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Abstract

Generative models are frequently used for de novo design in drug discovery projects to

propose new molecules. However, the question of whether or not the generated molecules can

be synthesized is not systematically taken into account during generation, even though being

able to synthesize the generated molecules is a fundamental requirement for such methods

to be useful in practice. Methods have been developed to estimate molecule synthesizability,

but, so far, there is no consensus on whether or not a molecule is synthesizable. In this

paper we introduce the Retro-Score (RScore), which computes a synthetic feasibility score

of molecules by performing a full retrosynthetic analysis through our data-driven synthetic

planning software Spaya, and its dedicated API: Spaya-API (https://spaya.ai). After a

comparison of RScore with other synthetic scores from the literature, we describe a pipeline

to generate molecules that validate a list of targets while still being easy to synthesize. We

further this idea by performing experiments comparing molecular generator outputs across

a range of constraints and conditions. We show that the RScore can be learned by a Neural
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Network, which leads to a new score: RSPred. We demonstrate that using the RScore or

RSPred as a constraint during molecular generation enables to obtain more synthesizable

solutions, with higher diversity. The open-source Python code containing all the scores

and the experiments can be found on https://github.com/iktos/generation-under-synthetic-

constraint.

Introduction

In small molecule drug discovery projects, generative models can be used to design massive li-

braries of molecules with specific properties.1,2 The optimization of an artificial intelligence(AI)-

molecular generator to explore a given chemical space and propose new well scored molecules

in a Multiparameter Optimization (MPO) project is mostly based on molecular properties

and fingerprints.1,3,4 However, one of the major challenges in any computer-aided drug design

(CADD) project is that the molecules need to be synthesized. Generative models are known

to sample lots of non accessible molecules,5,6 and few synthesizability scores are known in

the literature to be used in the pipeline of molecular generation.7–10 Post-processing filters

may be applied after the generation to get a smaller selection of molecules more likely to

be synthesizable, for instance AstraZeneca filters,11 include both physicochemical properties

and structural filters. No chemical rule is able to completely answer the question of whether

a molecule with a valid SMILES can be synthesized or not. Moreover, the evaluation of such

scores are challenging, particularly due to the difficulty in interpreting the values. A simple

way to define synthesizability is with a binary score denoting synthesizable or not synthesiz-

able. Although a binary score is useful, it has limits, as it does not allow the prioritization

of molecules of the same score. Also, a continuous score gives more signal when used as a

reward of a de novo drug design algorithm. With the recent efforts of the community, some

continuous scores were recently developed to describe synthetic accessibility.12–15 Those can

be based on chemical substructures, domain expertise, or output of models fitting expert
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scores. However, as two very similar molecules may have different synthetic routes due to a

single functional group, it may be difficult to find a proxy to a true restrosynthetic analysis.

The RA score, for retrosynthetic accessibility score,14 is a predictor of the binary score given

by the AiZynthFinder retrosynthesis tool.15 Its values goes from 0 to 1, and, according to

the score, the higher the value the more optimistic the algorithm is regarding the synthesis of

the molecule. The SC score, for synthetic complexity score,12 ranks the molecules and scores

them from 1 to 5. Based on the criteria that products are more complex than reactants, a

neural network trained on a corpus of reactions was used to build the score. Molecules with

lower values have a more optimistic synthesizability profile. Finally, the SA score, for syn-

thetic accessibility score,13 is based on a heuristics where molecular complexity and fragment

contributions are used to evaluate synthetic tractability. Low scores indicate less complex

molecules and consequently more feasible compounds. We believe that the features taken

into account to compute these scores are not sufficient to encapsulate all of the information

about synthesizability.

To address some of these challenges and to aid synthetic, medicinal, and computational

chemists, Iktos has developed Spaya,16 a template-based retrosynthesis AI software that

computes synthetic routes and ranks them based on a synthesizability score. In this paper,

we describe the Retro-Score (RScore), a synthetic feasibility score derived from the output

of a full Spaya retrosynthetic analysis for a given molecule, and we compare it with three

other synthesizability scores known in the literature (RA score, SC score and SA score). We

highlight the importance of conducting a full retrosynthetic analysis to determine synthesiz-

ability. The RScore can be used:

1) To evaluate the synthesizability of molecules given by generative models,

2) Inside the generation itself, to guide the generator to an area of the chemical space where

molecules are synthesizable.

Because of the computational costs associated with the computing of a full retrosynthetic

analysis needed to obtain the RScore, we also describe a new, easier to compute score called

3



RSPred. RSPred is obtained by training a Neural Network on the output of the Spaya

RScore and performs similarly well to the RScore in a variety of tasks, but can be computed

orders of magnitude faster.

Methods

Datasets

The ChEMBL 2417 dataset was used, with the same post-processing as described in the Gua-

camol Benchmark experiments.6 The post-processed ChEMBL dataset can be downloaded

following the link.18

Another dataset, named ’PI3K/mTOR’,19 was also used. It is a library of 463 structurally

homogeneous molecules containing values of IC50 for the two targets Pi3K (pKi measured

on the Phosphoinositide 3-Kinase) and mTOR (pKi measured on the mechanistic Target Of

Rapamycin), from the Chembl database. After the definition of a threshold of activity, pIC50

Pi3K ≥ 7 and pIC50 mTOR ≥ 8.5, the molecules active for both targets were removed. The

dataset is accessible in the GitHub project associated with this paper.20

The RScore from Spaya API

The score of a retrosynthesis route in Spaya is a composite of four scores as follows,

score(route) = f(d, p, c, a) (1)

where:
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d = number of reaction steps in the route

p = likelihood of the disconnections of the retrosynthesis route

c = convergence of the route

a = applicability domain estimation of the reaction templates used to make the

disconnections

To simplify the use of the algorithm on large batches of molecules, Iktos has recently

launched Spaya-API,16 an API running on Spaya’s algorithmic engine for library scoring

purposes, which has been used herein to evaluate the synthetic accessibility of newly gen-

erated molecules. For a given molecule (m), the RScore is derived from routes proposed by

Spaya, but handled in a high throughput manner by Spaya-API. The worst RScore value is

0, when no route is found by Spaya in a given period of time; and the best score is 1, when

the route is a one step retrosynthesis matching exactly a reaction in the literature. To score

a molecule and obtain its RScore value, Spaya-API performs a retrosynthetic analysis with

an early stopping process. The early stopping mode stops the Spaya run when a route with

a score above the predefined threshold (set to 0.6 by default) is found or after the defined

timeout (set to 1min by default) has elapsed. The RScore of a molecule is defined as:

RScore(m) = max
routes given by Spaya
with early stopping

(
score(route(m)

)
(2)

The score is rounded to 1 decimal, and hence can take 11 different values (from 0.0 to 1.0).

Spaya-API also returns the number of steps for the best synthetic route found for each input

molecule. The list of commercial compounds used for the retrosynthesis is a catalog of 60M

commercially available starting materials provided by MCule,21 Chemspace,22 eMolecules,23

and Key Organics.24 To speed up computation, a default timeout of 1 minute was set when

the RScore was used as a synthetic constraint in generative design experiments (RScore1min).

In order to better approximate the output that would be obtained from a comprehensive

retrosynthetic search, this timeout was increased to 3 minutes when the RScore was used for
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scoring molecules in post-processing (RScore3min).

The RScore1min was compared with three synthetic scores previously published in the

literature: the RA score,14 the SC score,12 and the SA score.13 The three packages to compute

those scores are available on GitHub.25–27 These scores were computed on a sample of 5000

molecules from the pre-processed ChEMBL dataset, and were compared with the RScore1min

in the section Comparison of synthetic scores.

Prediction of RScore

The RScore1min computation implies a full retrosynthesis, which is time consuming, with

an average of 42 seconds per molecule to trigger the early stopping. For that reason a

regression model was built, in the hope to replace the computation of the RScore1min by a

simple neural network inference.

To build this continuous predictor of the RScore1min, a neural network was trained on

features of the molecules. The model was a feed-forward neural network composed of three

hidden layers of size 100, with Relu activation function. After each layer, a batch normaliza-

tion layer was added.28 A sigmoid was added as the last activation function. The training

set was composed of 70K molecules from the pre-processed ChEMBL dataset, and 300K

molecules sampled from the generator Guacamol pretrained on ChEMBL. The molecules

were represented by real vectors of the ECFP2 fingerprints with a radius of 2, modulo-folded

to size 8192 and then ln(x + 1)-preprocessed. For the training part, a dropout29 with a

probability of 0.05 was used, the loss was the mean squared error, the optimizer was the

Adam optimizer30 with an initiate learning rate of 5e−5, the batch size was 2048, and 6

epochs were used for training.

Generations of molecules

For all the generations, the package Guacamol31 provided by BenevolentAI was used. The

generator is a Recurrent Neural Network, containing 3 layers of Long Short-Term Memory
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(LSTM) of size 1024. The network was initialized with the weights given by Guacamol on

their GitHub project,31 which was obtained by training on the large dataset ChEMBL 24.17

For each generation, the reward used was a geometric mean of the different scoring functions

on which modifier functions (described in Score modifiers section) were applied. The genera-

tors were optimized in order to sample molecules that have a good reward. The optimization

algorithm used was the Hill Climbing MLE1 , in which at each step 1024 molecules are being

sampled from the generator, then scored, and 2 epochs of teacher forcing32 are performed

on the top scored 152 molecules. The seed was fixed at 42 for all the generations. Overall

46 generations were run : 40 Guacamol generations (for each of the 10 tasks one genera-

tion without and 3 with synthetic constraint), and 6 PI3K/mTOR generations (a generation

without and 5 with synthetic constraint). The implementations of those generations can be

found on GitHub.20

Generations without any synthetic accessibility constraint

The first generations were performed using the standardized Guacamol Benchmark. Molecules

were generated over 20 epochs on each of the 10 MPO tasks of the Guacamol Benchmark,

which are: Osimertinib MPO, Fexofenadine MPO, Ranolazine MPO, Perindopril MPO, Am-

lodipine MPO, Sitagliptin MPO, Zaleplon MPO, valsartan SMARTS, Deco Hop and Scaffold

Hop. Each task is associated with an objective function, the description of each task can be

found in the original paper.6

The next generation aimed at solving a lead optimization problem on the PI3K/mTOR

dataset. The constraints for this task were the Tanimoto similarity of ECFP4 fingerprints

to the initial dataset, the Quantitative Estimate of Drug-likeness (QED),33 and predicted

Pi3K and mTor pKi values. For Pi3K and mTOR pKi predicted values, two QSAR models

were used as scorers during the ensuing generative procedure. Those were built using ECFP

molecular representation with 4096 bits and with radius 4 for mTor and 6 for Pi3K, molecular

descriptors, and a ridge regression model. K-fold (K=4) cross validation along with tree-
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structured Parzen Estimator was used to select the model and the fingerprints parameters.

On a 20% hold out set, the R2 score of the Pi3K model and the mTor model are respectively

0.64 and 0.71. In addition to these scores, a filter was added to enforce a specific substructure

within the generated molecules, which pattern corresponds to the following SMARTS and

that is drawn on fig. 1. The thresholds for each of the targets can be found in table 1.

The objective function associated with this task was the geometric mean of the 5 scoring

functions as in eq. (4).

smarts1 = c1cncc(c1)C#Cc1cncnc1 (3)

Figure 1: Imposed structure for PI3K/mTOR generation.

Table 1: Blueprint of the task PI3K/mTOR

criteria specification
Pi3K >7

mTOR >8.5
QED >0.5

Tanimoto similarity >0.5
contains structure smarts1(eq.3)

Score(mol) = GeoMean
(
score1(mol), ..., score5(mol)

)
(4)

where:

GeoMean(x1, ..., xn) =

(
n∏

i=1

xi

) 1
n

= n
√
x1x2 · · ·xn (5)

The prior model was the one trained on ChEMBL, then 2 steps of transfer learning were

run on the PI3K/mTOR dataset in order to stay in the applicability domain of the QSAR

regressors. For the training part, the batch size was 1024, the learning rate 1e-3 and the

generation run over 250 epochs.
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Generations under synthetic accessibility constraint

Generations under synthetic constraint used the same parameters as described above, while

incorporating a synthetic accessibility score in the reward. Compared to the previous gener-

ations, only the scoring function was changed, and the different synthetic scores were added

in the objective function as follows:

Score(mol) = GeoMean
(
score1(mol), ..., scorek(mol), ScoreSynth(mol)

)
(6)

Where ScoreSynth can be any function that estimates synthetic accessibility: RA, SC, SA,

RScore1min, or RSPred, on which a modifier function is applied. The function GeoMean is

described in equation 5.

For each of the 10 Guacamol tasks, 3 generations were run with the ScoreSynth being

successively SA score, RScore1min and RSPred. For the PI3K/mTOR task, 5 generations

were run with the ScoreSynth being successively RA score, SC score, SA score, RScore1min

and RSPred.

We conducted a post-processing analysis of the results using the RScore3min. This score

was considered the ground truth of synthetic accessibility, and the other synthetic scores were

evaluated for their relevance as estimates of synthesizability as provided by RScore3min.

In total, 35 generations under synthetic constraint were performed: 30 for the Guacamol

Benchmark tasks, and and 5 for the PI3K/mTOR task.

Score modifiers

On each scoring function a modifier function is applied in order to normalize the score

into the range [0, 1]. The modifier and its parameters are chosen based on the expected

threshold for each target, and are well described in the literature.6 The two modifiers used

are MaxGaussian and MinGaussian:
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- MinGaussian(µ, σ): the right half of a Gaussian function. Values smaller than µ are given

full score, and values larger than µ decrease continuously to zero.

- MaxGaussian(µ, σ): the left half of a Gaussian function. Values larger than µ are given

full score, and values smaller than decrease continuously to zero.

The modifiers of the Guacamol tasks are specified in the original paper. The modifiers used

in PI3K/mTOR task are described in table 2.

Table 2: Modifiers used for the different scoring functions

modifier
Pi3K MaxGaussian(7, 1)

mTOR MaxGaussian(8, 1)
QED MaxGaussian(0.6, 0.13)

Similarity MaxGaussian(0.75, 0.25)
RA Score MaxGaussian(0.7, 0.2)
SC Score MinGaussian(2.5, 0.4)
SA Score MinGaussian(2.5, 0.4)

RScore1min MaxGaussian(0.7, 0.2)
RSPred Score MaxGaussian(0.7, 0.2)

Results and discussions

This part consists in first comparing the values of the different synthetic scores on molecules

from the ChEMBL dataset, then evaluating the performances of the RScore1min predictor

(RSPred), and finally analyzing the results of the different generations with and without

synthetic constraints.

10



Comparison of synthetic scores

Figure 2: Normalized histogram of the RScore1min on molecules from Chembl dataset.

Based on our experience, we consider the threshold for a good RScore to be 0.5. The total

distribution of the RScore1min on a sample of molecules from Chembl 24 is plotted on fig. 2.

It can be seen that around 66% of the sample have a good RScore1min (≥ 0.5), that a

significant part of the dataset is not solved by Spaya API and that a major mode around 0.7

is observed. The RScore is not directly interpretable but it takes into account the number of

synthesis steps, which is a meaningful metric for chemists. The graph fig. 3 is a plot of the

correlation between the RScore1min and the number of steps of synthesis found by Spaya

for the ChEMBL dataset sample.

Figure 3: Correlation between the RScore1min and the number of synthetic steps given by
Spaya API on a sample from Chembl dataset.

It can be seen that few synthesis steps (less than 6) is a necessary condition for having a

good RScore, though the contrary is not true. For instance a 2 steps route may have a bad
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score due to low probability disconnections. Indeed, the scoring function in eq. (1) considers

other elements than the number of steps to evaluate the route.

As previously discussed, existing literature scores designed to estimate synthesizability do

not perform a full retrosynthetic analysis of the target molecule. Those scores were compared

on a bench of molecules in order to analyze to what extent they agree with each other.

On the ChEMBL dataset sample, the RA score (fig. 4) often predicts a score of almost

1. Hence, this score is not useful to measure the difficulty of synthesis of feasible compounds

(fig. 5). This can be explained by the fact that the model computing the RA score was

trained on a subset of ChEMBL. The SA score is significantly correlated to the RScore1min

(fig. 6). Having a good SA score seems to be a sufficient condition to have a good RScore,

while the contrary is not true : molecules with complex fragments will often have a bad

SA score, even if they are synthesizable. As an example, the molecules in fig. 12 contain

original and complex fragments, but are easy to synthesize through Spaya.The SC score has

no correlation at all with the RScore1min. (fig. 7).

Figure 4: histogram of RA score on the Chembl dataset

RSPred

In hopes of replacing a full retrosynthetic analysis with a prediction, a deep learning model

was trained to predict the RScore1min obtained with Spaya-API. The performance of the

neural network was evaluated on a hold out test set. The box plot of the predictions made

by the neural networks with regards to the true RScore is shown in fig. 8. With a Pearson
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Figure 5: Correlation between RA score and RScore1min on Chembl dataset

Figure 6: Correlation between SA score and RScore1min on Chembl dataset

correlation of 0.75, the results are quite satisfying. For this reason, the prediction of the neu-

ral network is considered as a new synthetic score, RSPred, used as an additional constraint

in generation.

Figure 7: Correlation between SC score and RScore1min on Chembl dataset
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Figure 8: Correlation between the RScore1min and the values predicted from the neural
network on a test set

Table 3: Computing time per molecule for the different synthetic scores.

Synthetic score Time per molecule (ms)
RA score 28
SC score 241
SA score 2
RScore 40000
RSPred 1
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Computing time

Computing time is an essential attribute of a score as it may limit its usage on large scale

data sets. Table 3 displays computing time estimates of the different synthetic scores. The

RScore1min, being obtained through a full retrosynthesis, is by far the most time consuming

score. Thanks to its scalability, Spaya-API accelerates RScore computation on batches of

molecules. The prediction of the latter, RSPred, is the fastest score to compute, only 1ms

per molecule, 40 000 time faster than the RScore1min. The SA score closely follows with

2ms per molecule, the RA score is one order of magnitude slower while the SC score is two

orders of magnitude slower.

Evaluations of generations on 10 Guacamol tasks

Table 4: RScore3min and reward of the top 100 molecules of the Guacamol generations
without any synthetic accessibility constraint.

Task name Average RScore3min % with RScore3min ≥ 0.5 Average reward
Amlodipine MPO 0.55 77 0.86

Deco HOP 0.66 97 0.99
Fexofenadine MPO 0.66 95 0.89
Osimertinib MPO 0.50 74 0.50
Perindopril MPO 0.59 94 0.59
Ranolazine MPO 0.39 50 0.39

Scaffold Hop 0.58 81 0.58
Sitagliptin MPO 0.60 82 0.60

Valsartan SMARTS 0.62 90 0.62
Zaleplon MPO 0.69 99 0.68

In this section, we evaluate how synthesizable are the most optimal generated molecules

from the 10 Guacamol tasks. We then consider the impact of adding a synthetic constraint

during the generation. The results are analyzed based on the initial objective functions as

well as the synthetic feasibility.

Table 4 contains the reward and RScore3min (3 minutes timeout) of the top 100 molecules

generated without any synthetic constraint for each task. The ranking is performed based

on the reward of each task. It can be noticed that the top 100 molecules are already good in

terms of feasibility and reward: an average of 98% of molecules are synthesizable according
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to Spaya-API, and a large majority even have a good RScore3min (above 0.5).

Figure 9: Reward and accessibility of the top 100 molecules for each task and with different
synthetic constraints. The red line is the average reward (without the synthetic score) on
the top 100 molecules of the generation. The green line is the % of the top 100 molecules
with a RScore3min ≥ to 0.5

For each of the 10 benchmarks, in addition to the generations without any synthetic

constraint, 3 generations were run with:

1) SA score constraint;

2) RScore1min constraint;

3) RSPred constraint;

All those generations are compared based on 2 metrics: the RScore3min on the top 100

molecules, and the average reward on the top 100 molecules, where the top 100 are selected

based on their score on the initial objective function. The plots in fig. 9 summarize the results

of the different generations. As previously stated, even without any synthetic constraint in

the scoring function, the top 100 molecules of these generations have a reasonably good

RScore3min. The SA score constraint improves the RScore3min of the top molecules, and

the RScore1min and RSPred constraints improve it even more. Importantly, the reward is

generally not degraded by the synthetic score constraint.

Being too easy, these tasks may be insufficient to evaluate the impact of adding a synthetic

constraint during generation. Indeed, real-life drug design projects suffer more from synthetic
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accessibility issues as they are harder to solve. The intuition is that when the generator

struggles to find a solution, it designs more and more awkward structures to satisfy the goal

criteria, resulting in molecules which are likely not synthesizable. Hence, the generation

under synthetic constraint is a potential solution as it keeps orienting the generative model

in a chemical space of feasible molecules. This is the motivation behind the ”PI3K/mTOR

experiment”: it is a more realistic model of a real-life drug design project and reflects better

the impact of using a constraint on synthetic accessibility.

Evaluations of generations on PI3K/mTOR dataset

This task is a generation around a library of 463 structurally homogeneous PI3K and mTOR

inhibitors. The objective and targets can be found in table 1. This dataset serves as a

simplified proxy for a real life MPO in a lead optimization project with four objectives to

be optimized (table 1). Six generations were run based on this dataset: one without any

synthetic score constraint, and 5 with synthetic score constraints (RA, SC, SA, RScore1min,

and RSPred). When looking at the evolution of each component of the score among epochs,

it can be noted that the reward increases and saturates systematically around the epoch 60

(fig. 13).

Synthetic feasibility of generated molecules in the blueprint

Here, the main metric to evaluate the quality of a generation method is the number of

generated molecules validating all the constraints which also have a good RScore3min. The

number of generated molecules for each generation (table 5) is roughly constant (+/- 3%),

but the number of distinct molecules is more variable. A molecule is said to be in the

blueprint when the computed value of each objective is in the desired range. The graph

fig. 10 shows for each of the 5 generations how many molecules validate the thresholds, and

their RScore3min range.

First, the generation without synthetic constraint and the one with the RA constraint
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Table 5: Number of molecules generated for each generation; the first column indicates what
synthetic score constraint was used.

synthetic constraint n molecules n distinct molecules
None 80399 16085

RAscore 80663 14509
SCscore 80291 14635
SAscore 78612 12775

RScore1min 83215 11081
RSPred 79861 12703

Figure 10: Molecules that validate all the constraints for each generation, with indication
on their RScore3min range.

both contain a high percentage of non-synthesizable molecules, which would be problematic

in a real-life project. For the other generations, almost all molecules in the selection are

synthesizable. The generation with the RScore1min constraint gives, unsurprisingly, the best

results, with more than twice as many optimal molecules compared to the SA generation.

The RSPred generation gives almost as many easy to make molecules as the RScore1min

generation. It seems that RSPred was sufficient to lead the generative algorithm towards

the generation of synthesizable molecules. Finally, the generation under SC constraint gave

very few molecules in the blueprint (fig. 10).

Diversity of generated molecules

Table 6 displays information about the generated molecules which met all objectives de-

scribed in table 1. It shows that generations under RScore1min or RSPred constraint enabled

to find 2 to 4 times more easy-to-make molecules than the other generation methods. We
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Table 6: Some statistics about the molecules in the blueprint for the 6 generations. Standard
Murcko and Generic Murcko : the number of different Murcko. Feasible/good RScore :
number of molecules with RScore > 0 / ≥ 0.5. Unique : # of molecules that are only in this
generation (and not any of the 5 others). All the columns after ’good RScore3min’ refer to
the molecules in the blueprint with a good RScore3min.

synth
constraint

count
average

RScore3min
feasible

good
RScore3min

standard
Murckos

generic
Murckos

Unique

None 5005 0.08 1959 282 (6%) 59 (21%) 36 (13%) 34
RA 3574 0.11 2660 360 (10%) 79 (22%) 47 (13%) 64
SC 211 0.35 202 127 (60%) 19 (15%) 14 (11%) 64
SA 311 0.56 311 286 (92%) 40 (14%) 31 (11%) 145

RScore1min 850 0.49 843 706 (83%) 69 (10%) 46 (7%) 314
RSPred 985 0.46 971 655 (66%) 104 (16%) 73 (11%) 357

notice that the generations with no synthetic constraint and under RA constraint give more

molecules in the blueprint but few of those have a good RScore3min, while the generations

under SC and SA constraints give less molecules in the blueprint, and less molecules in the

blueprint with a good RScore3min.

To evaluate the diversity we counted the number of Murcko scaffolds and generic Murcko

scaffolds34 among the molecules in the blueprint with a good RScore3min. We observe that

diversity is not significantly different among the different methods with RScore1min and

RSPred generations producing more scaffolds than the other methods. Also, those methods

enabled to generate a significant number (more than 300) of compounds which could not

be found with he other methods. This seems to imply that the synthetic constraint in the

RScore and RSPred generations led the generative algorithm to explore an unseen area of the

chemical space and to identify solutions meeting the blueprint and the synthetic feasibility

constraint that could not be found with other methods.

Discussion

To summarize our results, in the PI3K/mTOR experiment that we conducted, RScore1min

appeared to the best synthetic feasibility score to use as a synthetizability constraint inte-

grated in an MPO generation, as it outperformed the other methods in generating a high

19



number of compounds in the blueprint with a good synthetic feasibility score (RScore3min).

The other important point is that RSPred is a good proxy of the RScore1min with a much

lower computational cost. The SA score has some correlation to the RScore, but the gen-

eration under SA constraint outputs less than half as many interesting molecules than the

generation under RScore1min or RSPred constraint. The other synthetic constraints were

not very useful in this experiment: the RA score has a very bad precision, meaning that

among the molecules well scored by RA score, very few actually have a good RScore3min,

and when included in the reward of a generation, almost all molecules get a high reward

and the generator can’t be optimized towards easier to make molecules; the SC score has

no correlation to the RScore3min, so it comes as no surprise that the generation under SC

score constraint fails to optimize the RScore3min during the generation, and gives poor re-

sults. In order to illustrate the output of those generations, we show in fig. 15 to fig. 20

the top 10 molecules of each generation, where the selection process was the following: after

filtering on the molecules validating the 4 thresholds, the top 10 molecules regarding the

optimized synthetic score were selected. In fig. 14 are exhibited some molecules generated

under RScore1min constraint that may be interesting according to a chemist. An example

of a synthetic route can be found in fig. 11. This route contains 4 commercial compounds

and 4 synthesis steps (A, B, C and D).

This work has two main limitations: firstly, the MPO experiment was conducted only

on one dataset, the PI3K/mTOR dataset. Reason for this is the difficulty to find adequate

publicly available datasets which are representative of the challenges of multi-parametric

optimization in real-life lead optimization projects. We found the MPO datasets and tasks

available in the Guacamol benchmark way too easy to solve, and therefore not adequate for

our purpose. Additional work has been performed by Iktos on other MPO datasets (not

disclosed), showing similar results and conclusions than with the PI3K/mTOR experiment;

secondly, in all our experiments of generations under synthetic constraint, we consider the

”ground truth” of synthetic accessibility to be the RScore3min, which creates a strong bias,
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since by construction the RSCore1min is strongly correlated to the RScore3min. It is there-

fore not surprising that generations under RScore1min perform better to generate molecules

with good RScore3min than other synthetic constraints. The reason for such choice in the

design of our experiments is that there is no known computational score which could be

considered as an objective measure of the synthetic feasibility of molecules and chemists

themselves may sometimes disagree on the ease of synthesis of a given molecule, which may

also vary depending on the building blocks available. We conducted experiments (data not

shown) showing that indeed, the distribution of the RScore for a sample of molecules shifts

when only simpler and cheaper building blocks are used in the retrosynthesis. Finally, the

major advantage of the RScore is that it derives from the output of a real retrosynthetic

analysis, and our internal experience leads to trust the RScore as a good measure of syn-

thetic feasibility, as our internal chemists tend to agree in most cases with the relevance of

the score.

A

B

Figure 11: Example of a synthesis route obtained by Spaya.
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Conclusion

Molecular generation methods are known to produce unrealistic structures which can be

unsynthesizable and known synthetic scores fail to address that issue. In this paper, we

introduce a new synthetic accessibility score, RScore, derived from Spaya,16 a data-driven

synthetic planning software developed by Iktos. The main advantage that distinguishes

RScore from other synthetic scores is that it is computed from the output of a full ret-

rosynthetic analysis performed by Spaya. Also, the tool can be designed to better adapt

to a use case, thanks to customization options: the user can impose intermediate products

to be in the routes, limit the number of steps and customize the list of starting materials.

For relatively simple molecular generation tasks, it was demonstrated that the RScore as a

post-processing filter can be sufficient to ensure synthetic accessibility of optimal solutions.

For more problematic cases, where generations without synthetic constraint tend to suggest

complex structures, adding an explicit synthetic constraint during the generation enables

the design of synthetically accessible compounds by the generative algorithm. The com-

putational complexity of the RScore is a limitation, hence a predictor of the RScore was

built in order to accelerate the scoring. In a relatively difficult MPO task, generations under

constraint of different synthetic scores were compared, and RScore and RSPred constrained

generations gave the best results. Hence RSPred, in addition to being fast to compute, pro-

duced good results. However, just as any machine learning models, the predictor RSPred

has a certain applicability domain, that is around the Chembl dataset. In the PI3K/mTOR

experiment, the initial chemical space was already in the applicability domain of the predic-

tor, which may explain the success of the generation under RSPred constraint. But in other

cases, when the chemical space is far from Chembl, the predictor may have poor results and

might lead the generation to an area of false positives. To address that issue, a preliminary

fine tuning of the predictor on the chemical space of the generation might be helpful, if not

necessary, to make sure the predictor’s performance is still sufficient. Investigations are on

going regarding that topic.
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Supporting Information Available

All code and data can be found at https://github.com/iktos/generation-under-synthetic-

constraint.

(a) Molecules around Chembl dataset.

(b) Molecules around PI3K/mTOR dataset.

Figure 12: Example of molecules with a bad SA score (>3.5) but a good RScore (>0.4).
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Figure 13: Evolution of 4 scoring functions : PI3K, mTOR, similarity, QED among epochs
for 6 different generations around PI3K/mTOR dataset.
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Figure 14: Molecules generated during RScore constrained generation.

Figure 15: Top 10 molecules from PI3K/mTOR generation without any synthetic constraint.

Figure 16: Top 10 molecules from PI3K/mTOR RA score constrained generation.
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Figure 17: Top 10 molecules from PI3K/mTOR SC score constrained generation.

Figure 18: Top 10 molecules from PI3K/mTOR SA score constrained generation.

Figure 19: Top 10 molecules from PI3K/mTOR RScore constrained generation.
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Figure 20: Top 10 molecules from PI3K/mTOR RSPred constrained generation.
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