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Abstract 

Copper iodide (CuI) is a promising material for use as a hole transport layer in perovskite solar 

cells due to its optical transparency, low-cost fabrication, and efficient electronic (hole) 

conductivity. Various reports of perovskite solar cells that utilize CuI have shown impressive solar 

cell performance and improved device stability. Despite these observations, we found no clear 

experimental evidence that the CuI hole transport layer is retained in perovskite p-i-n solar cells 

after device fabrication. Using powder X-ray diffraction (PXRD), UV-vis spectroscopy, and 

impedance spectroscopy, we studied how each of the components present in the precursor solution 

for fabricating the perovskite active layer impacts the integrity of CuI films. Based on these data, 

we establish the deleterious effects of halide ions and solvents such as dimethyl sulfoxide (DMSO). 

We also show that we can fabricate stable CuI material in situ during perovskite deposition by 

taking advantage of a known redox chemistry of Cu(II)/Cu(I) and halides. 

 

 



 2 

 

Introduction 

Copper(I) iodide (CuI) is an intrinsic p-type semiconductor1, 2 with high hole mobility.1, 3-5 It is 

optically transparent and can be fabricated as thin films using solution-based techniques.5, 6 As 

such, CuI has been successfully employed in various electronic devices including organic 

photovoltaics,7, 8 light emitting diodes,9, 10 and thin film transistors.6, 11 Several reports have shown 

that CuI as hole transport layer (HTL) in perovskite-based photovoltaic devices, particularly in an 

inverted planar p-i-n device architecture, enhances power conversion efficiency.12-19 CuI HTLs 

have also been shown to improve charge extraction, thus, enhancing light stability of perovskite 

solar cells.12, 13, 15, 17-20 For these reasons, CuI is a widely studied as a HTL to achieve highly 

efficient and stable perovskite-based electronic devices.  

 

 

Figure 1. Schematic of a perovskite solar cell in the p-i-n configuration. CuI is shown as the hole 

transport layer (bottom layer). The electron transport layer is above the perovskite and is typically 

a functionalized C60.  
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In the p-i-n architecture (Figure 1), CuI constitutes the bottom layer in the device, thus, is 

exposed to the deposition conditions of the layers above it during film fabrication, including the 

perovskite active layer. In many reports, the presence of the CuI layer is not unequivocally 

established.12-19 Thus, some reports have questioned the presence of a CuI layer, particularly in p-

i-n devices fabricated via solution.21 Using powder X-ray diffraction, UV-vis spectroscopy, and 

impedance spectroscopy, we studied how each of the components present in the precursor solution 

for fabricating the perovskite active layer impacts the integrity of CuI films. Using these data, we 

establish the deleterious effects of halide ions and solvents such as DMSO. We also show that we 

can fabricate stable CuI material in situ during perovskite deposition by taking advantage of a 

known redox chemistry of Cu(II)/Cu(I) and halides. 

Experimental Section 

Sample fabrication. Thin films were deposited through spin coating onto either glass or indium 

doped tin oxide (ITO) coated glass substrates. All precursor solutions and sample films were 

fabricated inside a nitrogen-filled glovebox (<0.1 ppm O2, <0.1 ppm H2O) with exception of the 

copper(II) acetate (CuOAc) layer, which was prepared under ambient conditions. Substrates were 

cleaned via sequential sonication in soap solution, water, acetone, and isopropanol for 20 min each 

then dried in an oven at 140 ºC for at least 2 h. The cleaned substrates were then treated with UV-

ozone for 20 min before spin coating.  

The CuI layer was fabricated as follows: A solution of CuI was prepared in acetonitrile (15 mg 

mL-1) by stirring CuI in acetonitrile at room temperature until CuI was fully dissolved (~12 h). 

This CuI solution was then deposited onto the substrate (50 µL) via spin coating at 3000 rpm for 

30 s. The thin films were annealed on a hot plate at 100 ºC for 10 min before the deposition of the 

next layer. The resulting thickness of the films were ~40 – 50 nm measured by profilometry.  
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For samples treated with CuOAc, the procedure is as follows: A 5 mg mL-1 solution of CuOAc 

in isopropanol was prepared by stirring CuOAc in isopropanol at room temperature overnight. The 

undissolved solid was filtered using a 0.45 µM PTFE syringe filter. The solution was then 

deposited on top of the CuI films (50 µL) via spin coating at 1000 rpm for 60 s. The films were 

annealed in an oven at 110 ºC for 30 min.  

The perovskite layer was fabricated as follows: A 1.4 M precursor solution was prepared by 

adding methylammonium iodide (0.7 M) and PbI2 (0.7 M) to a cosolvent mixture of γ-

butyrolactone (GBL) in dimethyl sulfoxide (DMSO) (v/v 7:3). Some experiments required a 

cosolvent mixture containing N,N-dimethylformamide (DMF). In this case, methylammonium and 

lead iodide salts were dissolved in a cosolvent mixture of DMF in DMSO (v/v 8:2). The solutions 

were allowed to stir overnight at 50 ºC. The solution was deposited onto the substrates (50 µL). In 

the case of the GBL cosolvent system, the substrate was spun at 1500 rpm for 10 s, then 2000 rpm 

for 60 s. When 40 s remained in the total spinning cycle a chlorobenzene antisolvent (100 µL) was 

dripped onto the substrate. In the case of the DMF cosolvent system, the substrate was spun at 

2000 rpm for 10 s, then 6000 rpm for 30 s. When there was 20 s left in the spinning procedure a 

chlorobenzene antisolvent (100 µL) was dropped onto the substrates. The films were annealed on 

a hotplate at 100 ºC for 5 min. 

Characterization. Powder X-ray diffraction experiments were run using a Rigaku SmartLab SE 

X-ray diffractometer. Scans were collected from 10º – 55º 2θ at a step size of 0.010º and at a rate 

of 20º/step using X-ray fluorescence reduction. Conductivity measurements were conducted 

using a Solartron Analytical Electrochemical Impedance Analyzer setup with an SI 1287 

electrochemical interface and a 1252A frequency response analyzer. Samples were scanned from 

100,000 – 10 Hz at an oscillation amplitude ranging from 50 – 100 mV. To determine resistance 
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from impedance results, the data were fitted to an equivalent circuit model consisting of two R-C 

circuits in series (Figure S1), and the sum of the resistance was taken as an estimate for 

composite resistance of the sample. ZView (Scribner Associates) was used as a fitting software. 

UV-vis absorption measurements were run on solid films using a Shimadzu UV-2401PC 

spectrophotometer. Data was collected between 325 – 600 nm. 

Results & Discussion 

A typical precursor solution for perovskites is composed of lead halides, and alkylammonium 

halides such as methylammonium iodide (MAI) dissolved in solvents such as γ-butyrolactone 

(GBL), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO). When we fabricated a 

prototypical hybrid perovskite, methylammonium lead triiodide (MAPbI3), using MAI/PbI2 over 

a thin film of CuI, the powder X-diffraction (PXRD) pattern did not show peaks attributable to 

CuI (Figure 2). This observation is consistent with many reports that contain the absence of peaks 

related to CuI in the PXRD.13-15, 18, 19 Often the lack of peaks from CuI is attributed to the 

dominance of the peaks from the perovskite.13   

To understand the lack of peaks related to CuI, we first assessed the influence of perovskite 

precursor solvents on the optical, electrical, and structural properties of the CuI films. In these 

studies, we used common perovskite precursor solvents: GBL, DMF, and DMSO, and two 

cosolvent mixtures of GBL:DMSO (v/v 7:3) and DMF:DMSO (v/v 8:2). We then exposed the CuI 

films to these solvents by spin coating them onto a film of CuI using the same conditions for 

perovskite fabrication. The CuI films were then annealed at 100 ºC for 5 min before further 

characterization.  
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Figure 2. (A) Powder X-ray patterns for CuI films before (red) and after (black) deposition of 

perovskite on top. Red dashed box shows region of interest where CuI and ITO peaks appear; (B) 

the powder X-ray pattern from (A) has been zoomed into on the region between 20.2 – 32.1º 2θ to 

show the lack of CuI diffraction and the appearance of the ITO peak.  

We characterized the optical properties of films before and after solvent treatment with UV-vis 

spectroscopy. A representative UV-vis spectra of a pristine film of CuI is shown in Figure S2. The 

films have a sharp absorption edge occurring at 420 nm. Tauc analysis indicates a band gap of 2.98 
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eV (Figure S2). This is consistent with reported band gaps of CuI thin films processed in 

acetonitrile.6, 11 We then characterized the films after treating them with common perovskite 

precursor solvents. Films treated with DMF or GBL both showed little to no change in the 

absorbance, indicating minimal effect of these solvents on the optical properties of these films 

(Figure 3). The lack of change in the absorbance also indicates that the thickness of the CuI films 

remains unaltered as well. Films treated with DMSO, however, showed no peak around 420 nm. 

We found that CuI was soluble in DMSO (Figure S3), thus, we hypothesized this result may be 

due to the CuI films dissolving and being washed away during the spin coating step. Films that 

were treated with the cosolvent mixtures of GBL:DMSO and DMF:DMSO showed a decrease in 

absorbance relative to the untreated films (Figure S3). These observations are consistent with the 

hypothesis that DMSO may be dissolving the CuI films under the film fabrication conditions.  

 

Figure 3. UV-vis spectra of a pristine CuI film before (black) and after (colored) treatment with 

DMF (blue), GBL (red), and DMSO (green)  

Next, we measured the electrical conductivity of the CuI films before and after solvent treatment 

using impedance spectroscopy. We measured films in a lateral configuration by depositing them 

on top of prepatterned ITO coated substrates. In this measurement, an AC voltage is applied to the 
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sample and the resulting AC current is measured. By convention, the data is plotted in a complex 

plane called a Nyquist plot. The data can then be fitted to established equivalent circuit models to 

extract parameters such as resistance and capacitance. In our samples, we observed a common 

impedance response consisting of two semicircles, observed in various semiconductor and 

ionically conducting materials and devices. To analyze the impedance data, we used a standard 

equivalent circuit model.22-28 We took the sum of all resistive elements to represent an estimate for 

the composite resistance of the CuI films. The Nyquist plots of CuI films before and after solvent 

treatment can be found in Figure S4. The relevant equivalent circuit model used in this work can 

be found in Figure S1. Pristine CuI films showed electrical resistance of 513 ± 42 Ω. We found 

the resistance of the films increased after the annealing step. After treatment with GBL, we did not 

observe any experimentally significant change in the resistance of the films. When the films were 

treated with DMF, there was a marked increase in the resistance of the films (ΔR = 2848 ± 35 Ω).  

One possibility for this observation is the coordination of DMF with copper in the CuI films. It 

has been reported that DMF can coordinate to the surface of CuI nanoparticles.29 We hypothesize 

these same interactions could result in accumulation of DMF at the surface and grain boundaries 

of the films which could cause in an increase in the overall film resistance. Regardless, the 

retention of an impedance signal in these samples indicated the CuI films remained intact during 

DMF treatment and that the interaction between DMF and CuI was likely minimal in these 

conditions. In films exposed to DMSO, however, there was no measurable impedance response. 

This is consistent with the loss of absorbance in UV-vis spectra in films treated with DMSO. 

We characterized the CuI films before and after solvent treatment using powder X-ray diffraction 

(PXRD). An example of the PXRD pattern for a pristine film of CuI can be found in Figure 4. We 

observed films that were highly oriented along (111), consistent with reports for CuI thin films.6, 
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11, 19 After treatment with DMF and GBL, we observed that the PXRD pattern of the CuI films 

remained mostly unchanged (Figure 4a). For these films, we observed a slight increase in the 

intensity of the (111) peak, which was consistent with untreated control films taken before and 

after the temperature annealing step. Scherrer analysis demonstrated that the increasing diffraction 

intensity after the annealing step corresponded to a ~56% increase in the crystalline grain size of 

the film (from ~17 nm to ~26 nm, when the shape factor k = 0.94). For films treated with pure 

DMSO, we observed a total loss of diffraction peaks, consistent with the removal of crystalline 

CuI material from the substrate (Figure 4a). For CuI films treated with the cosolvent mixtures, we 

observed a reduction in the intensity of the diffraction peaks but did not observe a complete 

removal of the signal (Figure 4a). The PXRD results were consistent with the absorption and 

conductivity results.  
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Figure 4. (A) Powder X-ray patterns for CuI films before (red) and after solvent treatment with 

DMF (orange), GBL (yellow), DMSO (green), and cosolvent mixtures of DMF:DMSO (blue), and 

GBL:DMSO (purple); (B) Powder X-ray patterns for CuI after treatment with a salt solution of 

MAI in DMF (blue) and GBL (purple). For reference, pristine CuI (red) and experimental MAI 

powder (black) are shown.  
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Taken together, the data suggest that DMSO may be dissolving CuI films. Our data also suggests 

that solvents such as DMF can alter the conductivity of hole transport materials, altering the 

efficiency of charge extraction and thus the efficiency and stability of photovoltaic devices. 

To elucidate the effects of the salts on CuI film characteristics, we treated the CuI films with salt 

solution via spin coating. We focused on methylammonium iodide (MAI) and PbI2, which are 

commonly used to fabricate MAPbI3, the archetypical perovskite active layer. We found that PbI2 

was insoluble in GBL, and therefore we cannot determine the impact of PbI2 alone in that solvent. 

In DMF, we observed the results of PbI2 solutions were consistent with those of MAI solutions, 

thus, we chose to focus our discussion on just the MAI solutions. We prepared 0.7 M solutions of 

MAI in either pure GBL or DMF. We chose to omit the addition of DMSO in these studies since 

this solvent interfered with the CuI film characteristics in our previous study. By using only GBL 

and DMF, we can better asses the influence of only the iodide salt on the CuI film characteristics.  

In UV-vis studies we observed that when we treated CuI films with solutions of MAI in either 

GBL or DMF, there was a total loss of absorbance associated with the CuI films (Figure S5). 

Conductivity studies also corroborated the findings of the UV-vis results; films treated with MAI 

in GBL or DMF (Figure S6) did not show any impedance response. This contrasts with our earlier 

observation that CuI films treated with pure GBL or DMF retained absorbance and impedance 

response.  

PXRD of CuI films treated with MAI in either GBL or DMF (Figure 4b) did not show peaks 

associated with CuI. To check if the diffraction from the MAI film attenuates the diffraction from 

the CuI film, we prepared samples on a conducting substrate coated with indium doped tin oxide 

(ITO). The ITO substrate has a weak diffraction peak at 30.2º 2θ which corresponds to diffraction 

of the (222) plane.30 For reference, the experimentally matched PXRD profile for a control film of 
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ITO coated on a glass substrate is shown in Figure S7.30 First, we deposited a film of CuI onto an 

ITO coated substrate. On top of the CuI film, we fabricated a film of hybrid perovskite (MAPbI3) 

from a precursor solution containing MAI, PbI2, and a cosolvent mixture of GBL:DMSO (v/v 7:3). 

The PXRD of these samples shows a peak attributable to ITO but not CuI (Figure 2a,b). Thus, we 

conclude that dissolution and not signal attenuation is the cause for the lack of CuI peaks in the 

PXRD.  

It is well-known that CuI can react with I- to form a soluble anion, [CuI2]- (Scheme 1).31 It is a 

similar reaction that allows the dissolution of PbI2 in the presence of iodide salts. Our studies 

establish that the implicit assumption that I- and DMSO cannot dissolve CuI films on time scales 

of perovskite fabrication is incorrect.  

Scheme 1. Addition-Elimination reaction of CuI and aqueous I - in excess 

 

As our work was in progress, a report by Grishko et al. was published that also concluded that 

CuI ‘gets dissolved if halide perovskites are deposited atop from solutions…’.21  While their 

conclusion is like ours, they noted that CuI was not soluble in DMSO and attributed the dissolution 

to the presence of I- and methylammonium ions. Our data shows that DMSO can indeed dissolve 

CuI films, and the dissolution of films in iodide-rich solutions is exclusively from the reaction of 

the I- ions with CuI to form [CuI2]-, which is soluble in many organic solvents. Grishko et al. 

concluded that a ‘CuI/[MAPbI3] heterojunction cannot be obtained using the solution-deposition 

of [MAPbI3]’ and showed that vapor deposition of metallic lead followed by its conversion to 

MAPbI3 by reacting with polyiodide melts prevents the dissolution CuI films. Solution processing 

of hybrid perovskite is a principal feature that makes attractive for fabricating thin film solar cells 
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at low-cost. Therefore, we reasoned that we need a method that conserves the capability to use 

solution-processing and protects the CuI films from being etched by the I- rich perovskite solution. 

It is well-established that Cu(II) salts can be reduced to Cu(I) by I-.31 This redox reaction is used 

in the synthesis of CuI and is the basis for estimating Cu(II) via iodometric titrations.32 Thus, this 

reaction provides a potential route for in situ fabrication of CuI using the I- present in the perovskite 

precursor solution. To test this possibility, we prepared layered samples starting with a film of CuI, 

followed by a layer of copper(II) acetate (CuOAc). Then we exposed these films to solutions of 

MAI dissolved in GBL, or MAI and PbI2 dissolved in the cosolvent system GBL:DMSO to form 

the full perovskite layer. We expected that the CuOAc will react with MAI salt to form CuI. Thus, 

I- in the precursor solution will be used to form CuI instead of etching it.  

Scheme 2. Reaction of copper(II) acetate with methylammonium iodide 

 

 

A schematic of the fabricated device is shown in Figure 5a. Like prior experiments, we treated 

the CuI/CuOAc layered samples by spin coating the salt solutions on top using the same conditions 

which we use during perovskite fabrication. We observed that films with a layer of CuOAc turned 

reddish-brown on exposure to the salt solution of MAI (Figure S8) indicating the formation of 

iodine. Control films with no CuOAc did not show this color change. The brown color was 

transient and sublimed on heating, consistent with the formation of iodine. 

We then characterized these films using UV-vis spectroscopy. First, we measured the absorption 

of a CuI film before and after layering the CuOAc layer on top. We observed that the addition of 

the CuOAc layer on top of CuI had minimal effect on the optical properties of the film, most likely 

because CuOAc absorption is most intense between 550 – 800 nm and there is minimal absorption 
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at 420 nm where we observe the CuI absorption edge (Figure S9). Next, we treated the CuI/CuOAc 

layered samples with a solution of MAI in GBL. We found that there was a weak absorption at 

420 nm in these samples, which is consistent with the expected formation of CuI (Figure S10). 

Next, we measured the electrical properties of the samples. We observed films increased in 

resistance after the temperature annealing step at 100 ºC for 30 min, otherwise, there was no 

significant change in the resistance of the CuI films after the CuOAc deposition (Figure S11). The 

CuOAc layered films were then treated with a solution of MAI in GBL. We observed a loss of 

signal for these samples, similar to control samples which had not been treated with CuOAc 

(Figure S11). From this result, we surmise that the film of CuI may be patchy and not electrically 

continuous. 

We then measured the PXRD of CuI films before and after the coating of the CuOAc layer. We 

did not observe any significant changes in the CuI film diffraction, indicating that the that the 

CuOAc layer does not disrupt the crystalline packing of the CuI film. We also did not observe any 

diffraction peaks corresponding to CuOAc (Figure S12). This indicates that the CuOAc layer is 

either amorphous or too thin to have enough signal or both. Next, we treated the layered CuOAc 

samples with solutions of MAI in GBL. We observed that the diffraction peak corresponding to 

the CuI layer at 25.5º 2θ was retained in samples that contained CuOAc (Figure 5b). In control 

samples which only contained CuI, the diffraction peak corresponding to this material disappeared 

after treatment with the MAI solution. Additionally, we observed that there was a retention of the 

CuI diffraction even after exposure to the full perovskite precursor solution including both MAI 

and PbI2 as well as the GBL:DMSO cosolvent (Figure 5b).  
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Figure 5. (A) Schematic of layered devices tested in these studies showing a CuOAc layer placed 

between the CuI layer and the perovskite or MAI; (B) PXRD patterns of layered device containing 

CuOAc after treatment with MAI (black) and MAPbI3 perovskite (green) showing the retention of 

the crystalline CuI peak after treatment; (C) PXRD pattern of MAPbI3 film deposited onto a 

CuOAc layer showing a high quantity of unreacted PbI2 in the films; (D) PXRD pattern of MAPbI3 

films with varying ratios of MAI:PbI2 deposited on top of a CuOAc layer.  
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We observed that the perovskite films that were deposited on top of the CuOAc layer contained 

a large quantity of unreacted PbI2 (Figure 5c). In these precursor solutions, MAI and PbI2 were 

added in a stoichiometric ratio. This observation is consistent with our expectation that I- are also 

used to convert CuOAc to CuI.  We then varied the ratio of MAI to PbI2 in the precursor solution 

to minimize the amount of unreacted PbI2 in the resulting films (Figure 5d). We found the optimal 

ratio of MAI:PbI2 to be 1.2:1 for films deposited on top of CuOAc under our fabrication conditions. 

Overall, this result confirms that a layer of CuOAc in between the CuI and the perovskite can be 

used to preserve crystalline CuI material in the presence of the I- rich solution and DMSO. 

Conclusions 

Taken together, our studies show if CuI is used as a hole transport material in p-i-n perovskite 

solar cells, then the fabrication of the active layer can impact the integrity of the HTL. We show 

that the CuI films dissolve in DMSO, a component of the active layer precursor solution, during 

active layer fabrication. Additionally, the electrical conductivity of CuI is altered by the use of 

DMF as a solvent, which may impact the charge extraction in full photovoltaic devices. 

Furthermore, CuI thin films undergo an addition-elimination reaction with I- in the perovskite 

precursor solutions, which results in dissolution and removal of that layer during perovskite 

fabrication. We showed that we can preserve crystalline CuI material in devices under these 

conditions by applying fundamental copper chemistry. Herein, we showed the efficacy of the use 

of copper(II) acetate as an interlayer that can work to preserve crystalline CuI during perovskite 

solar cell fabrication. Full characterization and optimization of this system, especially in the 

context of solar cell devices, is the subject of ongoing research and our results will be reported in 

due time. 
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