bonds, respectively), for detailed analysis of their membrane permeation mechanisms. All three 
compounds are weakly basic and obey Lipinski’s “rule of five”30,31 for orally active therapeutics. 

Theoretical Background 

In this section we introduce a general model to predict permeability using the kinetic rate constant 
of membrane crossing. The permeation rate constant can be defined using the mean-first-passage 
time (MFPT) of the crossing event, as will be outlined with the Hill relation below. In principle, 
however, this rate constant could be obtained from any kinetic method. 

Kinetic model of membrane permeability 

The passive membrane permeation of a drug-like molecule can be modeled as a two-state, first-
order process in which there is a large free energy barrier to desolvating the molecule upon entering 
the lipid bilayer. During this process, a molecule diffuses across a lipid bilayer to reach one of two 
aqueous compartments, namely the donor (D) or the acceptor (A): 

𝐷𝐷
      𝑘𝑘𝐷𝐷→𝐴𝐴     
�⎯⎯⎯⎯⎯�
       𝑘𝑘𝐴𝐴→𝐷𝐷      

𝐴𝐴. (1) 
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Here, 𝑘𝑘𝐷𝐷→𝐴𝐴 is the forward rate constant for passive diffusion of the molecule from the donor to the 
acceptor compartment, while 𝑘𝑘𝐴𝐴→𝐷𝐷 is the reverse rate constant. Assuming the system is symmetric 
(i.e., the volumes of compartment D and A are identical), and 𝐶𝐶𝐷𝐷 and 𝐶𝐶𝐴𝐴 are the concentrations of 
the molecule in the two compartments, the rate of change in the concentrations (or populations) of 
the molecule can be described by the following set of ordinary differential equations: 

d𝐶𝐶𝐴𝐴
d𝑡𝑡

= 𝑣𝑣𝐷𝐷→𝐴𝐴 − 𝑣𝑣𝐴𝐴→𝐷𝐷, (2) 

d𝐶𝐶𝐷𝐷
d𝑡𝑡

= 𝑣𝑣𝐴𝐴→𝐷𝐷 − 𝑣𝑣𝐷𝐷→𝐴𝐴, (3) 

where 𝑣𝑣’s are volumetric permeation rates, 

𝑣𝑣𝐷𝐷→𝐴𝐴 = 𝑘𝑘𝐷𝐷→𝐴𝐴𝐶𝐶𝐷𝐷 , 

𝑣𝑣𝐴𝐴→𝐷𝐷 = 𝑘𝑘𝐴𝐴→𝐷𝐷𝐶𝐶𝐴𝐴. (4) 

Alternatively, these rates can be measured by the rate of change in the concentration of the 
respective species. For example, 

𝑣𝑣𝐷𝐷→𝐴𝐴 =
1
𝑙𝑙𝐷𝐷𝑆𝑆

d𝑚𝑚𝐷𝐷

d𝑡𝑡
, (5) 

where d𝑚𝑚𝐷𝐷  is the amount of molecule (in terms of mass or molar mass), originating from 
compartment D then passing through the bilayer, and moving into the compartment A within time 
d𝑡𝑡. Here, 𝑆𝑆 is the surface area of the membrane, and 𝑙𝑙𝐷𝐷 is the depth of the effective volume of 
compartment D. 

Although the volumetric permeation rates in Eq. 4 provide one route to estimating the kinetics of 
molecular transport across the membrane, the most common quantification is the permeability 
coefficient, 𝑃𝑃𝑚𝑚, typically measured in logarithmic units of cm/s. This coefficient is based on Fick’s 
first law of diffusion, and linearly connects the net flux of the molecule across the membrane at 
steady state, 𝐽𝐽𝑚𝑚, to the difference in concentrations of the molecule in compartments D and A: 

𝐽𝐽𝑚𝑚 = 𝑃𝑃𝑚𝑚(𝐶𝐶𝐷𝐷 − 𝐶𝐶𝐴𝐴). (6) 

By imposing the homogenous solubility-diffusion (HSD) model18 where the membrane is in a 
quasi-steady state, it can be readily demonstrated that the proportionality constant from Eq. 6 is 
related to physical properties of the permeant-membrane system. If the concentration change is 



 5 

assumed to be linear across the membrane, the permeability coefficient equals 𝐷𝐷𝐷𝐷/ℎ, where 𝐷𝐷 is 
the diffusion constant of the molecule inside the membrane, 𝐾𝐾 is the oil-water partition coefficient, 
and ℎ is the membrane thickness. The relationship between 𝑃𝑃𝑚𝑚 and 𝐷𝐷𝐷𝐷 has been experimentally 
verified over 6 log units,32 with a few notable exceptions that are likely attributed to active 
transport. 

In addition to Eq. 6, the membrane flux can also be written as the difference between the molecular 
influx, 𝐽𝐽𝐷𝐷→𝐴𝐴, and outflux, 𝐽𝐽𝐴𝐴→𝐷𝐷, through the membrane: 

𝐽𝐽𝑚𝑚 = 𝐽𝐽𝐷𝐷→𝐴𝐴 − 𝐽𝐽𝐴𝐴→𝐷𝐷. (7) 

Both the in- and outflux represent the amount of molecule that pass through a surface area, 𝑆𝑆, 
within a given amount of time. Mathematically this can be expressed as: 

𝐽𝐽𝐷𝐷→𝐴𝐴 =
1
𝑆𝑆

 
d𝑚𝑚𝐷𝐷

d𝑡𝑡
, (8) 

By comparing Eq. 5 and 8, one can see that the in-/outflux and the volumetric permeation rates are 
related, 

𝐽𝐽𝐷𝐷→𝐴𝐴 = 𝑣𝑣𝐷𝐷→𝐴𝐴𝑙𝑙𝐷𝐷 , 

𝐽𝐽𝐴𝐴→𝐷𝐷 = 𝑣𝑣𝐴𝐴→𝐷𝐷𝑙𝑙𝐴𝐴. (9) 

Substituting Eq. 4, 7 and 9 into Eq. 6, assuming unequal concentrations in the two compartments, 
i.e., 𝐶𝐶𝐷𝐷 ≠ 𝐶𝐶𝐴𝐴, we arrive at 

𝑃𝑃𝑚𝑚 =
𝑘𝑘𝐷𝐷→𝐴𝐴𝑙𝑙𝐷𝐷𝐶𝐶𝐷𝐷 − 𝑘𝑘𝐴𝐴→𝐷𝐷𝑙𝑙𝐴𝐴𝐶𝐶𝐴𝐴

𝐶𝐶𝐷𝐷 − 𝐶𝐶𝐴𝐴
. (10) 

Furthermore, under the assumption of a symmetric system, such as the case in the permeation of a 
small molecule through a neat membrane, one can set 𝑘𝑘𝐷𝐷→𝐴𝐴 = 𝑘𝑘𝐴𝐴→𝐷𝐷 and 𝑙𝑙𝐷𝐷 = 𝑙𝑙𝐴𝐴. Thus, Eq. 10 
reduces the permeability coefficient to: 

𝑃𝑃𝑚𝑚 = 𝑘𝑘𝐷𝐷→𝐴𝐴𝑙𝑙𝐷𝐷 = 𝑘𝑘𝐴𝐴→𝐷𝐷𝑙𝑙𝐴𝐴. (11) 

In our model, by default, 𝑙𝑙𝐷𝐷 is set to half the length of the aqueous part of the simulation box along 
the lipid bilayer normal (preliminary tests suggest that the permeability coefficient is somewhat 
insensitive to the exact value of 𝑙𝑙𝐷𝐷, see Supplementary Figure S2 for details). While Eq. 11 is 
derived here for a two-state permeation process, the same equation can be derived from a multi-
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state model where states D and A are connected by a series of intermediates inside the lipid bilayer 
to yield apparent rate constants for the overall process, 𝑘𝑘𝐷𝐷→𝐴𝐴 or 𝑘𝑘𝐴𝐴→𝐷𝐷, as described by Parisio et 
al.33 

Calculation of permeation rate constants using weighted ensemble simulations 

The weighted ensemble path sampling strategy34,35 enables simulations of processes that are orders 
of magnitude longer than the simulations themselves.36–39 This greatly enhanced sampling results 
from an iterative resampling procedure (at fixed time intervals 𝜏𝜏) that replicates trajectories to 
occupy less-visited regions of configurational space – typically defined by a progress coordinate 
towards the target state (also known as a reaction coordinate, set of order parameters, or collective 
variables) that is divided into bins (Figure 1A). The WE resampling strategy is unbiased in two 
senses: 1) the underlying dynamics is not altered by the resampling, and 2) the trajectories are 
assigned statistical weights that are rigorously tracked, such that the resampling procedure is 
statistically unbiased. The former allows us to potentially obtain an ensemble of continuous 
pathways for the process of interest, and the latter allows us to evaluate unbiased estimates of 
steady-state averages, such as the rate constants into any arbitrary state.40,41 Thus, the WE strategy 
provides an ideal framework for direct simulations of drug membrane-permeability pathways and 
calculations of permeability coefficients. 

According to the Hill relation, the permeation rate constant, or steady-state probability flux, into a 
target state of interest (compartment A) is exactly the inverse MFPT35,42: 

𝑘𝑘𝐷𝐷→𝐴𝐴 =
1

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷 → 𝐴𝐴) =
𝑓𝑓𝐷𝐷→𝐴𝐴𝑆𝑆𝑆𝑆

𝑝𝑝𝐷𝐷
, (12) 

For drug membrane permeation, 𝑓𝑓𝐷𝐷→𝐴𝐴𝑆𝑆𝑆𝑆  is the steady-state (SS) probability flux arriving at state A 
from D, while 𝑝𝑝𝐷𝐷 is the fraction of trajectories that are more recently in state D than in state A. 

Within the WE framework, steady-state fluxes are mimicked by introducing an initial state, a target 
state, and a “recycling” condition where a trajectory will be returned to the initial state once it 
enters the target state to prevent reentry (i.e., first passage). In the context of the permeation 
system, the initial and the final states naturally correspond to compartments A and D. In this way, 
the weight of the recycled trajectory can be recorded as a probability flux into the target state. The 
time average of instantaneous fluxes arriving at state A from D, �𝑓𝑓𝐷𝐷→𝐴𝐴�, in a WE simulation 
provides an estimate of the steady-state flux,  



 7 

𝑘𝑘𝐷𝐷→𝐴𝐴 =
�𝑓𝑓𝐷𝐷→𝐴𝐴�
〈𝑝̂𝑝𝐷𝐷〉

= �𝑓𝑓𝐷𝐷→𝐴𝐴�. (13) 

The second equality comes from the recycling condition, which implies that 𝑝̂𝑝𝐷𝐷, the instantaneous 
fraction of trajectories more recently in D than in A, is identically one. In practice, taking the time 
average using pre-steady-state data could result in a statistical bias toward events with short 
barrier-crossing times. To address this issue, we employed the Rate from Event Durations (RED) 
scheme to apply a correction using the event-duration distribution to Eq. 13, to mitigate such bias.43 

With regards to membrane permeability, the probabilities from Eq. 12 are proportional to the 
concentrations by a constant. Given the total concentration, 𝐶𝐶0 = 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑉𝑉⁄ , 

𝑝𝑝�𝐷𝐷 =
𝑚𝑚𝐷𝐷 𝑉𝑉𝐷𝐷⁄
𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑉𝑉⁄

=
𝐶𝐶𝐷𝐷
𝐶𝐶0

, 

𝑝𝑝�𝐴𝐴 =
𝑚𝑚𝐴𝐴 𝑉𝑉⁄ 𝐴𝐴
𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑉𝑉⁄

=
𝐶𝐶𝐴𝐴
𝐶𝐶0

, (14) 

where 𝑉𝑉𝐷𝐷 = 𝑉𝑉𝐴𝐴 = 𝑉𝑉 due to the symmetry of the system. 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚𝑚𝐷𝐷 + ∑ 𝑚𝑚𝑖𝑖𝑖𝑖≠𝐷𝐷,𝐴𝐴 + 𝑚𝑚𝐴𝐴 is the 
total amount of the permeant. By assuming 𝑚𝑚𝐷𝐷 ≫ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖≠𝐷𝐷,𝐴𝐴 , we have 𝑝𝑝�𝐷𝐷 ≈ 𝑝𝑝𝐷𝐷, and it can be seen 
from inspection that the rate constants in Eq. 4 are the same as Eq 13., and Eq. 11 still holds true 
if populations of a molecule in compartment D and A are represented by probabilities. This 
procedure is like the transition rate-based counting method,18 but instead of simply counting the 
number of crossing events in a simulation, the probabilistic weight of each crossing event is also 
considered. 

Methods 

System preparation and MD equilibration 

The final system used in the WE simulations was prepared using several individually constructed 
molecular systems that were pieced together in the following way. First, ParmEd44 was used to 
generate input files containing Open Force Field Parsley v1.3.1a1 force field45 parameters for the 
drug-like molecule, as well as Amber LIPID1746,47 parameters for the POPC membrane. Next, an 
initial solvated POPC membrane configuration was generated using the CHARMM-GUI v2.0 with 
the Membrane Builder input generator module, and 50 POPC molecules per leaflet in a solution 
of TIP3P water molecules. The solvated membrane was equilibrated using a slightly modified set 
of CHARMM-GUI scripts, such that the OpenMM 7.5 MD engine could be used with a single 
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GTX1080 GPU to equilibrate the system for 0.5 µs in the NPT ensemble. For each drug-like 
molecule, a graph representation of the molecule was converted to a three-dimensional structure 
using OEChem Toolkit 3.2.0.048,49 followed by the generation of a diverse set of conformers using 
Omega Toolkit 4.1.2.0.50–52 The top 20 conformers ranked by Omega were each randomly oriented 
in compartment D relative to the pre-equilibrated lipid bilayer and solvated by a 2 nm layer of 
water using PACKMOL53 at a density of 1 gm/cm3. The 2D chemical structures were visualized 
using Picto 4.5.3.054 and 3D molecular structures including the snapshots and movies shown in 
this study were rendered using VMD 1.9.4.55 

Each of the 20 solvated drug-membrane systems were subjected to energy minimization until 
convergence using the L-BFGS method, then equilibrated in the NPT ensemble in two stages. In 
the first stage, each system was gradually heated from 0 to 308K over 0.01 ns while applying a 
weak harmonic restraining potential with a force constant of 2 kcal/mol/Å2 to all atoms of the drug-
like molecule. In the second stage, the force constant was gradually reduced from 2.0 to 0.1 
kcal/mol/Å2 over the 0.06 ns of equilibration. The resulting 20 equilibrated systems were used as 
starting conformations for the WE simulations. 

Weighted ensemble simulations 

WE simulations were run in the following manner using the Python API of the WESTPA 2.0 
software package.56 To maintain non-equilibrium steady state conditions, trajectories that reached 
a target state of compartment A or D (i.e., z = 3.0 nm, see Figure 1) were “recycled”, starting a 
new trajectory from the initial state (compartment). A one-dimensional progress coordinate was 
divided into bins using two different schemes: a manual, fixed binning scheme and the minimal 
adaptive binning (MAB) scheme57 (see below). A resampling interval of 0.1 ns was applied with 
a target number of 5 trajectories per bin. The simulations required 50 ns, which corresponds to 500 
WE iterations, to reach reasonable convergence of the permeability coefficient. 

Progress coordinate and state definitions. An effective progress coordinate for a WE simulation 
captures the slowest motion that is relevant to the rare-event process of interest. For membrane 
permeation, an effective progress coordinate is the distance between the center of mass of the 
molecule (𝒒𝒒𝑀𝑀) to that of the lipid bilayer (𝒒𝒒𝐿𝐿) along the unit vector normal to the bilayer surface, 
𝒛𝒛�, 

𝑧𝑧′ = (𝒒𝒒𝑀𝑀 − 𝒒𝒒𝐿𝐿) ⋅ 𝒛𝒛�. (15) 
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Given a lipid bilayer with a width of ~40 Å, a molecule with 𝑧𝑧′ < −20 Å is in compartment D, a 
molecule within −20 Å ≤ 𝑧𝑧′ ≤ 20 Å is inside the membrane with z’ = 0 indicating the center of 
the membrane, and a molecule with 𝑧𝑧′ > 20 Å is in compartment A (Figure 1A). A change in 𝑧𝑧′ 
from anywhere smaller than −20 Å to +30 Å is considered a membrane crossing event. Note that 
the extra 10 Å beyond +20 Å accounts for the interfacial solvation layer that will have different 
properties compared to bulk water. 

The progress coordinate defined in Eq. 15 works well in an ideal setup where there is a single lipid 
bilayer sandwiched between two aqueous compartments of infinite volumes. However, a 
correction is needed to account for the periodic boundary conditions imposed by the simulation 
protocol. This correction can be written as 

𝑧𝑧 = �𝑧𝑧′ +
𝐿𝐿𝑧𝑧
2
� −

𝐿𝐿𝑧𝑧
2

, (16) 

where 𝐿𝐿𝑧𝑧  is the length of the simulation box along 𝒛𝒛� . The corrected progress coordinate, 𝑧𝑧, is 
guaranteed to change sign correctly from negative to positive when the molecule crosses any lipid 
bilayer, which can be in either the unit simulation cell or its periodic neighbor (Figure 1C). 

Binning schemes. The fixed binning scheme separates the water compartments (𝑧𝑧 < −20 Å or 𝑧𝑧 >
20 Å) into fixed sized bins of 2 Å and the membrane region (−20 Å < 𝑧𝑧 < 20 Å) into 0.5 Å-wide 
bins. We used 30 dynamic linear bins for all our simulation using the MAB scheme.57 

Dynamics propagation. Dynamics were propagated using the OpenMM 7.5 MD engine in the NPT 
ensemble. A 1-nm cutoff was used for short-range nonbonded interactions, while the particle mesh 
Ewald (PME) method58 was applied for the treatment of both long-range electrostatics and 
Lennard-Jones interactions. To enable a 2-fs timestep, the SHAKE59 or SETTLE60 algorithm was 
used to constrain the lengths of bonds to hydrogens. The trajectories were processed and analyzed 
using MDTraj61. 

Reweighting trajectories for a steady state. To accelerate convergence of the WE simulation to a 
steady state, trajectory weights were adjusted using a WE steady-state (WESS) reweighting 
procedure that makes use of rates among “arbitrarily” defined bins.35 In this work, reweighting 
was performed every 50 WE iterations. 
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Auxiliary coordinates 
Two-dimensional probability distributions have been generated as a function of the WE progress 
coordinate z and “auxiliary” coordinates that are orthogonal to the progress coordinate, including:  

1) The angle relative to 𝒛𝒛�, which is defined through the vector product of the unit electric 
dipole moment of the molecule and 𝒛𝒛� , and quantifies the relative orientation of the 
molecule through the membrane. 

2) The number of hydrophobic contacts, which is defined to be the number of aliphatic atoms 
of the lipid tails within the 10 Å distance of any hydrophobic atoms of the drug molecule,  
following Rogers and Geissler in their studies of lipid insertion.25 The hydrophobic atoms 
used in this study are highlighted in Supplementary Figure S5. 

3) The number of hydrogen bonds between the drug and the membrane, which was identified 
using the Baker-Hubbard definition62 as implemented in the MDTraj package.61 According 
to this definition, any donating NH or OH is assumed to be in a hydrogen bond with any 
accepting N or O if the bond angle is greater than 120 degrees and the bond distance is less 
than 2.5 Å.  

4) The end-to-end distance of each molecule, which was calculated based on the largest 
separated atoms of the molecule identified in the longest axis. The atoms used for each 
drug-like molecule are highlighted in Supplementary Figure S5. 

Notably, these auxiliary coordinates do not play any role in progressing the WE simulation and 
were only calculated for post-analysis. 
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Cloud computing in Orion 

Scientific computing in OpenEye’s Orion cloud platform is patterned after the concept of flow-
based programming (FBP).63 In FBP, a series of compute kernels are defined to perform actions 
on input data, and pass (transformed) output data to subsequent kernels. FBP is designed around 
the idea that information will flow from one kernel to another through connections known as ports, 
with complex operations occurring in each kernel process. Compute kernels within Orion’s FBP 
vocabulary are known as “Cubes”. Cubes are connected to each other through a series of ports, 
whereby data can flow from one Cube to another in the form of one of several strongly typed data 
structures. Within the Orion FBP framework, finalized workflows with a set of logically connected 
cubes are known as “Floes”. All Cubes and Floes are written in Python 3, where a Cube is an 
instance of a Cube class, and Floes are in many ways the equivalent of a Python script. In Orion, 
all compute nodes are sourced from Amazon Web Services (AWS). Each Cube runs on its own 
AWS instance that itself runs in an isolated computing unit called a Docker container. The Orion 
platform handles all sourcing and scheduling of Cubes onto AWS instances. Floes are uploaded as 
Python-like packages, which can depend on other Python packages sourced from Anaconda or 
public pip repositories. 

OpenEye Permeability Floe 

The OpenEye Permeability Floe in Orion contains a series of Cubes that each performs one of the 
following functions: system preparation, MD equilibration, WE simulation and permeability 
analysis of the membrane-permeate system (see Figure 1B for an example of the flow relationship 
diagram of the compute kernels and above sections for details). The Simulation Manager and 
Segment Runner Cube respectively handle most of the WE logic and the MD propagation, and 
therefore, are connected to each other in a cyclic fashion to enable bidirectional communication 
between the WE driver and the MD engine. 

The Permeability Simulation Floe is hosted on the Orion platform where all the simulation setup 
and actual computation (including system preparation and WE/MD simulation) took place. The 
Floe exposes various parameters for system preparation and the WE simulation including the 
option to turn on/off the MAB scheme for automatic binning57 or the bin probability reweighting 
for faster convergence to the steady state35 (Supplementary Figure S3). The input molecules and 
the WE protocols used in this study were set using the Floe’s graphical user interface (GUI).  

Finally, the WE simulation is automatically parallelized and performed on CPUs or GPUs from 
either spot or non-spot AWS instances sourced by the Orion computing platform. Typically, the 
simulation will be automatically scaled-up by Orion to several hundreds of GPUs or thousands of 
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CPUs per WE iteration. Permeability simulations are analyzed on-the-fly, and a simulation report 
describing important features of the reactive trajectory data is generated upon completion 
(Supplementary Figure S4). The report provides the time-evolution of the permeability coefficient 
with a 90% confidence interval, probability distribution as a function of the progress coordinate z, 
and visualization of trajectories – both fully downloadable trajectories, as well as visual schematics 
of membrane crossing – that successfully reached the acceptor (A) compartment with their 
associated probabilities. 

Results 

Here, we present the results from fully automated permeability simulations performed on three 
“rule of five” molecules (tacrine, zacopride, sotalol) using the OpenEye Permeability Floe package 
in the Orion cloud computing environment. These drug-like molecules are weakly-basic primary 
or secondary amines that vary in size, shape, and number of rotatable bonds. 
 
Evaluation of WE protocols. To determine an effective WE protocol for simulating the 
membrane permeability for a drug-like molecule, we focused on tacrine, the simplest compound 
in this study with zero rotatable bonds (Figure 2A). In particular, we assessed the advantages of 
applying an adaptive binning scheme (MAB scheme) and WE steady-state (WESS) reweighting 
procedure by testing four WE protocols on GPUs: 1) standard WE with a manual, fixed binning 
scheme, 2) WE with the MAB scheme, 3) WE with the WESS reweighting procedure, and 4) WE 
with the MAB scheme and WESS reweighting (see Methods for full details). We also ran a WE 
simulation using protocol #4 on CPU cores rather than GPUs to perform a cost-benefit analysis of 
using GPUs over CPU cores. All the WE protocols yielded permeability coefficients (log 𝑃𝑃𝑚𝑚: -
6.95 to -3.23) that are in reasonable agreement with the value measured by MCDK-LE (-4.64)64 
and PAMPA (-5.02 ± 0.2);65 Figure 2B and Table 1).  

Relative to a WE simulation with a manual binning scheme and no reweighting, use of the MAB 
scheme reduces the required total simulation time by ~65% (by comparing protocol 3 and 4) and 
use of the WESS reweighting procedure reduces the required total simulation time by ~60% (by 
comparing protocol 1 and 2, where protocol 2 reached the final estimate of protocol 1 at around 
20 ns. See Figure 2C and Table 1). The combined use of the MAB scheme and WESS reweighting 
procedure reduces the required total simulation time by roughly threefold. The large lower CI 
bound for the simulation with the MAB and WESS protocol was a result of scattered incoming 
fluxes into the target state due to significant shorter aggregate time as compared to other protocols 
(see total simulation time in Table 1). Reasonably converged permeability coefficients were 
obtained within 50 ns of molecular time, which is defined as 𝑁𝑁𝑁𝑁, where 𝑁𝑁 is the number of WE 
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iterations and 𝜏𝜏  is the fixed time interval (100 ps) of each WE iteration. The fact that these 
successful membrane-crossing trajectories are orders of magnitude shorter than the mean first-
passage time for membrane permeation indicates that the membrane-crossing events are indeed 
rare events. Said another way, the trajectories include solely the relatively fast transitions with low 
probability between stable states, leaving out the long waiting times in the initial stable state for 
the low-probability transitions. 

In addition, we calculated the evolution of the progress coordinate (Eq. 16) of trajectories that 
successfully reached the target state in compartment A. This estimate is based on thousands of 
crossing events forked from about 10 independent events using standard (regular) WE with a fixed 
binning scheme (Supplementary Figure S4C). One of the top-weighted, successful trajectories 
(probabilistic weight: 6.0 × 10−6) was extracted for visualization at the atomic level (Figure 2D 
and Supplementary Movie S1).  

Mechanisms of membrane permeation for tacrine, sotalol, and zacopride. We evaluated the 
free energy profile of the molecule along z by symmetrizing the probability distribution sampled 
by the WE simulations. Using tacrine as an example, the free energy profile in Figure 3A shows 
that the largest barrier of the permeation process of the molecule was located at around 𝑧𝑧 = 0 Å, 
i.e., the center of the membrane. ~30 ns was needed for the free energy profile to converge to the 
final profile determined by the total 50 ns simulation. There is a smaller barrier at the membrane 
surface (𝑧𝑧 = ±20 Å), followed by an energy minimum near the center of each leaflet (𝑧𝑧 = ±10 Å). 

We also calculated four auxiliary progress coordinates, namely the angle of the unit electric dipole 
moment to 𝒛𝒛�, the number of hydrophobic contacts, the number of hydrogen bonds between the 
molecule and the membrane, and the end-to-end distance of the molecule to evaluate molecular 
orientation, hydrophobic interactions, and hydrogen bond structure with respect to the main 
progress coordinate, z, for tacrine (Figure 3B), zacopride (Figure 4C), and sotalol (Figure 5C). 
Interestingly, all three molecules passed through the membrane with a 60 - 120 degree angle (± 30 
degree with respect to z), with a relatively constrained angle near the center and interface of the 
membrane, especially for zacopride and sotalol. Tacrine formed a much larger number of 
hydrophobic contacts (~1000) with the membrane than zacopride (~300) and sotalol (~200), 
presumably due to its higher number of hydrophobic carbons (Supplementary Figure S5). All three 
molecules formed more hydrogen bonds near the headgroup region than in the center of the 
membrane. Tacrine, as expected, did not undergo a large conformational change crossing the 
membrane according to the end-to-end distances of the molecule (7.2 - 7.6Å), but it was observed 
“flipping” as previously predicted as a model for membrane permeation.29 Interestingly, zacopride 
seems to have crossed the membrane adopting a mostly extended form (end-to-end distance ~10.7 
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Å), whereas sotalol seems to be relatively more flexible inside the membrane interior (end-to-end 
distance between 9 - 12 Å). 

Overall, these 2D probability distributions suggest that our WE simulations with a single (and 
simple) progress coordinate were able to sample a variety of conformations that allowed the 
molecules to pass through the membrane. The distributions shown here also reinforce the idea that 
choice in reaction coordinate may influence the interpretation of a rate-limiting step, which could 
be a problem for methods based on the ISD model. Depending on whether hydrogen bond count 
to the membrane, end-to-end distance, or the number of hydrophobic contacts were chosen as a 
reaction coordinate, one might believe a rate limiting step occurred at different positions within z, 
e.g., in the center of the membrane for hydrophobic contacts, or near the membrane-water interface 
for the hydrogen bond count. 

We also extracted the trajectory with the highest probability for each molecule (see Figure 2D, 
Figure 4B, and Figure 5B for critical snapshots, and see Supplementary Movie S1-3 for full 
trajectories). Overall, the molecule adopted pathways consistent with our population-level 
observations above. Additionally, we observed water (<5 molecules at once) deep in the membrane 
(near 𝑧𝑧 = 0), which was either due to the drug “dragging” water across the bilayer (sotalol), or by 
the distorting the curvature of the outer leaflet of the membrane to bring water towards the bilayer 
center (zacopride). The water has been captured in both the visualized snapshots of each of the 
molecules, as well as the movies of the top weighted simulations of drug molecules crossing the 
membrane.  

Efficiency of WE simulations. To estimate the efficiency of WE simulations relative to 
conventional MD simulations, we make two comparisons. First, we compare the total computing 
time that would be required in Orion using conventional MD simulations to generate a single 
permeation event given the corresponding MFPT estimated by our WE simulations (see Eq. 12). 
Second, we make a similar comparison to Anton3 from D. E. Shaw Research, which is currently 
known as the fastest MD simulation engine in the world. As shown in Table 2, conventional 
simulations in Orion would require 1.5 to 177 years to generate a single permeation event 
depending on the molecule, which is roughly equivalent to 22 weeks to over 7 years on the latest 
Anton3. Our WE simulations generated the first permeation event in 1.1 (tacrine), 10.7 (sotalol), 
or 7.5 (zacopride) days and a total of 872 (tacrine), 66 (sotalol), or 56 (zacopride) permeation 
events were observed within a 7.9 (tacrine), 12.7 (sotalol), 11.7 (zacopride) day period. Although 
many of the pathways for these events are correlated, sharing common trajectory segments, 
reasonably converged permeation coefficients were obtained. 
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Discussion 
Despite our use of a model membrane system, our estimated permeability coefficients from WE 
simulations for the three molecules (tacrine: -4.27 ± 0.24, zacopride: -6.35 ± 0.22, sotalol: -5.32 ± 
0.22) are in reasonable agreement with experimentally measured values (tacrine: -4.6464 or -5.03 
± 0.2,65 zacopride: -5.23,64 sotalol: -6.02,64 -5.58 or −6.74;66 see Figure 6 and Supplementary 
Figure S1 for detail). Absolute agreement of our calculated permeability coefficients with 
experiment would not, however, be expected due to several complexities of real cell membranes 
that are lacking in our simulation setup, particularly for cell-line assays like MDCK and CaCo-2. 
These complexities include the presence of multiple lipid species, including cholesterol, 
transmembrane proteins, and membrane rafts. Such membrane-associated structures can be 
particularly important for modeling the permeation process of more complicated cell types like 
those involved in the blood-brain barrier. Additionally, paracellular transport exists as a potential 
method for drug delivery. In future efforts, we will expand our model membrane (currently, 50 
POPC lipids per leaflet) to accommodate larger molecules that fall outside the spectrum of 
Lipinski’s “rule of five”, such as peptides, natural products, or de novo designed biologics. In 
addition, we will improve on the diversity of pathways for membrane permeation by including 
orthogonal dimensions to the progress coordinate that can distinguish between different 
conformations of the molecule or the lipid bilayer, e.g., radius of gyration of the drug, or the extent 
of membrane curvature. These efforts will greatly aid the simulation of membrane permeation for 
a modern lead series with more than 10 rotatable bonds, including molecular glues and 
macrocycles that are highly flexible with large molecular weights (> kDa). 

Additional concerns with the current work could be either the small number of molecules used for 
model development, or the minimal dynamic range of the permeability data itself (Log 𝑃𝑃𝑚𝑚 varies 
between about -4 and -6). Both issues should be addressed. Regarding the number of compounds, 
it is true that three molecules alone are not enough to provide the statistical insight needed to 
reliably judge the predictive power of the model for any given molecular species. Even so, for the 
molecules presented here, our model was able to predict permeability coefficients within about log 
unit of experimental MDCK-LE and PAMPA measurements. Such a discrepancy with respect to 
experiment can be considered small, especially compared to free energy-based methods where 
permeability coefficients may be several log units away from a reference value.20 Furthermore, 
one may also note that the agreement between two permeability estimates for the same molecule 
using the same experimental technique may not be in perfect agreement. In fact, reported PAMPA 
data for sotalol using either the top-to-bottom (TtoB) or the bottom-to-top (BtoT) protocol66 
provided permeability coefficients that differed by more than a log unit (see Figure 6). Note that 
the apparent discrepancy between 95% CIs in Figure 2C and standard deviations in Figure 6 is 
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because the original CIs and standard deviations were defined in the linear scale and converted to 
the log scale for visual representation. 

As shown by Rogers and Geissler,25 the choice of using z as the reaction coordinate for the free 
energy-based methods could have an enormous impact on the perceived free energy barrier, which 
may contribute to multi-log unit differences in the absolute comparison to permeability 
experiments mentioned above. While a reaction (progress) coordinate is typically defined for the 
WE strategy, the computed rates are independent of the chosen coordinate. Therefore, even though 
the efficiency of the computation can be reduced by a poor choice of reaction coordinate, the 
results are much less sensitive to it compared to free energy-based methods. In the most extreme 
case, when a reaction coordinate is suboptimal, WE simulations can surmount barriers along 
orthogonal coordinates in a “brute force” manner, whereas free energy-based methods have no 
means of recovering. Moreover, rates computed from free energy methods depend exponentially 
on the barrier height, which is in turn very sensitive to the choice of the progress coordinate.  

The OpenEye Permeability Floe used for our WE simulations is designed to be a user-friendly 
cloud application that can assist modelers in designing drugs for increased bioavailability. The 
cloud-based Floe is system-agnostic, enabling users to run and analyze simulations on any 
workstation with almost no hardware requirement aside from an Internet connection. The Floe also 
features a GUI that facilitates the set up for a permeability simulation with their drug-like molecule 
of interest. The user can increase or decrease the simulation length for analysis if needed, and an 
automatic detection of convergence in the estimated permeability coefficient is under investigation 
that will trigger the floe’s termination. As mentioned above, the WE strategy not only yields a 
direct calculation of the passive permeability coefficient, but also provides full continuous 
trajectories revealing how molecules cross through the membrane. 
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Figure 1. Basic weighted ensemble protocol and system setup. A) Illustration of the WE protocol for a membrane 
permeability simulation in which a one-dimensional progress coordinate z (Eq. 16) is divided into bins and iterative 
rounds of dynamics propagation and a resampling procedure are performed with the goal of providing even coverage 
along the coordinate. As seen in the upper left, two trajectories (solid dots) originating from the left-most bin each 
occupy a previously empty bin after N rounds of dynamics (curved arrows). The resampling procedure then replicates 
the trajectories in these newly occupied bins to maintain a target number of 2 trajectories per bin. B) Simulation 
workflow used by the Permeability Floe to directly calculate permeability coefficients, including one round of WE 
resampling (using WESTPA) and dynamics propagation for each WE iteration (see Supplementary Figure S1 for 
further details). C) Snapshot of the simulation system from a trajectory of a “rule of five” permeate, sotalol, crossing 
the periodic membrane. All water molecules have been removed for clarity. 𝐿𝐿𝑧𝑧 is the z-component of the simulation 
box while 𝑧𝑧’ is the distance from the center of mass of the permeate and the center of mass of the membrane (straight 
blue lines).  
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Figure 2. Estimated permeability coefficients of tacrine. A) Chemical structure of tacrine. B) Average (log) 
permeability coefficients (with 95% confidence intervals) calculated from each of the four WE simulations with 
different protocols (see legend in panel C). The gray dashed line indicates the experimentally observed value. C) Time 
evolution of estimated logarithm of the permeability coefficients (cm/s) for tacrine from four WE simulations, using 
a fixed binning scheme with (regular, blue) or without WESS (orange), and the MAB scheme with (green) or without 
WESS (purple), respectively. The solid lines indicate the mean values of the estimates, and the shaded areas indicate 
95% confidence intervals. The dashed gray line indicates the permeability coefficient measured by an MDCK-LE 
experiment64. The molecular time is defined as or 𝑁𝑁𝜏𝜏, where 𝑁𝑁 is the number of WE iterations and 𝜏𝜏 is the fixed time 
interval (100 ps) of each WE iteration. D) The snapshots of the tacrine molecule (cyan) passing through the lipid 
bilayer (gray) at selected molecular times. Water molecules in close contact with the molecule are highlighted in 
magenta. 
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Figure 3. Free energy profile along the lipid normal (z) for tacrine using the reweighting WE protocol (WESS). 
A) Free energy profile of tacrine along the bilayer normal, z. The probability distribution along z, 𝑃𝑃(𝑧𝑧), was extracted 
from the simulation at different molecular times and symmetrized to account for the recycling condition imposed by 
the WE steady-state protocol. B) The 2D probability distributions (in units of 𝑘𝑘𝐵𝐵𝑇𝑇) of z and the angle of molecule 
(dipole moment) with respect to z (top left), hydrophobic contacts between the molecule and the membrane (top right), 
the number of hydrogen bonds between the molecule and the membrane (bottom left), and the end-to-end distance of 
the molecule (bottom right, blue: < 5𝑘𝑘𝐵𝐵𝑇𝑇 , red: > 5𝑘𝑘𝐵𝐵𝑇𝑇). The black line represents the top weighted trajectory 
(probabilistic weight: 6.0 × 10−6 ), and the purple star indicates the start location. For all 2D distributions the 
probabilities are left unsymmetrized across the membrane. 
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Figure 4. Mechanistic analysis of zacopride permeation. A) Chemical structure of zacopride. B) The snapshots of 
the zacopride molecule (cyan) passing through the lipid bilayer (gray) at selected molecular times (see legend in Figure 
2D). C) The 2D probability distributions (in units of 𝑘𝑘𝐵𝐵𝑇𝑇) of the bilayer normal, z, the angle of the molecule with 
respect to z (top left), hydrophobic contacts between the molecule and the membrane (top right), the number of 
hydrogen bonds between the molecule and the membrane (bottom left), and the end-to-end distance of the molecule 
(bottom right, blue: < 5𝑘𝑘𝐵𝐵𝑇𝑇 , red: > 5𝑘𝑘𝐵𝐵𝑇𝑇). The black line represents the top weighted trajectory (probabilistic 
weight: 2.2 × 10−5), with purple dots indicating the location of the snapshots in panel B and a purple star indicating 
the start location. 
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Figure 5. Mechanistic analysis of sotalol permeation. A) Chemical structure of sotalol. B) The snapshots of the 
sotalol molecule (cyan) passing through the lipid bilayer (gray) at selected molecular times (see legend in Figure 2D). 
C) The 2D probability distributions (in units of 𝑘𝑘𝐵𝐵𝑇𝑇) of the bilayer normal, z, and the angle of molecule with respect 
to z (top left), number of hydrophobic contacts between the molecule and the membrane (top right), number of 
hydrogen bonds between the molecule and the membrane (bottom left), and the end-to-end distance of the molecule 
(bottom right, blue: < 5𝑘𝑘𝐵𝐵𝑇𝑇 , red: > 5𝑘𝑘𝐵𝐵𝑇𝑇). The black line represents the top weighted trajectory (probabilistic 
weight: 9.3 × 10−6), with purple dots indicating the location of the snapshots in panel B and a purple star indicating 
the start location. 
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Figure 6. Membrane permeabilities (𝐋𝐋𝐋𝐋𝐋𝐋 𝑷𝑷𝒎𝒎) calculated using various WE simulation protocols for tacrine, 
sotalol, and zacopride. Uncertainties represent standard deviations, which are evaluated as ¼ the difference between 
the 95%CI upper bound and the lower bound. Experimentally measured values are shown in gray [MDCK-LE: 
Dickson et al. (2019),64 PAMPA for tacrine: Katt et al. (2016),65 PAMPA for sotalol: Liu et al. (2012)66]. See also 
Supplementary Table S1 in the Supporting Information. 



 1 

Table 1. Efficiencies of different WE protocols in predicting the membrane permeability (𝐋𝐋𝐋𝐋𝐋𝐋 𝑷𝑷𝒎𝒎) of tacrine.  

Compound MAB  WESS  Platform 
Total 

simulation 
time (μs) 

Wall clock 
time 

(Orion days) 

Predicted log 
(𝑷𝑷𝒎𝒎 cm/s) 

Tacrine 

  GPU 23.0 15.5 -5.54 ± 0.13 

 x GPU 23.0 16.2 -3.23 ± 0.09 

x  GPU 8.2 7.1 -6.96 ± 0.16 

x x GPU 8.1 7.9 -4.27 ± 0.24 

x x CPU 5.6 11.4 -5.20 ± 0.28 
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Table 2. Comparison of wall-clock times required by weighted ensemble MD simulations relative to standard MD simulations for generating a single drug 
membrane crossing event. Wall-clock times are reported for the Orion cloud-computing platform on Amazon Web Services and the Anton3 special-purpose MD 
supercomputer, and were estimated using the mean first passage time (MFPT) for the permeation process determined by weighted ensemble MD. The wall-clock 
time is also reported for the generation of a reasonably converged estimate of the permeability coefficient 𝑷𝑷𝒎𝒎, which is not practical to estimate using standard 
MD.  

Compound 
(no. of atoms) 

Predicated 
MFPT (ms) 

Weighted Ensemble MD Standard MD* 

𝑷𝑷𝒎𝒎 estimation A single crossing event A single crossing event  

Total 
simulation 
time (μs) 

Wall clock 
time 

(Orion days) 

Simulation 
time (ns) 

Wall clock 
time 

(Orion days) 

Wall clock 
time 

(Orion yearsa) 

Wall clock time 
(Anton3 yearsb) 

Tacrinec 
(29) 

4.6 8.1 7.9 1.4 1.1 1.5 0.06 

Sotalol 
(38) 

52.1 6.3 12.7 3.7 10.7 16.5 0.71 

Zacopride 
(41) 

559.2 6.0 11.7 3.0 7.5 177.3 7.7 

* Expected times based on the MFPTs predicted by the WE simulations.  
a Using 100 GPUs at a time on Orion at the speed of 8600 ns per day. 
b Assuming 200 ms per day for a similar sized system (~33k atoms), as reported using the 64-node Anton3 performance data for DHFR and 
ApoA167 from D. E. Shaw Research. 
c Data from the tacrine run using MAB and WESS. 
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Supplementary Information 

Supplementary Figure S1. Structural layout of the OpenEye Permeability Floe, which can be broken into 5 logical phases: (1) Preparation of input 
the permeate system (purple); (2) Equilibration using a standard MD protocol of the aqueous ligand/membrane system (blue); 3) Initialization of the 
WESTPA toolkit (green); (4) Loop of segment trajectory splitting/recycling events using the WE algorithm, and output trajectory storage (orange); 
(5) Inline analysis of the permeability simulation for kinetics and convergence criteria (gray).  
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Supplementary Figure S2. The estimated permeability as a function of the compartment width. The upper limit, 25 Å, is the full length of the water 
compartment in our simulation ((𝐿𝐿𝑧𝑧 − 40Å)/2). The lower limit, 7.5 Å, roughly corresponds to the thickness of the water layer near the membrane 
surface.
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Supplementary Figure S3. The Floe setup GUI of the OpenEye Permeability Floe. All the parameters 
have a brief description of their function and are grouped with other parameters of the same 
component (e.g., system preparation, WE simulation, etc.) for easier navigation on the user’s end.
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Supplementary Figure S4. Simulation report figures generated by OpenEye Permeability Floe. A) The time (iteration=molecular time/τ) 
evolution of the permeability estimate (blue) and that estimated using RED (orange). The curves represent the mean estimates, and the shaded 
areas represent 95% CI. B) The time evolution of the probability distribution (in units of 𝑘𝑘𝐵𝐵𝑇𝑇). C) All the recycled trajectories in the regular WE 
with fixed binning scheme run represented by the progress coordinate, z (y-axis), versus the molecular time in terms of the number of iterations (x-
axis).
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Supplementary Figure S5. Chemical structures of tacrine, sotalol, and zacopride. Atoms that were chosen 
to calculate the end-to-end distances were marked by orange circles, and the hydrophobic carbons were 
marked by purple circles. 
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Supplementary Table S1. Predicted and experimentally determined permeabilities.  

 

Compound 
MAB 

Adaptive 
binning 

WESS 
Reweight-

ing 
Platform 

Predicted log 
(𝑷𝑷𝒎𝒎 cm/s) 

Expt. log  
(𝑷𝑷𝒎𝒎 cm/s) 

Tacrine 

  GPU -5.54 ± 0.13 

-4.64, 
-5.03 ± 0.2, 

 x GPU -3.23 ± 0.09 

x  GPU -6.96 ± 0.16 

x x GPU -4.27 ± 0.24 

x x CPU -5.20 ± 0.28 

Sotalol x x GPU -5.32 ± 0.22 
-6.02,  

-5.58 (TtoB),  
-6.74 (BtoT) 

Zacopride x x GPU -6.35 ± 0.22 -5.23 
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