
Uncertainty-aware and explainable machine learning for early prediction of
battery degradation

Laura Hannemose Riegera, Eibar Floresa, Kristian Frellesen Nielsena, Poul Norbya, Elixabete Ayerbeb, Ole Wintherc,d,e, Tejs
Veggea and Arghya Bhowmika∗

Enhancing cell lifetime is a vital criterion in battery design and development. Because lifetime evaluation requires prolonged cycling
experiments, early prediction of cell ageing can significantly accelerate both the autonomous discovery of better battery chemistries
and their development into production. We demonstrate an early prediction model with reliable uncertainty estimates, which utilizes
an arbitrary number of initial cycles to predict the whole battery degradation trajectory. Our autoregressive model outperforms
previous approaches when predicting the cell’s end of life (EOL). Beyond being a black-box, we demonstrate through explainaibility
analysis that our deep model learns the interplay between multiple cell degradation mechanisms. In this way, the learned patterns align
with existing chemical insights into the rationale for early EOL despite not being trained for this or having received prior chemical knowledge.

1 Introduction
The scale of deployment of lithium-ion batteries is expected to
grow dramatically over the next decade as the transportation
sector gets electrified and grid level battery storage becomes
more commonplace to balance the fluctuating renewable energy
sources. Designing batteries with higher cycle life directly leads
to better economics1 and lower carbon/ecological footprint from
mining and manufacturing of batteries2. The capacity of a sec-
ondary (rechargeable) battery cell degrades over its lifetime and
for many practical purposes such as in the automotive sector, the
failure threshold is considered to be when the battery’s capacity
falls below 80% of the nominal capacity, which is called cycle life.
After this point, the capacity degradation will tend to progress at
a much faster rate and therefore the cell needs to be replaced3.
The cycle life of a cell depends on the usage scenarios, inter-
nal chemical and structural details4, which can vary significantly
even between cells manufactured from the same production line.
However, the process of optimizing batteries (materials and cell
design parameters) for improved cycle life is hindered by a slow
lifetime evaluation process. Being able to accurately determine
the battery lifetime with limited early cycle data would enable us
to fast forward the battery development cycle.

The cycle life of a battery is strongly dependent on how it is
operated, e.g., the charging C-rate, temperature or cut-off volt-
age as these conditions determine the insidence of deleterious
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electrochemical side reactions in anode, electrolyte, and cathode.
Balancing between longer cycle life and faster charging time is
a major engineering challenge in making electric vehicles (EV) a
competitive alternative to conventional cars. Designing charging
schedules to achieve this goal can be extremely time consuming,
as testing typically extends months before observing any effect
that design has on cell cycle life. Early prediction of cycle life
would significantly expedite such testing and thus enable design-
ing smarter charging schedules that extend battery life5. Early
prediction of degradation would also support the design of ad-
vanced battery management systems (BMS). Since battery per-
formance at the pack level deteriorates when cells operate at het-
erogeneous states of health6, an early prediction model would
grant BMSs control over individual cells based on their specific
degradation trajectory, and thus warrant significant lifetime im-
provements at the battery-pack level7.

Accurately predicting the battery lifetime is challenging be-
cause each cell undergoes complex electrochemical processes dur-
ing operating conditions and nonlinear degradation associated
with cycling8. Physics-based modelling of battery degradation
that captures a plethora of multi-time/length scale electrochem-
ical and mechanical processes would be prohibitively expensive.
Instead, parametric models (e.g. P2D (Pseudo-Two-Dimensional)
or single particle) approximate cell degradation using simpler
governing equations, with a limited ability to capture complex in-
teractions between degradation mechanisms. Data driven models
recently have been able to overcome cost-accuracy trade offs in
this task by learning high dimensional correlations among system-
level observables that might implicitly represent internal electro-
chemical processes. Recently, hybrid physics and machine learn-
ing models, and physics and uncertainty-aware machine learn-
ing models have been envisioned as the future direction of re-
search9,10.

Most data-driven models of cell degradation use online data11

(battery state of health until the point of prediction) to predict
near future behaviour12–14, but do not model early prediction
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Fig. 1 Schematic overview of the prediction process

(lifetime behaviour from early cycles). Additionally, most pub-
lished work does not consider the variabilities encountered be-
tween similar types of cells12,15 (even of the same chemistry and
design). Pioneering work Severson et al. 8 followed by two other
articles16,17 have showcased different approaches towards data
driven early degradation prediction considering intra-chemistry
variance.

Using hand-engineered features that incorporate domain
knowledge, Severson et al. 8 trained a linear regression model
with elastic net regularization to predict the total lifetime of the
battery cell. The model does not consider uncertainty over the
output, making it hard to detect when the battery is out of the
training distribution or the prediction is otherwise unreliable.
With a dilated CNN (Convolutional neural network) model, Hong
et al. 17 predicted the remaining useful lifetime based on in-cycle
time series data from early cycles. Although this model provides
an uncertainty estimate for the EOL it does not predict the entire
degradation trajectory, rendering the model uninterpretable in re-
gards to the degradation mechanism. Li et al. 16 with a sequence-
to-sequence LSTM (Long short-term memory neural network) re-
cently predicted the full degradation trajectory. Gaussian Process
Regression (GPR) have been used to detect failure of deployed
batteries as well14. Jiang et al. 18 have employed an uncertainty-
aware Hierarchical Bayesian Model (HBM) to predict the quality
of a battery cycling protocol independent of the intra-chemistry
variance between batteries cycled with the same protocol and
only focused on lifetime. In another very recent work, Paulson
et al. 19 used an extensive feature selection process, consider-
ing 396 features, to predict battery lifetime for a multi-chemistry
dataset.

However, currently, no existing model can predict full degra-
dation trajectories with uncertainty estimates both in and out of
distribution (both near and far from training data distribution)
ideally capturing both epistemic and aleatoric uncertainties. Hav-

ing uncertainty estimates allows us to e.g. recognize when a pre-
diction is unreliable because the data point lies too far from the
training distribution such as would happen with a different bat-
tery chemistry and perform on the fly control of how much cycling
is done. Prediction of full trajectory helps understanding causa-
tion of degradation. To learn a universal function of how cells
degrade across cell chemistries requires an expressive and com-
plex model20.

Uncertainty-aware, predictive, explainable and flexible models
to predict battery degradation also represent essential building
blocks to accelerate the development of new sustainable high-
performance batteries.20–22. More specifically, the ability to pre-
dict the EOL and degradation trajectory of any cell from its initial
cycles, would shrink the costs/time of experimentally testing it
for hundreds of cycles; such a model would effectively accelerate
the search of promising battery chemistries. Battery research ac-
celeration would greatly benefit from models capable of making
accurate and certain predictions on cells similar to those used for
training, already from few initial cycles. On the other hand, such
models must be aware when they are wrong, i.e. express high
uncertainty when, for instance, they attempt to make predictions
on cells with significant different chemistry (e.g. new electrolyte
formulation). If in addition these models are explainable, they
would enable scientists to gain insights into degradation mecha-
nism and thus have trustworthy extrapolatable models. However,
achieving model expressiveness that allows learning of different
degradation mechanism purely from easy to access data across
cell formats and cell chemistry requires complex deep learning
models, which thwart understanding of how the model learns.

Although recently published models cover one or the other
desirable aspects, none of them can serve the purpose of a au-
tonomous battery development acceleration platform. So we fo-
cused on developing a model that can be trained with different
chemistries/formats, can handle varying cycling parameters, dis-
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play uncertainty over the prediction and can on-the-fly adjust
the trajectory rollout while being explainable. Towards this chal-
lenge, our contributions can be summarized as such:

• We introduce a deep recurrent neural network architecture
(LSTM) that can be trained to predict future capacity and
EOL (End of Life) without requiring insight into the battery
chemistry. It can be trained with datasets of different battery
chemistry together.

• The trained model outputs full degradation trajectory as
not only the mean but also the variance, allowing for
uncertainty-aware prediction. Ensemble models are built in
addition to uncertainty as direct model output.

• We evaluate this architecture on available battery datasets,
showing that it outperforms multiple competitive baselines.
We also show how robust uncertainty capability lets the
model adjust input cycle information on the fly to lower un-
certainty.

• We consider the explainability of the trained model on LFP
battery data. Our findings show that the model has learnt
to capture underlying physical phenomena without being
trained specifically.

To our knowledge, our model is the first that is able to model
the entire capacity fade trajectory from the early cycles without a
fixed limit on the maximum lifetime. Using an LSTM allows us to
visualize the influence of different inputs over the lifetime of the
battery and draw chemical insights from the data-driven model.

Preliminary results indicate our architecture to be chemistry
neutral, based on few openly available but limited cycling
datasets from commercial cells using nickel cobalt aluminum ox-
ide (NCA) and nickel manganese cobalt oxide (NMC) as positive
electrodes. While the architecture itself is chemistry neutral, i.e.
not restricted to use on a specific chemistry, it requires a dataset
of batteries with the specific chemistry that we want to predict
capacity for. Models that can simultaneously predict capacity for
f.e. LFP, NCA and NMC batteries at the same time, would require
a dataset that allows to generalize over chemistries by including
batteries with different chemistries that were cycled under com-
parable conditions. We leave this work to future research.

2 Methods

2.1 Data resources
For this work, we use a previously available battery cycling
dataset8. The reader is referred to the original publication for
more detailed information. The dataset originally consists of 135
commercial LFP/graphite cells, each with a nominal capacity of
1.1 Ah and cycled in a temperature-controlled chamber at 30 °C.
Each cell was operated at one of 72 different fast-charging proto-
cols. Discharging was identical for all cells at 4 C to 2.0 V. Varying
the charging conditions resulted in a wide range of cycle lives,
ranging from 150 to 2,300 cycles. The dataset consists of three
batches, referring to a selection of cells that were simultaneously
cycled inside the chamber under different testing conditions and
dates. We removed cells with experimental errors, as suggested

by the authors in their published code, resulting in 124 usable
cells for training and testing8.

In contrast to the original work from Severson et. al., we an-
alyze the performance on calendar-aged and non-calendar-aged
data separately. To do this, we split up the first two (non-aged)
batches of the dataset into 50% training data and 25% respec-
tively for validation and test, resulting in the same number of
training points as in the original paper. The performance on the
calendar-aged batteries of the third batch is analyzed separately.

For training on non-LFP cell chemistries we used a dataset of
40 cells (22 NMC, 18 NCA) published by the Sandia National Labs
and show results in the supplements23.

Inconsistency in data generation and insufficient documenta-
tion presented a large issue when choosing datasets for this work.
For example, testing cycles were often not annotated and many
datasets contained several discontinuities such as outliers and un-
explained steps in capacity (examples are seen in Figure S2).
The general quality of the data presented an issue when find-
ing datasets for this work. For one, measurement inconsistencies
meant that not all cells reported the voltage profiles necessary to
calculate covariates. Often, the degradation trajectories showed
outliers or unexplained jumps in capacity (examples are seen in
Figure S2) which, without appropriate annotation, cannot be au-
tomatically removed or imputed. As in any other field of research,
the development and testing of new machine learning models for
cell degradation is limited by the amont and quality of available
data.

2.2 Data processing

For each cell we use an input trajectory, i.e. the degradation tra-
jectory up to an arbitrarily-chosen number of initial cycles, as the
basis for predicting the full degradation trajectory. For instance,
an input trajectory of 20 cycles Q[0−20] uses the degradation tra-
jectory of the first 20th cycles to predict the remaining trajectory
until the EOL. We report results for a range of input trajectories
from 20 to 100 in order to explore how many initial cycles are
needed for accurate EOL predictions.

For the network training, we used the degradation trajectory,
i.e. the trajectory of discharge capacity vs. cycle, the charging
schedule and a set of three covariates described in Section 2.5. We
preprocessed the data by removing obvious outliers and replac-
ing them with the mean value over the dataset. Subsequently, we
standardized the covariates to have a mean of zero and a variance
of one. We also use the logarithm of the current cycle number as
a supplementary covariate. This does not contain any informa-
tion about the internal state of the battery in itself. However, in
practice, we found that this improves the training process for the
EOL prediction because it facilitates an easier comparison of how
fast capacity degrades.

To calculate the variance between capacity-voltage curves, we
follow Severson et al. 8 and fit the discharge capacity as a func-
tion of voltage which is evaluated at 1000 linearly spaced points
between 2 and 3.5 Volt. We calculate the variance between the
resulting vectors for the tenth cycle and the last input cycle. The
charging schedule of each cell is expressed as a three-dimensional
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vector containing the minimum, maximum and average charging
rate throughout the cycling for the LFP dataset.

The discharge capacity at every cycle Qn (the subscript denotes
the cycle number), is predicted as the remaining proportion of the
capacity in the previous cycle. The degradation trajectories often
contain a lot of noise. For the target (the next cycle capacity) dur-
ing training we therefore preprocess the capacity trajectories for
training with a simple moving average filter (MAF) over twenty
cycles centered around the current cycle.

2.3 LSTM architecture

We use an LSTM to process the capacity trajectories24. In exten-
sion of a traditional neuron, an LSTM neuron contains a memory
state that is updated in each time step. Time sequences such as
the capacity trajectory are fed into the LSTM neural network con-
currently. For multi-step prediction, the predicted output is ap-
pended onto the input to create the next input. The NN proposed
consists of one LSTM layer, one fully connected hidden layer, and
one fully connected output layer to predict the loss in capacity in
the current cycle based on previous capacities as shown in Figure
S1. To choose the optimal number of neurons, cross-validation
was performed, resulting in 32 neurons for each layer.

To capture uncertainty, instead of predicting a single value our
NN outputs both the predicted mean capacity at the next step
ypred and its expected variance σ2; the variance allows us to ex-
press uncertainty in the prediction. To train the NN, we use the
negative log-likelihood (NLL) as a loss function over the Gaussian
distribution output by the NN and the true next step value. With
the NN outputting the mean ypred and variance σ2 this is

NLL =
1
2
(
(ypred − ŷ)2

σ2 + log(σ2))

This corresponds to maximizing the probability that the true
next step value comes from the probability distribution the NN
predicted.

When predicting the trajectory for a new battery, we obtain the
next time step value by sampling from a Gaussian distribution
with the predicted mean and variance. Since we are interested in
obtaining uncertainty over the entire trajectory, we sample multi-
ple independent trajectories from each NN in the ensemble dur-
ing test time. For each trajectory, we concurrently obtain the next
time step in the manner just described until the predicted trajec-
tory reaches its EOL. The mean and variance of time step t for K
neural networks in the ensemble with L trajectories sampled from
each become

µt =
1

KL

K

∑
k=1

L

∑
l=1

yt,l,k

σ
2
t =

1
KL

K

∑
k=1

L

∑
l=1

(yt,l,k −µt)
2

The NN was trained with the Adam optimizer with the default
learning rate of 0.00125. The training is stopped once validation
loss no longer improves for three concurrent epochs. At testing
time, it is required to roll-out multiple capacity trajectories to ob-

tain an accurate measure of the uncertainty over the output. We
use an ensemble of five neural networks (trained with different
random seeds) and sample ten trajectories from each network.
During roll-out, we concurrently sample the next value in the ca-
pacity trajectory from the output mean and variance predicted
by the neural network in the current step. The trajectories of all
neural networks in the ensemble are concatenated and the distri-
bution of trajectories is calculated.

Unless otherwise noted, all performance metrics are averaged
over five random seeds. All experiments were done with Pytorch
on an Nvidia RTX 309026. The code used to process the datasets,
train the models and create the results presented in this study will
be released on acceptance.

2.4 Saliency analysis

To analyze how important input parameters change during the
trajectory prediction, we apply a saliency analysis to the LSTM on
the test data. Neural networks are trained with gradient descent,
i.e. computing the gradient of the loss function over the weights
and taking a step in the negative direction. We use a similar ap-
proach and take the absolute gradient of the output over the in-
put. Intuitively, this highlights input dimensions where a slight
change of the input will result in a large change of the output.

To be able to compare between different batteries and cycles,
we normalize these values such that the gradients for one cycle
always sum up to one. By taking the average importance of the in-
puts over different subsets of batteries and cycles, we can extract
information about the general importance of e.g. the coulombic
efficiency for prediction. We discuss the results in Section 3.5.

2.5 Feature selection

The goal of the ML algorithm is to predict the lifetime of
LiFePO/graphite cells from a given number of initial cycles. Ac-
cordingly, we train the algorithm with cycling trajectories (i.e.
discharge capacity vs. cycle) and a set of additional electrochem-
ical features from the initial cycles. These features are selected
based on being both i) informative, i.e. known to be correlated
with the cell’s lifetime, ii) accessible, i.e. available from most
common cycling experiments and iii) generalizable between ex-
periments. For instance, while the cycling temperature affects
capacity fade, we disregard it as a feature because the impact of
temperature is highly dependent on e.g. the environment’s tem-
perature and the form factor of the cell; hence, incorporating the
temperature as feature in the model restricts its ability to gener-
alize to other cell designs.

The cycling charge rate affects the degradation of
LiFePO4/graphite cells27–29 and is always recorded in cycling
experiments; therefore, we include the maximum, minimum
and mean charging rate as features to account for the cycling
conditions. The discharge rates might also be considered, but we
do not use them because all cells in the dataset are discharged at
the same rate8. In addition to the charging rates, we select three
electrochemical metrics as features. The Coulombic efficiency,
the charge-discharge voltage gap and differential capacity
trajectories reflect the loss of active Li+, the build-up of internal
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Table 1 RMSE prediction error in number of cycles on the prediction of
EOL for baselines and LSTM based on the first hundred cycles

Non-aged batteries Calendar aged batteries
Linear Regression * 151 202
LSTM (Ensemble) 110 184
LSTM 172 243
DNN (no capacity) 207 402
LSTM (no covariates) 587 384

resistance and the electrochemical reaction mechanisms of a cell
during a cycle, respectively30–32. Given the Coulombic efficiency
is a scalar value, it can be directly used as a feature. On the
other hand, the voltage gaps and the differential charge curves
are voltage (or state-of-charge)-dependent vectors that need
to be encoded as single scalar features per cycle. As a simple
approximation, we describe the voltage gap as the difference
between the mean voltage during charge and the mean voltage
during discharge. Finally, we inherit the differential charge curve
feature engineered from Severson et al., who demonstrated that
the variance of the difference between charge and discharge
capacity vectors correlated well to the cell’s lifetime.8

Using 6 features for every cycle would result in hundreds of
inputs to characterize the degradation behaviour of a single cell,
which is impractical. Training on more features than examples
would render the model not only larger, but also ill-posed to gen-
eralize. Fortunately, these features vary very little from cycle to
cycle for a single cell, so it is sufficient to summarize them by
their variations within the initial cycles. For consistency with Sev-
erson et al8 , we use the feature difference between the 10th
cycle and the last cycle available for prediction, represented as
Xn-10. In the following, we refer to these battery cell-specific,
time-independent features as covariates, which are described in
Table S1 and illustrated in Figure S6.

In addition to being readily accessible from electrochemical
time series, we believe these features implicitly capture i) the in-
fluence of uncontrolled experimental conditions (e.g. cell man-
ufacturing, geometry, preconditioning) and ii) the cell’s state of
health during cycling independently from the chemistry of the
electrodes . Chemistry-neutrality ensures that the features can
be readily used to train on datasets from other cell chemistries
and pave the way for high accuracy chemistry-neutral models to
predict degradation with additional data.

3 Results

3.1 LSTM performance compared to baseline models
LSTMs are well-suited for modelling sequential data as they do
not have constraints on the total time series length and can model
complex correlations and features in sequential data streams. To
demonstrate the advantage of LSTM operating with electrochem-
ically inspired features, we compare the LSTM with three base-
lines, a simple Linear Regression (LR) with Elastic Net regulariza-
tion based only on the covariates (inspired from and similar to8),
a Dense Neural Network (DNN) based only on the covariates and
an LSTM based on only the capacity trajectory. In contrast to the
neural networks, the LR model can only estimate the End of Life
(EOL) but not model the complete capacity trajectory.

To compare the modeling approaches with the linear regres-
sion, we report the RMSE (Root Mean Square Error) on the pre-
dicted total lifetime in Table 1. The RMSE is calculated as

RMSE =

√√√√ 1
N

N

∑
n=0

(yn − yn,pred)2

The results show that an ensemble LSTM (comprised of five NN
initialized with different random weights) has a lower Root Mean
Square Error (RMSE) when predicting the EOL than the neural
network baselines and the LR, indicating that it better captures
the relationship between cycling patterns within the first few cy-
cles and the total lifetime. In contrast to previous work8, we sepa-
rately evaluate the prediction performance on calendar-aged and
non-calendar-aged batteries as we found significant differences
in the behavior of the battery cells depending on their storage
history (see Figure S4) .

Calendar-aged cells seem to last longer compared to non-aged
cells under the same cycling conditions. Prolonged storage of cells
might influence, for instance, electrode passivation in a way that
results in improved lifetime compared to non-aged cells, similar
to the outcomes of performing formation cycles33. Consequently,
the model struggles to predict the degradation of aged cells which
it has not seen during training.

Notably, the improvement in performance also holds for
calendar-aged batteries. In Table 1 we see that the ensemble
LSTM is more accurate in predicting EOL for calendar-aged bat-
teries as indicated by the lower RMSE, implying that some of the
chemical processes happening during the calendar ageing are im-
plicitly captured in the early cycles as well and are learnt by the
LSTM.

To show that in addition to accurate EOL prediction our model
also matches the capacity trajectories, we show capacity trajecto-
ries on the test set of non-calendar-aged batteries in Fig. 3. We
provide capacity trajectory predictions for calendar-aged batter-
ies in Figure S6. In contrast to only predicting EOL, modeling the
entire capacity trajectory allows detailed analysis of the degrada-
tion pattern and helps us gain understanding on possible electro-
chemical phenomena causing it.The LSTM ensemble matches the
actual trajectory closely, accurately predicting the knee point, i.e.
the cycle number where the trajectory visibly bends to an accel-
erated degradation.

3.2 Capturing uncertainty

Highly parameterized deep learning models like ours are prone
to fail when generalizing to datasets that are very dissimilar to
the dataset that the model is trained with, such as new battery
chemistries or ageing processes that dramatically alter the degra-
dation pattern. The trustworthiness of the model can be ques-
tioned if the model is overconfident in predictions i.e. it does not
know when it is wrong. To provide reliability to our approach,
we model the uncertainty of the output trajectory (the shaded
area in Fig. 3 encompasses the 5th to the 95th percentile). Infor-
mation about the certainty of the prediction is important for risk
assessment during model deployment and can be used for active
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plotted against the number of batteries used for training. The shading
indicates SD. For accurate learning, only a small number of batteries is
needed.

learning based data collection from experiments.
For most batteries, uncertainty over the trajectory is low. No-

tably, two batteries in the test set have a lifetime beyond any life-
time seen in the training set. The predictions for these batteries
are associated with a high uncertainty over the capacity trajectory
and EOL. In support, Fig. 2 shows that uncertainty over the EOL
is low for batteries with a lifetime of up to 1000 cycles (as ex-
pected given that the majority of battery cells in the training data
set lie in this range) and high above that. This is expected and
desired behavior, as the ML model has less information about the
data distribution in this range.

In Figure S4 we show example trajectories for the calendar-
aged batteries. The model clearly predicts comparatively higher
uncertainty over the trajectory for aged cells. Since the predic-
tions become more uncertain on the trajectories of aged cells, we
conclude our model has learned data patterns -possibly electro-
chemical signatures- differentiating aged from non-aged cells.

3.3 How early can we predict with how little data?
Getting accurate information about a battery’s future degradation
pattern early into its lifetime is vital. Each potential application
of our model might require a different trade-off balance between
the accuracy of prediction and how much cycling data the model
would need as input. We characterize such trade-off by evaluating
how the accuracy of our algorithm changes with the number of
cycles input into the neural network in Fig. 4.

The accuracy of prediction (in terms of the RMSE on the test
data) improves as more of the initial cycling data is used as in-
put to the model as shown in Fig. 4. With a larger part of the
degradation trajectory visible, forecasting for future degradation
becomes easier as more information about the degradation pro-
cess becomes available. Additionally, the results in Fig. 4 show
that the error rapidly decreases with as few as thirty cycles avail-
able, demonstrating that the LSTM can robustly predict the EOL
early into the lifetime; more specifically, the model predicts the
EOL within 200 cycles of accuracy, using only the first 40 cycles

of the trajectory.

Testing conditions like operating temperature directly affect the
internal electrochemistry of the battery. Fluctuations in these
variables, if not taken into account in the modelling, can cause
larger errors. Even if our model is not trained using tempera-
ture as predictor, it still captures some of these effects implicitly
through other observables and provide a high level of accuracy
when it is trained on data with and without those aberrations
(e.g. predicting degradation from 100th cycle onwards while data
from 55th to 70th cycle was noisy).

Another important factor in training and using ML models is
how much data is required to obtain a robust model. Battery
cycling data covering full capacity degradation is expensive to
acquire and the maximum dataset size may be limited by other
factors as well. We examined the model accuracy dependent on
the number of batteries in the training dataset in Fig. 4. Again,
we observe that the error decreases with increasing size of the
dataset but rapidly levels off, implying that the model can gener-
alize about the degradation process already from a dataset with
as few as six batteries. A recent paper from Dechtent et al. came
to a similar conclusion, showing that a simple linear model that
captures cell-to-cell variability can be fit with as few as nine bat-
teries34.

The data efficiency of our model opens up the possibil-
ity of rapid prototyping of models for completely new battery
chemistries. This enables much expedited lifetime optimization
of the new class of batteries without performing full life cycle
tests.

3.4 Projecting forward

Our model can integrate longer input trajectories without need-
ing to retrain. This allows us to flexibly decide how many cycles
the cell should go through and predict the remaining capacity tra-
jectory with our model. If a higher accuracy is desired, the battery
can be cycled for longer, resulting in more information available
for prediction and consequently higher accuracy. Importantly, this
is a different scenario than the one presented in Fig. 4. In Fig. 4
we train multiple models while varying the initial number of cy-
cles that the model is trained with. In contrast, in Fig. 5 we use a
fixed model and simply append cycles to show how the accuracy
and projected uncertainty of the prediction changes, allowing a
flexible trade-off between cycling time on one side and accuracy
as well as uncertainty on the other.

In Fig. 5 A we show the percentage of batteries for which
the prediction for EOL is less than fifty cycles off from the true
EOL dependent on the number of cycles used as input for the
model. Expectedly, the proportion of accurate predictions goes
up as more cycling information becomes available.

We can use the uncertainty over the EOL as a proxy criterium
(see Figure S7 in the supplements where we show that accuracy
and uncertainty are strongly inversely correlated, making the un-
certainty over the output a valid criterium to decide whether a
battery needs to be cycled longer). In Figure S3 we additionally
show results for the NMC dataset.

In Fig. 5 B we show how the predicted uncertainty changes for

1–10 | 7



200 400 600 800
# cycles available

0.4

0.6

0.8

%
 b

at
te

ri
es

 w
ith

 
er

ro
r 

<
 5

0 
cy

cl
es

A

0 200 400 600 800 1000
Cycles

0.90

0.95

1.00

1.05

1.10

C
ap

ac
ity

B

Data
Predicted (100)
Predicted (300)

Fig. 5 More cycle information decreases uncertainty and error. A: Per-
centage of batteries with an error of less than 50 cycles for EOL when
more input cycles are available. B: Uncertainty is reduced when more
input cycles are available.

-250 -200 -150 -100 -50 0

Cycles (from 250 before EOL)
5%

10%

15%

20%

25%

30%

35%

Im
po

rta
nc

e 
 

 o
f c

ov
ar

ia
te

s

Non aged
Aged

Fig. 6 Importance of in-cycle information for calendar-aged and non cal-
endar aged batteries. The shaded area indicates one standard deviation
in each direction.

one exemplary battery. We see that the uncertainty is reduced
and the prediction becomes more accurate when more cycle in-
formation is input.

3.5 Inspecting what the LSTM has learned
In addition to accurate prediction, we are interested in analyzing
what features were important for prediction and whether they
reflect prior knowledge about the chemical processes inside the
battery cell. We analyze the relative importance of the inputs in
the predictions, differences between short- and long-lived batter-
ies as well as between calendar-aged and non-aged batteries.

For this analysis, we compute the gradient of the output in re-
gards to the input. The gradient indicates how fast the output
changes with a change in the respective input variable, repre-
senting an intuitive measure of feature importance. To make the
resulting importance measures comparable between cycles and
batteries, we normalize them such that the total importance of
all input features for one battery cell sums up to one. We show
results of this analysis averaged over the test set Fig. 7. The data
in Figure 2 shows that the capacity trajectory of LFP batteries
consists of a relatively flat initial regime followed by a phase in
which the cell’s capacity declines rapidly until the EOL. The point
at which the cell enters the rapid decline phase is often visible as

a knee point in the trajectory. Since this point is a determining
factor of a battery’s life, it is of particular interest what triggers
this transition. We visualize the gradients over the last 300 cycles
(as predicted by an exemplary LSTM for each battery cell).

In Fig. 7 we show the importance of the input features aver-
aged over the test set along with the capacity trajectories. We
observe that the importance of the previous capacity stays rela-
tively constant over the lifetime of the battery until approximately
200 cycles before the EOL. At this point, there is a dip in impor-
tance for the capacity trajectory and the covariates gain more rel-
evance. Our interpretation is that the cycling conditions such as
the charge and discharge rate are more relevant in predicting the
’point of descent’ and thus the EOL, while the capacity in previ-
ous cycles is more relevant for predicting the shape of the capacity
trajectory.

In the phase of quick degradation, we note that the impor-
tance of previous capacities increases again, becoming the almost
sole determining factor for the output. We hypothesize that once
degradation enters an accelerated phase, the only relevant fac-
tor for prediction seems the current rate of degradation, which is
encoded in the previous values of capacity.

In the lowest row of Fig. 7 we additionally visualize the mean
importance of coulombic efficiency over the last 250 cycles, as cal-
culated for long- (red) and short-lasting (green) batteries; since
the average lifetime of the dataset is 691 cycles, we use 700 cycles
as the cut-off value. There is a qualitative difference in the impor-
tance of coulombic efficiency for long- and short lasting batteries,
both in the absolute value but also in the proportional increase of
importance as a battery approaches its EOL. For short-lived bat-
teries, the importance increases slightly but steadily as the bat-
teries approach EOL. Low coulombic efficiency is possibly due to
high SEI forming exchange current density that leads to loss of
active lithium34. Expedited loss of cyclable lithium leads to rapid
capacity loss. Thus, low coloumbic efficiency can be an indicator
for a shortened cell life. The importance of coulombic efficiency
increasing proportionally more for short-lived than long-lived bat-
teries is therefore in line with our understanding of the internal
state of the battery.

In Fig. 6 we show the importance of the in-cycle info (Overpo-
tential, Coulombic Efficiency, and variance in the difference be-
tween charge and discharge) for the last 250 cycles for calendar
aged and non-calendar-aged batteries. Since calendar aged bat-
teries have a much higher mean lifetime than non-aged batter-
ies, we consider only non-aged batteries with a lifetime longer
than 600 cycles. In this way, both sets of batteries have approx-
imately the same average lifetime. We observe that there is a
quantitative difference in the gradients, i.e. the importance of in-
cycle information differs for calendar aged and non-aged batteries
from the 250th to last to the 100th to the last cycle. The lifetime
of calendar-aged cells is more affected by the cycling conditions.
The quantitative difference indicates that the LSTM discriminates
already from the initial cycles that calendar-aged and non-aged
cells belong to different data distributions. Such difference is also
manifested in higher uncertainty for the calendar-aged cells.
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4 Conclusions

We have proposed and demonstrated a data-efficient autoregres-
sive model for early prediction of battery degradation that not
only improves upon the state of the art in accuracy but also sup-
ports uncertainty awareness (both epistemic and aleatoric), ex-
plainability and chemistry agnostic modelling while predicting
the whole degradation trajectory. It relies on features that are
easy to obtain from simple charge discharge curves during the
early cycling of any battery chemistry. With explainability anal-
ysis we show evidence that the model learns important chemical
descriptors and their evolution during the degradation process in
a completely data-driven fashion. As we model uncertainty di-
rectly and the model is chemistry agnostic, such a model can be
reliably trained and deployed for existing and new classes of cell
chemistries in the future. We show the potential with a prelimi-
nary model trained with a small dataset of openly available but
limited NCA and NMC cell cycling data.

Early prediction with our uncertainty aware model will create
the basis for an accelerated autonomous battery design platform
by shortening the time consuming life cycle assessment tests. As
our model predicts the whole trajectory with uncertainty and is
flexible towards the length of initial input cycles, it is well suited
towards such use cases where the actual length of cycling tests
varies. Access to model uncertainty opens up the possibility of
building accurate models for new cell chemistries with limited
amounts of data collection via active learning.
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