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Abstract 
Identifying synthetic routes for molecules of interest is a crucial step when discovering new drugs or 

materials. To find synthetic routes, we can use computer-assisted synthesis planning using expansion 

policy networks trained on reaction templates extracted from patents and the literature. However, 

experience has shown that these networks are biased towards frequently reported reactions. This 

study shows that changing the molecular representation from an extended-connectivity fingerprint to 

a simple graph representation can increase the accuracy for templates used less than five times by 5.0-

8.5% points. We also illustrate that a simple oversampling of the training set yielded a top-1 accuracy 

increase in the 17-20% point range for templates used five times or less. 

 

Introduction 
In recent years have computer-assisted synthesis planning has undergone significant changes [1] . 

Research are moving away from traditional expert systems, built around hand-encoded transformation 

rules to automated search algorithms guided by artificial intelligence trained on millions of known 

reactions [2]. The paper from Segler et al. [3] illustrates that reaction templates extracted from large 

reaction databases coupled with a Monte Carlo tree search (MCTS) can be used as an efficient 

retrosynthetic planning tool.  

The MCTS algorithm consists of four phases: selection, expansion, rollout, and update. In the 

expansion phase, new nodes are added to the search tree. The new nodes are added based on the 

expansion procedure illustrated in Figure 1. The target molecule is parsed through an expansion policy 

network, which is a neural network trained to recommend retrosynthetic templates. Typically, the 

 
Figure 1 Illustration of the expansion procedure used in the Monte-Carlo tree search. First, the 
expansion policy network ranks the template library by returning the probability of template (T) 
given the target molecule (m). The top-50 templates are applied to the target molecule to give 
potential reactions, which are then deemed feasible or not by the in-scope filter. 

 

 

 



Thesis Chapter ChemRxiv.org preprint 

December 9, 2021   Page 2 of 15 

 

search space of the MCTS is limited by only including the 50 most probable templates (or the number 

of templates it takes to reach a cumulative probability of 0.995) [3, 4].The reaction databases used to 

train the expansion policy network are often very imbalanced, i.e. some templates are used frequently, 

while many are rarely used. In the US Patent Office reaction database (USPTO) curated by Thakkar et 

al., 10% of all recorded reactions use transformations that is only reported five times or less [5, 4]. 

However, the infrequently used transformations account for roughly 60% of all unique templates 

found in the database. In the other end, 50% of the reactions use templates that are reported more 

than 100 times but the frequent transformations only account for 2% of the unique templates. The 

imbalanced nature of the reactions databases results in expansion policy networks biased towards 

frequently used templates. For example, the expansion policy network published with AIZynthFinder 

[6] has a top-1 accuracy of 65.7% for reactions that use templates that occur more than 100 times in 

the USPTO database, but only a top-1 accuracy of 34.8% for reactions that use templates recorded five 

times or less. In essence, the expansion policy networks will perform worse for less frequently used 

templates. There have been proposed multiple ideas to address the low-data issue. Some solutions 

rely on template applicability models and knowledge transfer to increase accuracy in the low-data 

domain [7, 8]. Others use structural information about the templates to allow the models generalizing 

information across template classes [9].  

Recently there have been growing evidence that properties computed using quantum 

mechanics (QM) methods can offer additional information about molecules that are difficult to learn 

from the molecular graph representation itself without many examples [10, 11]. By relying on more 

abstract similarities between products, QM methods are powerful tools and can be used to extract 

reactivity trends for organic reactions  [12]. For example, QM methods can be used to identify reactive 

atomic sites via local reactivity descriptors [13]. Local reactivity descriptors, such as the Fukui 

functions, indicate how the electron density of a given molecule responds to an attack of another and 

have been applied to identify which sites are most suitable for electrophilic or nucleophilic attack [14, 

15]. A set of such local chemical descriptors can therefore carry essential information about the 

chemical reactivity.  

In this paper, we test the hypothesis that we can reduce the skewed performance of expansion policy 

networks by introducing semi-empirical QM properties. The QM data is embedded in the model 

through graph convolution. While we find that this approach improved performance we show that the 

improvement comes from the graph convolutional molecular representation instead of the  fingerprint 

representation used originally. Secondly, we  show that the skewed performance can be decreased 

further by using oversampling of rare templates. 

 

Methods 
Template library.  The database of reaction templates was obtained from the publicly available US 

Patent Office dataset [5] as prepared by Thakkar et al. [4]. The library consists of 911,869 reactions 

distributed across 46,695 unique templates.  

Training, validation, and test sets were constructed by randomly splitting the 911,695 reactions in 

USPTO database in a 90/5/5 split. The validation and training set each contains 45,594 reactions, while 

the training set contains 820,682 reactions. The 46,695 unique templates in the USPTO database were 

represented as binarized labels. The reactions are encoded as pairs of reaction SMARTS and product. 

The models are trained to assign the highest probability to the reaction SMARTS given the 

corresponding product. 
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Template recommender ECFP neural network. The ECFP-based recommender model is published with 

AIZynthFinder [4, 19, 6]. The network is identical to the architecture of the dense layer following the 

graph convolutional layers used in the graph recommender neural networks. The input is a 2048-bit 

ECFP4 fingerprint computed using the Morgan algorithm in RDKit [16, 20]. The input is passed to a fully 

connected layer with 512 nodes with an ELU [21] activation and a dropout rate of 0.4. Finally, a SoftMax 

activation yield probabilities of each template in the library. The ECFP recommender model is trained 

using the exact same train, validation, and test set we used to train the graph convolutional neural 

networks.  

 

Template recommender graph neural network. We have trained a series of graph recommender 

neural networks that differ in how the information is embedded into the molecular graph and how the 

convolutional operation is performed. We use a simple convolutional operator: the graph convolution 

(GCN) introduced by Kipf et al. [22]. 

The network architecture is illustrated in Figure 2. The network can take two inputs: a graph that 

contains simple atom descriptors extracted with RDKit, and a vector that contains atomic properties 

calculated with SQM. A more detailed description of the input used for each model can be found in SI.  

The RDKit data can optionally be parsed through a fully connected layer (red layer in Figure 2) to reduce 

the RDKit feature input dimensionality before it is concatenated with the QM data. After concatenating 

the RDKit and QM data, the size of the atom embedding has to match the dimensions of the 

 

 
Figure 2 Illustrates the graph neural network architecture. The network takes 
molecules represented as graphs as input. The RDKit and QM descriptors are 
concatenated (⊕) before being parsed to the graph neural network. The 
dense layer (in the red box), before concatenation, is optional and is used to 
compress the RDKit input. 
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convolutional layer. Thus, the atom embedding is expanded in another fully connected layer with a 

ReLU activation to match the convolutional operator. Next, the graph is parsed through three layers 

of graph convolutions and turned into a single vector representation by a global max-pooling layer. 

Hereafter, the vector is passed to a dense neural network with an architecture identical to the one 

used by Thakkar et al [4]. Training of the networks was allowed to continue for a maximum of 200 

epochs. Training is stopped early if the validation loss do not improve for ten epochs. During training, 

the validation loss is monitored, and if the loss hit a plateau for five epochs (defined as no improvement 

greater than 10-6) the learning rate is halved. The implementation of the graph neural networks is all 

done in PyTorch Geometric [23]. The training was carried out using PyTorch Lightning using an Adam 

optimizer [24] with an initial learning rate of 0.001. The loss was computed with the categorical cross-

entropy loss.  

 

Creating quantum chemical data. We generated a database containing atomic/bond properties 

calculated by semi-empirical quantum mechanics for all 911,869 reactions. The properties was 

computed using a simple automated computing workflow. The workflow starts from a SMILES string 

representing the product and then we create a random 3D conformer using the ETKDGv3 algorithm as 

implemented in RDKit [16, 17].  The conformer was then subject to a single-point and Fukui GFN2-xTB 

[18] calculation from which we extracted the local atomic QM properties. We extracted the partial 

charge (q), Fukui index (f+, f0, f-), polarizability (α), and for each atom sum the Wiberg bond orders 

(sBO), which previously have been employed to augment machine learning representations  [10, 11].  

 

Results and Discussion 
Performance of the recommender neural networks. We trained several graph template 

recommender models, differentiated by the input information available to each model. The ECFP 

policy expansion network according to Genheden et al. converged within 15-20 epochs, which is 

quicker than the graph neural networks [19]. However, all graph models converged within 100-150 

epochs  as seen in SI Figure S 1. 

To establish a baseline for the graph neural network type of model, we train a graph neural 

network that essentially follows an implementation similar to DeepChem's GCN networks [13]. The 

node features are extracted directly from the RDKit molecular object graph of the product. They 

include information about the atom type, number of directly bonded neighbours, formal charge, 

Table 1 Test set accuracy for the different graph neural networks. 

 Model Top-1 

(%) 

Top-5 

(%) 

Top-10 

(%) 

Top-50 

(%) 

 ECFP* 58.7 83.5 88.7 94.8 

 GCN (RDKit) 58.6 84.5 89.9 95.7 

 GCN (RDKit + QM) 58.7 84.5 89.8 95.8 

 GCN (12 RDKit) 58.6 84.4 89.7 95.6 

 GCN (6 RDKit, 6 QM) 57.5 83.7 89.4 95.5 

 GCN (Atom type) 48.8 74.8 82.1 91.9 

 GCN (Atom type + QM) 56.5 82.7 88.4 95.0 

* The ECFP model is the public recommender model trained on the USPTO database, which 

is downloaded as part of AIZynthFinder. 
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hybridization, automaticity, ring information, and atomic mass.  Which is very similar to the atomic 

information used to construct the ECFP representation [20]. We call this model GCN (RDKit) as it only 

contains atom features extracted directly from RDKit. As illustrated in Table 1, the mean accuracy of 

the baseline GCN (RDKit) model is quite similar to the public ECFP recommender model. If anything, 

the top-5, top-10, and top-50 accuracy of the GCN (RDKit) model slightly outperform the ECFP 

recommender model with approximately 1% point. However, as stated in the introduction, ML models 

generally perform worse for less frequent data. Due to the very imbalanced nature of the data, the 

mean accuracy across the entire test hides details in the performance.  As Illustrated in Figure 3, which 

shows the mean accuracy for the cumulative template occurrence, there is a distinct drop in accuracy 

for less frequent reactions. The top-1 accuracy of the templates that occur less than or equal five times 

is roughly half as accurate as the templates that occur more than 100 times: 34.8% compared to 65.7% 

for the ECFP model, and 33.5% compared to 65.0% for the and GCN (RDKit). Figure 3 illustrates that 

the insignificant differences in the mean accuracy hid some noteworthy differences between the two 

models. It is apparent that the GCN (RDKit) model generally performs better for the rare reactions, and 

this trend is most evident for the top-50 accuracy where we find a difference of 8.5% between the two 

models for templates that occur less than or equal to five times. This slight rise in accuracy for the GCN 

(RDKit) model can likely be attributed to the convolutional layers, which in essence, build up a custom 

fingerprint that is trained towards recommending which template to use. 

Next, we investigate what happens if QM properties are included in the node feature vector. 

Therefore, we extend the GCN (RDKit) atom feature input with six additional GFN2-xTB QM features: 

the partial charge (q), the Fukui index (f+, f0, f-), the sum of Wiberg covalent bond orders (sBO), and 

the polarizability (α). We could have calculated many different molecular and atomic properties, which 

 
Figure 3 The top-1, top-5, top-10, and top-50 cumulative average accuracy for 
the ECFP and graph models. The average accuracy is calculated for the set of 
reactions (only test set reactions), for which the template (t) occur in the USPTO 
database less than or equal X times (from 3-1000 occurrences). 
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could have been used as descriptors. However, many of the properties may carry redundant 

information, and testing all combinations of available descriptors at different levels of theory is beyond 

the scope of this study. When including QM properties, we remove the corresponding RDKit 

properties, i.e. the formal charge and number of directly bonded neighbours. The extended model, we 

give the name GCN (RDKit + QM). The mean accuracies for the GCN (RDKit) and GCN (RDKit + QM) 

model (listed in Table 1) are practically identical with only insignificant changes of maximally 0.1% 

point. The same trend is observed in the cumulative accuracy in Figure 3 where it is hard to distinguish 

the two models.  

To ensure that result is not just a consequence of the uneven distribution of RDKit and QM atom 

features. The input node embedding in the GCN (RDKit + QM) contains 32 values in total, and only six 

of those are QM properties. We train two extra models where the RDKit part of the GCN (RDKit) and 

GCN (RDKit + QM) models are compressed into a six and 12-dimensional vector, respectively. By 

compressing the RDKit part of the GCN (RDKit + QM) before concatenating with the six QM properties, 

we transform the node embedding into a 12-dimensional feature vector with equal weight on the 

RDKit and QM features. The compression is performed by passing the RDKit input feature vector 

through a dense linear layer with a ReLU activation function (red layer in Figure 2) before 

concatenating with the QM descriptors. Again, we observe no significant differences between the two 

models when comparing the mean accuracies in Table 1 or the cumulative accuracy in Figure 3. If 

anything, the GCN (12 RDKit) model performs slightly better than the GCM (6 RDKit, 6 QM). These 

findings refute our hypothesis that the lack of differences is a result of uneven distribution of RDKit 

and QM features.  

To better understand what the QM properties do to the model, we train two additional models. 

The first model we name GCN (Atom type) and is the most basic model we trained. The GCN (Atom 

type) model only contains node features that describe the kind of atom (same atom encoding as the 

GCN (RDKit) model). The second model is called GCN (Atom type + QM) extends the GCN (Atom type) 

model by including the six QM atom properties. Unsurprisingly, the GCN (Atom type) model performs 

the worst since it contains much less information about the atoms. The top-1 mean accuracy (Table 1) 

drops from 58.6% to 48.8% compared to the GCN (RDKit) model. However, when the QM properties 

are included, the top-1  accuracy increases to 56.5%, which is only a decrease of 2.1% points compared 

to the GCN (RDKit) model and only a drop of 0.7% points for the top-50 accuracy. This suggests that 

there is a significant correlation between the RDKit features and the QM property features we chose. 

Such correlations can explain why we see no differences in accuracy between the GCN (RDKit) and GCN 

(RDKit + QM) model since they, in essence, carry similar information about each atom. It also explains 

why the GCN (Atom type + QM) and the GCN (RDKit) model almost perform the same. 

 

Applicability of the predicted templates. The accuracy of the expansion network only reflects the 

network's ability to match one product to one template. In practice, when the network is applied to 

retrosynthetic route planning, the top-50 templates (or a cumulative probability of 0.995) are typically 

applied to the target product molecule [14, 1]. However, even a highly accurate model is not 

guaranteed to recommend applicable templates. This problem gives rise to high failure rates for the 

proposed templates due to the template's inability to match a substructure in the target for which it 

is was predicted. Table 2 shows the average number of templates it takes to reach cumulative 

probability above  0.995, and the number of those that actually can be applied to the target molecule. 

Here we notice differences between the ECFP recommender model and the GCN (RDKit) model. The 

most notable is the average number of templates that needed to reach a probability of 0.995 is 42.3 
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for the ECFP model compared to 31.9 for the GCN (RDKit) model. Which could indicate that the GCN 

(RDKit) model is slightly more certain about the top-1 prediction compared to the ECFP model, and 

therefore does not need many extra templates to reach a cumulative probability of 0.995. This is 

confirmed by comparing the average top-1 probability for the GCN (RDKit) and ECFP models which is 

0.69 and 0.63, respectively. Because we include less templates we also see a slight decrease in the 

number of applicable templates from 16.3 to 12.7. However, the success rate of applicable templates 

in the GCN (RDKit) and ECFP models is approximately 40% in both cases. By comparing the GCN (RDKit) 

and GCN (RDKit + QM) we see that the average number of templates needed to reach a cumulative 

probability of 0.995 and the number of applicable templates is practically unaffected by including our 

chosen QM properties.  

The maximal number of applicable templates we find is 16.3 for the ECFP model. To ensure that 

it is not just the average number of applicable templates for the target molecule (of the 46,695 unique 

templates), we apply all templates to all target molecules. The distribution of applicable templates in 

the test set for each target molecules are seen in the SI Figure S 2, but on average can 281 templates 

be applied to the target. The network thus still provides a clear enrichment of applicable templates in 

the top prioritized templates.   

 The fact that we, on average, can apply 281 of the 46,695 templates raises an essential question 

about the training setup. For retrosynthetic prediction, we are not in general interested in training a 

network that only recreates the one-to-one mapping found in the training set (target molecule to a 

template). Instead, we want the network to propose several applicable templates, preferably a mix of 

rare and common templates. However, as training is set up for most data-driven retrosynthetic tools 

available, the network is, during training, attempting to recreate the one-to-one mapping. This is due 

to the choice of the loss function, i.e. the cross-entropy loss, which only rewards the network if it 

succeed in an exact one-to-one mapping [1, 14]. The discrepancy between the training objective and 

how we are applying the model means, in the extreme case, that we are relying on coincidences that 

there is more than one applicable template among the top-50 templates. The training setup will force 

the network to get as close as possible to predict precisely one template with more certainty. During 

training the network will attempt to make the top-1 probability as close as possible to 1.  Thus, we will 

likely observe that the more accurate (or specific) the model becomes, the fewer templates the model 

recommend (given the same probability cut-off). Because the model is more confident in its prediction 

(top-1 probability is closer to 1), we needed fewer templates to reach a cumulative probability of 0.995. 

Table 2 Number of templates with a cumulative probability 
above 0.995, and how many of these can actually be applied. 

Model Avg. 

 # templates 

Avg. applicable 

templates 

ECFP* 42.3 16.3  

GCN (RDKit) 31.0 12.7 

GCN (RDKit + QM) 30.1 12.1 

GCN (RDKit), oversample 10 27.7 11.4 

GCN (RDKit), oversample 50 27.1 10.3 

    * The ECFP model is the public recommender model trained on the USPTO 

database, which  is downloaded as part of AIZynthFinder. 
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This trend is observed when we compare the average templates of the GCN (RDKit) and ECFP 

recommender model in Table 2.  

The GCN type of networks thus generally offers an advantage over the ECFP network, with a 

better top-50 accuracy for less frequent reactions. But the inclusion of QM data does not offer any 

improvements over the GCN (RDKit) model that only uses RDKit properties. 

 

Random oversampling/undersampling. As an alternative to adding information on the atomic level, 

we also tested oversampling of seldomly used templates. The reason for oversampling/undersampling 

in machine learning is that classifiers (as the recommender model) are typically more sensitive towards 

the majority class. This can be illustrated by analyzing the mean template occurrence, which describes 

the average reported instances of the templates used/predicted of the reactions in question. For 

example, two reactions rely on templates reported 50 and 100 times, resulting in a mean template 

occurrence of 75. In the USPTO test set, the mean template occurrence is 1112, while the top-1 mean 

template occurrence for the GCN (RDKit) model is 1742. This indicates that the trained model generally 

predicts more frequently used templates than the underlying dataset dictates. To overcome the bias, 

more weight can be assigned to the minority classes in the training set by sampling them with 

replacement or reducing the importance of the majority classes in training set by undersampling, 

which means that you only choose some samples from the majority class. The objective of 

oversampling/undersampling is to get a more even accuracy across all types of reactions, which would 

be a more horizontal line for the cumulative template occurrence in Figure 5. 

We train the GCN (RDKit) model on three different training sets to test how random under-

/oversampling influences the recommender models performance. The three different training sets all 

have varying levels of oversampling and undersampling. The first training set is created by 

oversampling. We sample ten reactions (with replacement) for each template class that occur ten or 

fewer times in the training set (35,355 of the 46,673 templates). The training set contains 1,022,940 

reactions. The second training set is sampled identically to the first one, but instead, we use a cut-off 

of 50 (44,636 of the 46,673) occurrences. With a cut-off of 50, we get a training set with 2,717,960 

reactions. The third training set is curated by both under- and oversampling the reactions, so the 

number of reactions in each template class is equal. We do this by sampling 30 reactions, with 

replacement, from each template class, resulting in a training set size of 1,400,190 reactions.   

Figure 5 clearly illustrates that by oversampling the less frequent reactions, we see a significant 

increase in the accuracy for the less used templates. The top-1 accuracy for reactions that occur less 

than or equal to five times increases from 33.8% to 50-54%, depending on how the test set sampling 

is performed. However, the way that the model behaves for frequent reactions is quite different. The 

model where each template is represented by exactly 30 reactions (grey line) shows a dramatic 

decrease in accuracy for frequently used templates. Also, the average template occurrence for the 

model is only 78, which suggests that the model is heavily biased towards less frequent reactions. The 

strong bias indicates that we have thrown too much information away due to a very aggressive 

undersampling of common templates. The two other models, that oversample the rare reactions (cyan 

and yellow lines), both clearly exhibit a more horizontal trend. The horizontal trend indicates that the 

accuracy are more balanced across all templates than the model trained on the unprocessed training 

set. Another way to illustrate this is by comparing the average top-1 template occurrence which is 

1492 and 1389 for the slightly oversampled (cut-off 10, cyan line) and the “heavily” oversampled (cut-

off of 50, yellow line), respectively. These average template occurrences are much better in line with 

the true values of the test set, albeit there is still room for improvement. The slightly over oversampled 
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model performs worse on less frequently used templates then the “heavily” oversampled model. 

However, around the a template of 100 occurrence the “heavily” oversampled model falls below the 

model trained on the standard training set. The drop below the standard model means that even 

though the accuracy for rare reactions is better the overall accuracy of the model is a bit worse. The 

applicability of the templates recommended by the slightly and “heavily” oversampled models are 

pretty similar. As seen in Table 2, both models, on average, needs the top-28 templates to reach a 

 
Figure 5 Cumulative accuracy for the GCN (RDKit) model trained on four different training 
sets. GCN (RDKit) – Up10 and Up50 are the “slightly” and “heavily” oversampled training 
set, while the GCN (RDKit) – Up equal model is trained on a training set  where the 
samples were equally distributed.   

 

 
Figure 4 The top-50 cumulative SoftMax probability. Up10 and 
Up50 refer to the “slightly” and “heavily” oversampled training 
sets.  

 



Thesis Chapter ChemRxiv.org preprint 

December 9, 2021   Page 10 of 15 

 

cumulative probability of 0.995 (or maximally top-50). But among the recommended templates, only 

10 and 11 of them are applicable. Figure 4 show the average cumulative probability of the models. It 

illustrates that the increase in cumulative probability is more significant when fewer templates are 

included for the oversampled graph methods. It confirms the tendency that increased model 

confidence will result in fewer templates needed to reach the cumulative probability of 0.995 (or 

maximally 50 templates). Consequently, it will recommend fewer applicable templates. Compared to 

the ECFP recommender model, the two oversampled models will find 5 and 6 fewer applicable 

templates from the USPTO test set. 

 

Conclusions 
We investigated how a selection of semi-empirical QM properties would influence the accuracy of the 

expansion policy networks used for retrosynthetic planning. We used graph representations to train 

graph neural networks to incorporate the atomic QM properties into a meaningful molecular 

descriptor. We trained the neural graph networks with and without QM properties and found that the 

selected semi-empirical QM properties did not affect the accuracy or template applicability. It is 

important to highlight that we only tested a few QM properties and did not perform an exhaustive test 

of QM properties. Other properties could potentially yield a different conclusion as illustrated by 

Stuyver et al. [11]. By changing from the ECFP representation to a graph representation, the top-5, 

top-10, and top-50 accuracies increased by 5.5-8.5% points. When switching to a graph representation, 

we observed that the number of templates needed to reach a cumulative probability of 0.995 

decreased from 42.2 to 31.3. This decrease resulted in a slight reduction in the number of applicable 

templates (16.3 to 12.7), which made us question the contradictory way we train and apply the 

expansion policy network. When the expansion policy network is trained, we target a one-to-one 

mapping between the target molecule and template documented in the training set. However, when 

the network is applied for retrosynthesis prediction, we expect the network to return multiple 

applicable templates for the target molecule. 

               We also tested if oversampling/undersampling can increase the accuracy of rare templates 

without decreasing the accuracy of the frequently used ones. These relatively simple techniques result 

in a substantial top-1 accuracy increase of approximately 20% for templates represented five times or 

less in the USPTO reaction dataset. We tested three different ways of oversampling/undersampling 

and found that not all methods perform equally well. If the templates are sampled evenly, you see a 

severe decrease in accuracy for templates used more than 100 times. But if you only oversample 

templates observed 50 times or less, we do not observe the same severe decrease in accuracy for 

frequently used templates.  
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Supporting Information 
 

GCN Model class. All the GCN models uses the same graph convolutional operator described by Kipf 

et al. [22]. The only way that the model differs is by how the input data is represented - which we hint 

to in the paratheses. The GCN type of model carry no information about bond bonds (edges), it only 

contains information about how the atoms (nodes) are connected. 

• The GCN (ATOM TYPE) are the most basic graph representation. The nodes only encode 

information about the atom type. This is represented by a one-hot encoded vector of the form: 

[H, B, C, N, O, F, Si, P, S, Cl, Br, I, other].  

• The GCN (RDKit) extends the GCN (ATOM TYPE) representation with more information 

extracted using RDKit. The additional information are: atom degree (one-hot encoded [1, 2, 3, 

4, 5, 6]), formal charge (one-hot encoded [-2, -1 , 0, 1, 2]), chirality (one-hot encoded), 

hybridization (one-hot encoded [SP, SP2, SP3, SP3D, SP2D2]), is the atom aromatic (encoded 

as yes/no), is atom positioned in a ring (encoded as yes/no), and the average atomic mass of 

the atom (mass / 100). All the extra information yields an initial atom vector embedding with 

a length of 38.  

• The GCN (ATOM TYPE + QM) / GCN (RDKit + QM) models besides the information obtained 

with RDKit also contain QM information. The QM information included in the atom embedding 

are: atomic partial charges (q), fukui index (f-, f0, f+), the polarizability (α), and the sum Wiberg 

covalent bond order (sBO).  Because we have added the QM partial charge, and covalent bond 

order we remove the RDKit formal charge and atom degree since they only carry redundant 

information. 

• The GCN (6 RDKit + 6 QM) initially is identical to the GCN (RDKit + QM) model. However, before 

the graph is parsed to the graph convolutional layer the RDKit information is subject to a linear 

transform the compresses the RDKit vector of length 38 down to a vector of length 6. The new 

compressed vector is parsed through a ReLU function and concatenated with the normalized 

QM vector (of length 6). The weights of the linear transformation is updated during training. 

 

 

MODEL RDKit Properties QM Properties 

GCN (ATOM TYPE) atom type - 

GCN (ATOM TYPE + QM) atom type q, f+, f0, f- , α, sBO 

GCN (RDKit) atom type, degree, formal charge, 

chirality, hybridization, is aromatic, in 

ring, atomic mass / 100  

- 

GCN (RDKit + QM) atom type, degree, formal charge, 

chirality, hybridization, is aromatic, in 

ring, atomic mass / 100 

q, f+, f0,  f-, α, sBO 

GCN (6 RDKit + 6 QM) atom type, degree, formal charge, 

chirality, hybridization, is aromatic, in 

ring, atomic mass / 100 

q, f+, f0,  f-, α, sBO 
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Figure S 2 Distribution of how many of the templates are 
applicable for each reactions in USPTO. Average number 
of applicable templates is 281. 

 

 

 

 
 

 
Figure S 1 Train and Validation Loss during training. 
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Table 4 Test set accuracy for the different graph neural networks. For 
reactions that occur <= 5 times (4622 reactions). 

 Model Top-1 

(%) 

Top-5 

(%) 

Top-10 

(%) 

Top-50 

(%) 

 Keras (ECFP)* 34.8 55.5 63.1 76.3 

 GCN (RDKit) 33.8 60.7 70.3 84.8 

 GCN (RDKit + QM) 34.8 59.7 68.9 84.6 

 GCN (Atom type) 24.9 46.9 54.9 73.1 

 GCN (Atom type + QM) 31.3 55.6 65.0 81.2 

 GCN (12 RDKit) 34.1 60.0 69.1 84.0 

 GCN (6 RDKit, 6 QM) 32.4 57.1 67.0 82.7 

* The Keras ECFP model is the public recommender model trained on the USPTO 

database, which is downloaded as part of AIZynthFinder. 

 

Table 3 Test set accuracy for the different graph neural networks. For 
reactions that occur >100 times (23,436 reactions). 

 Model Top-1 

(%) 

Top-5 

(%) 

Top-10 

(%) 

Top-50 

(%) 

 Keras (ECFP)* 65.7 93.0 97.0 99.6 

 GCN (RDKit) 65.0 93.3 97.0 99.4 

 GCN (RDKit + QM) 65.0 93.4 97.2 99.5 

 GCN (Atom type) 53.9 84.8 92.1 98.7 

 GCN (Atom type + QM) 63.2 92.2 96.5 99.3 

 GCN (12 RDKit) 65.0 93.1 97.1 99.4 

 GCN (6 RDKit, 6 QM) 63.9 92.6 96.8 99.5 

* The Keras ECFP model is the public recommender model trained on the USPTO 

database, which is downloaded as part of AIZynthFinder. 

 

 

Table 5 Mean accuracy of the GCN (RDKit) model trained on random oversampled 
training data. 

Model Top-1 (%) Top-5 (%) Top-10 (%) Top-50 (%)  

GCN (RDKit) 58.6 84.5 89.9 95.7  

GCN (RDKit, cut-off: 10) 59.6 85.0 90.0 95.6  

GCN (RDKit, cut-off: 25) 58.8 84.5 89.7 95.4  

GCN (RDKit, cut-off: 50) 57.7 84.0 89.3 94.9  

GCN (RDKit, equal distribution) 30.7 49.4 56.1 69.9  

 


