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Abstract
Spectroscopy is the study of how matter interacts with elec-
tromagnetic radiations of specific frequencies that has led to
several monumental discoveries in science. The spectra of
any particular molecule is highly information-rich, yet the
inverse relation from the spectra to the molecular structure
is still an unsolved problem. Nuclear Magnetic Resonance
(NMR) spectroscopy is one such critical tool in the tool-set
for scientists to characterise any chemical sample. In this
work, a novel framework is proposed that attempts to solve
this inverse problem by navigating the chemical space to find
the correct structure that resulted in the target spectra. The
proposed framework uses a combination of online Monte-
Carlo-Tree-Search (MCTS) and a set of offline trained Graph
Convolution Networks to build a molecule iteratively from
scratch. Our method is able to predict the correct structure of
the molecule ∼ 80% of the time in its top 3 guesses. We be-
lieve that the proposed framework is a significant step in solv-
ing the inverse design problem of NMR spectra to molecule.

Introduction
Spectroscopy is the study of interactions between matter and
electromagnetic waves. This study has paved the way for
many monumental discoveries and theories in science, rang-
ing from quantum mechanics to chemical sciences. Spec-
troscopy in general has played a significant role in diverse
applications such as drug discovery, protein structure deter-
mination and material discovery. Nuclear Magnetic Reso-
nance (NMR) spectroscopy is one of the most crucial and
versatile methods for chemists and scientists to perform
chemical characterization. It is an analytical technique based
on the nuclei’s magnetic properties that either have an odd
mass number or an even mass number with an odd atomic
number. Nuclei with non-zero spin

−→
S would always have a

non-zero magnetic dipole moment, −→µ . NMR relies on this
for the nuclei to respond to perturbations in the presence of
an external magnetic field. NMR spectroscopy is a critical
and often the only method to obtain high-resolution informa-
tion about proteins, DNA, and RNA(Asami, Schmieder, and
Reif 2010) (Spronk et al. 2002). It can also be used to obtain
knowledge of energy minima and barriers by observing con-
formational dynamics of proteins (Balazs et al. 2021). This
can be pivotal in the process of drug discovery.

The 13C NMR spectra measures the properties of individ-
ual nuclei and consists of peaks that correspond to each car-

Figure 1: 2-methyl butane and it’s NMR spectra. Each car-
bon and it’s corresponding peak is indicated by the same
colour.

bon atom present in the molecule. The peak position (chem-
ical shifts) and the peak splits (spin-spin coupling) are de-
pendent on the local environment of that atom. Usually in
labs, experts manually identify the molecular structure from
the NMR spectra using highly specific domain knowledge.
Till today, most computer-based methods to verify the struc-
ture of a sample from its NMR spectra rely on matching
the spectral data with a database of already known spec-
tra(Koichi et al. 2014) (Vliegenthart, van Kuik, and Hård
1992). These methods restrict the usage to identifying only
those molecules that are stored in the database.
The problem concerned here is a non-linear inverse prob-
lem. Forward model y = f(x), in this context, refers to the
task of calculating the NMR spectra y, given a molecule x.
Whereas, the inverse problem refers to drawing conclusions
about an unobserved molecule x from its experimentally ob-
served NMR spectra y (Figure 1).
The forward problem f for NMR spectra is relatively well
studied with many methods ranging from quantum mechan-
ical calculations and density functional theory (Lodewyk,
Siebert, and Tantillo 2012) to deep learning (Jonas and Kuhn
2019) to solve the task. Other empirical methods such as fea-
turizing the neighbourhood of a nuclei and then matching it
against a database of known motifs to predict its shift are
also common (Bremser 1978) (Cherinka et al. 2019) (Mills
2006).
Recently, there have been many significant studies on the use
of modern deep learning and RL methods to solve problems
in chemical sciences ranging from prediction of properties
of molecules to de novo molecule generation with optimized
properties(Zhou et al. 2018) (You et al. 2018). There are var-



Figure 2: Monte Carlo Tree Search: A heuristic search algorithm where each node in tree is a state of the environment. One of
these 4 steps is taken at each step to navigate the search space. 1. Selection: New bonds are added to the root based on UCT
values until a leaf node is reached, 2. Expansion: A new node is added to the leaf node after environment checks the validity of
new node.3. Rollout: Value neural network evaluates the value of the newly added node. 4. Back-propagation: The tree then
back-propagates the new information to update the UCT values of all the nodes till the root node.

ious high-throughput combinatorial methods to generate or-
ganic molecules with desired properties that are well known
and essential in the process of drug discovery(Liu, Li, and
Lam 2017) (Benz et al. 2019). In such a workflow, it would
be of great help to have a framework to verify the structures
of samples generated in situ based on easily acquirable spec-
tral data.
In this work, efforts have been made to determine the struc-
ture of a molecule, given its NMR spectra and molecular for-
mula. There have been a few endeavours to solve this inverse
problem. (Zhang et al. 2020) used a tree-based search frame-
work with a SMILES Generator to predict the structure from
computationally generated 1H NMR spectra. Their method
included help from computationally expensive DFT Calcu-
lations to guide the tree and were able to predict structure
from six out of nine given spectra. In a work by (Jonas
2019), a graph neural network is trained on molecular graphs
with imitation learning. The NMR spectra is incorporated
as per-node information in the molecular graph, and the
molecule is built iteratively by adding edges based on the
probabilities returned by the neural network.
In this work, we use a combination of online Monte Carlo
Tree Search (MCTS) (Silver et al. 2017) and a set of offline
trained Graph Convolutional Networks (Gilmer et al. 2017)
to navigate through the chemical space and find the correct
molecular structure of a given target 13C NMR spectra.

Dataset

We use nmrshiftdb2(Kuhn and Schlörer 2015) which is a
database for organic structures and their experimentally cal-
culated NMR spectra. In this work, we only consider organic
molecules that have less than 10 non-hydrogen atoms (C, O,
N, F). Charged molecules and radicals are also excluded.
Thus, the dataset comprises a total of 2134 molecules with
experimentally obtained chemical shift and split values of
13C NMR spectra.

Method
To reiterate, the problem is defined in the following way:
• We have 13C NMR spectra of the target molecule con-

sisting of each carbon’s shift and split values and the
molecule’s molecular formula.

• The process of solving the problem is modelled as a
Markov Decision Process wherein the molecule is built
iteratively from scratch by adding atoms and bonds to
the current structure at each step.

State Representation
• The current state in the search process is represented as a

Molecular Graph.
• Each atom in the target molecule is present in the current

state as a node. The graph of the current state has n−s+1
components, where n is the total number of atoms in the
target molecule, and s is the number of atoms present
in molecule of the current state. Out of these n − s + 1
islands, one is a connected component representing the
molecule of the current state, and the rest of the n − s
islands are individual atoms that may join the current
molecule by addition of new bonds later on.

• Featurization of the target NMR: Each NMR peak is
assigned to a carbon in the beginning when the state con-
sists only of individual nodes and no edges. The node
feature of an atom consists of the one-hot encoding of
the element kind and the current implicit valency of that
atom. A Gaussian, with the peak of the assigned shift
centred at the chemical shift value and σ = 2, is dis-
cretized into 64 bins. This feature is then appended to the
node feature.

Action Representation
In our work, we formulate a fixed-dimension action space
in which each action signifies the addition of an edge be-
tween any two nodes in the graph. The environment ensures
the validity of these actions by checking for the following
conditions:



Figure 3: Training Methodology : An example search tree while in the training mode on how subgraph isomorphism is used
to make dataset for the neural networks to train on. The target molecule is shown on the top left . Assuming that the current
state in the environment is n-butane, we see a possible state of the search tree. Each node in the tree is also accompanied by an
illustration showing how it is a subgraph of the target molecule. Since this can be evaluated when the training mode is on, this
is used to return intermediate reward r(s, a) = 1 when the current state is subgraph isomorphic to the target state, otherwise
r(s, a) = 0 .

• At least one of the endpoints of the newly added edge
must belong to the sub-graph containing molecule of the
current state.

• The addition of this new edge must obey the chemical
rules of valency for each atom. If the valency due to con-
nection with other heavy atoms is not enough to complete
its octet, it is implicitly assumed that the rest of the va-
lency is satisfied by hydrogens. These hydrogens are not
taken as nodes in the molecular graph.

• The edge must not lead to formation of a ring with four
or three atoms.

• The edge must not lead to a bond within an already
present ring. 1

Agent
Since we have formulated the task at hand as a Markov De-
cision Process, we are left to decide on a planning algorithm
that would use some prior knowledge about the problem and
explore various branches of the search tree before taking ac-
tion a on a state s. One such algorithm is Monte Carlo Tree
Search (MCTS) (Figure 2). MCTS performs one of the four
following steps repeatedly:

1. Select : In this stage of MCTS, the tree is traversed
from the root according to the UCT (Upper Confidence
Bound for Trees) values at each level until it reaches a leaf

1Note that this restriction does not prevent the formation of bi-
cyclo and spiro compounds. It just guides the formation so that the
smaller ring is formed before the larger ring. Doing so proved to
be helpful in the initial experiments since this helps prune some
redundant branches of the tree search.

node. The UCT value at any state is calculated based on the
following formula:

UCT (s, a) = Q(s, a) + c ∗ πmodel(a|s) ∗
√
N(s) + 1

n(s, a) + 1

Where s: Current state, Q(s, a) : Mean Action Value esti-
mate Q(s, a) = W (s,a)

n(s,a) , W (s, a): the cumulative of all re-
turns R(s′, a′) till the leaf node, πmodel(a|s) : Prior proba-
bility by the policy network, N(s) : Number of times state
s has been reached, n(s, a) is the number of times action a
was taken from state s , and c is the constant with which one
can manipulate exploration vs exploitation ratio. The form
of UCT value used in this work is inspired by (Moerland
et al. 2018), which proved to improve the performance of
cases with asymmetric trees.

2. Expand: Once a leaf node s′L is reached by the tree
search, the tree is expanded by addition of a new leaf node
sL. The environment simulates this action and ensures its
validity and also returns an intermediate reward.

3. Roll-out: In a typical MCTS, the initial value of the
new leaf node is estimated using a series of random rollouts
from the leaf node sL. Due to computational limitations, this
work uses a value neural network Vmodel(s) to estimate the
value function.

4. Back propagation: After estimating the value of the
newly added leaf node, R(s, a) of the whole backward trace
is updated through back propagation which in turn updates
the UCT value of intermediate nodes belonging to this
trace.

R(si, ai) = r(si, ai) + γR(si+1, ai+1)



The above four steps are repeated for nmcts number of
times. Then, a real action at is taken by the environment
based on the policy of the tree. The tree’s policy probability
is determined by the visitation count of all the actions at the
root node s0.

Role of the Forward Predictor
While the inverse problem is defined as the task to deter-
mine the molecular structure from the spectra, it naturally
follows that the forward problem is that of calculating the
NMR spectra given the molecule and its structure. Here, a
forward NMR prediction model (Jonas and Kuhn 2019) is
used for the following:
1. For intermediate reward: Typical MCTS applications

also have an intermediate reward returned by the environ-
ment for each action. The step reward is calculated based
on how close is the current state to the target molecule.
The forward model predicts the NMR spectra of the cur-
rent state and the reward is defined by:

r(s, a) = r(s′) = 2 ∗ (1
2
−WS(s′))

WS(s′) = First Wasserstein Distance = l1(ST , SC)

l1(u, v) =

∫ ∞
−∞
|U − V |

where U and V are the CDFs for the distribution of some
random variables u and v (Ramdas, Garcia, and Cuturi
2015), ST is the NMR spectra of the target molecule,
and SC is the NMR spectra of the current molecules′.
The reward r(s′) = WS(s′) is returned whenever the
current state s′ is known to be a terminal state. Otherwise,
r(s′) = 0 is returned.

2. For the Scoring Function: Each episode performed
by the agent returns one prediction of what the target
molecule is. Since MCTS has some element of random-
ness, all guesses made by the agent are not the same. In
such cases, after running the agent for a predetermined
fixed number of times, all the unique guesses are ranked
against each other by the means of the reward function
discussed above. Then, the guess which returns the high-
est reward is taken as the final prediction.

Architecture of the Prior Policy and Value network
There are three modules of neural network used in this work.

Graph Featurizer: This module uses Message Passing
Neural Network (Gilmer et al. 2017) (Duvenaud et al. 2015),
which provides a formulation for supervised learning on
graph structured data. Consider a molecular graphG(V,E)
with node features xv (having information about the current
state and also the target NMR spectra) and edge features
evw. The features of each node at time step t are represented
as htv , initialized to xv at t = 0 . The features of nodes are
updated for 3 time steps using messagesmt+1

v in the follow-
ing way:

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw)

Figure 4: a) Target state of cyclohexane and current state of
2-methyl-butane along with their splitvectors b) Target state
of 4-hydroxy-3-methylpentan-2-one and current state of 3-
methylpentan-1-ol along with their splitvectors

ht+1
v = Ut(h

t
v,m

t+1
v )

Fv = g(xv, h
t
v) = xv + htv,∀v ∈ V

where N(v) is the set of neighbouring nodes of v. Mt and
Ut are the message function and vertex update function re-
spectively. The function g is simply taken to be vector addi-
tion in this work. Fv is the final atomic feature for the node
which has information about the atomic properties, the local
environment, and also the target NMR shift value that was
assigned to this node. The feature (Fv) generated here will
be further used by the policy neural network πmodel(a|s) and
value network Vmodel(s) .

Policy Head: N nodes form
(
N
2

)
pairs, each represent-

ing a possible edge. For each of these pairs, let the feature
vector of the pair be the concatenation of the feature vec-
tor of the two nodes concerned. This pair’s feature vector is
then passed through two fully connected layers to obtain a
3−tuple representing the possibility of single, double, and
triple bond between this pair.

Value Head: All the node features received from the graph
featurizer are then sum-pooled to attain a molecule-level fea-
ture vector which has information about both the current
molecule and the target NMR. This molecule level feature
is then passed through two fully connected layers to finally
predict the value Vmodel(s) of the current state.



Figure 5: An example run for the target molecule CC1=CC=NO1 with nmcts = 1000, πtree(ai|sj) represents the probability of
taking action ai according to the policy returned by the MCTS Search with state sj as the root. In the above figure, each state
sj is also accompanied by the splitvector of that state.

Training Methodology
While in the training mode, the environment has access to
not only the NMR spectra but also the structure of the tar-
get molecule. This can be used to guide the tree by giving a
strong positive reinforcement in the form of r(s, a) (Figure
3). The tree policy (derived from visitation counts of the ac-
tions) and approximation of Q(s, a) hence obtained is used
as the training dataset for the prior policy neural network
πmodel(a|s) and value network Vmodel(s). When any action a
at state s leads it to state s′, i.e s a−→ s′ , then:

r(s, a) := 1 iff S(st, s
′), else 0

where S(st, s′) is Boolean function that returns True iff s′
is subgraph isomorphic to the st. This work employs rd-
kit(Landrum 2016) to check whether the state s′ is a sub-
graph of the target molecule st. With training mode on, the
model was run on system with Intel Xeon E5-2640 v4 pro-
cessor and Nvidia GeForce GTX 1080 Ti GPU for 23 Hours
to collect experience and train the neural networks. 5 models
were trained on different crossvalidation training sets.

Using the Split Information to prune the trees
Each shift value in the dataset is accompanied by a split
value as well. The split value is a categorical variable that
belongs to one of {S,D, T,Q}, and it is dependent on the
number of hydrogen atoms that are attached to the carbon.
A quaternary carbon (no hydrogen attached) leads to a sin-
glet (S) split, a tertiary carbon (one hydrogen attached) leads
to a doublet (D) split, a secondary carbon (two hydrogens
attached) leads to a triplet (T ) split, and a primary carbon
(three hydrogens) leads to a quartet (Q) split. Let splitvector
be the vector that stores the information about the number of
carbons of each split kind in the current state. Since the only
action possible in the modelled MDP is that of addition of
an edge(decreases the number of implicit hydrogens), note
the following two invariant properties:

• The sum of values in the splitvector would remain con-
stant for states with only 1 connected component since
the total number of carbons can’t increase.

• With addition of bonds, the kind of split made by a par-
ticular carbon can only move in the direction:

S ← D ← T ← Q

As a consequence of this, certain states can be flagged as
terminal states if it is known that they can never lead to the
target molecule based on the following criteria:
• When the number of quaternary carbons in the current

state becomes lower than the number of quartet splits in
the target spectra.

• When the number of singlet carbons in the current state
becomes more than the number of singlet splits in the
target spectra and so on.

For example, in Figure 4 a, the agent can safely terminate
search through this branch since once a duplet has formed in
the current state, that carbon can never be transformed back
to triplet or quartet and we know that the target molecule
does not have any duplet or singlet carbon. Similarly, in
Figure 4 b, the agent can safely terminate since the num-
ber of quartets in the current state has gone below the num-
ber of quartets in the target molecule and there is no way to
produce new quartet carbon atoms. These chemistry guided
conditions greatly prune the search tree and prevents the tree
from exploring branches that can lead to the incorrect struc-
ture.

Results and Discussion
Accuracy of the Forward model
The forward model used in this work (Jonas and Kuhn 2019)
was trained on nmrshiftdb2 dataset (Kuhn and Schlörer
2015) as included in the original work. The mean absolute
error obtained for the prediction of the shiftvalue per peak
for the predictor was 1.374 ppm.



(a) Accuracy with nmcts = 1000 (b) Accuracy vs nmcts

(c) Histogram of time taken per molecule (nmcts = 1000) (d) Time taken per molecule vs nmcts

Figure 6: a) Accuracy over 5-fold cross-validation with nmcts = 1000 b) Effect of nmcts(Number of traversal from the root
to leaf in MCTS search) on the various metrics of accuracy, c) Histogram of time taken for the model to run on each molecule
for nmcts = 1000, d) Effect of nmcts on the time taken by the system to predict a molecule

Crossvalidation

The total dataset of 2134 molecules was randomly split into
5 equal groups. In each of the five experiments, one of
the groups was chosen as the hold-out test dataset and the
model was trained on the remaining four groups. For each
molecule, the agent made a number of guesses depending on
how many episodes it ran. There were 20 processes initiated,
with each of them running an episode. An example of one of
such episode runs in illustrated in Figure 5. As shown in Fig-
ure 6 a, on an average, the agents guessed the correct struc-
ture of the molecule of the target spectra 93.8% of the time.
All the guesses of the agent are then ranked based on the
scoring function discussed in the earlier section. The Top1
ranked structure among the guesses was the target structure
57.2% of the time. Accuracy for Top3, Top5, and Top7 of
the scored guesses can be seen in Figure 6 a.

Effect of nmcts on the Accuracy

nmcts is the number of times that the search tree is traversed
from the root to leaf node to explore different branches be-
fore making a true action in the current state. As expected, it
can be observed in Figure 6 b that the net accuracy improves
as nmcts increases.
It is also seen that the trend for Top1 accuracy is not the same
as others and it actually decreases with increase in nmcts.
This can be reasoned with the fact the increasing nmcts
increases the exploration of the chemical space and more
potential candidates are scored against the current struc-
ture. This downward trend reveals that a better scoring func-
tion would improve the TopN accuracy of the agent since it
would be able to rank the candidate guesses in a more accu-
rate way.
Figure 6 d shows the distribution of time taken for each
molecule with varying nmcts. As expected, we observe an
increase in time taken for the agent to make all its guesses



Figure 7: a) Accuracy when the model is trained of molecules with < 7 atoms and tested on molecules with < 10 atoms. b)
Time taken for a molecule when it is guessed correctly and incorrectly (nmcts = 1000)

for a target NMR spectra.

Holdout experiment with training data
In another experiment, molecules with < 7 non-hydrogen
atoms were filtered from the dataset. After running the agent
on these filtered set of molecules with training mode on, the
agent was tested on 200 randomly sampled molecules with
≥ 7 and < 10 heavy atoms. The result of this experiment is
plotted in the Figure 7 a. However, the system performs well
on the class of data that it was never exposed to before, by
guessing the correct structure 86.5% of the time.

Time difference between correctly guessed and
incorrectly guessed molecules
The histogram of the time taken for the agent to run all the
episodes for a molecule can be seen in Figure 6 c . On an
average, it takes ≈ 330 seconds for the agent to make all
its guesses for a target NMR spectra. All episodes are run
within 300 seconds for 71.8% of the molecules and within
600 seconds for 88.5% of the molecules. It is observed in
Figure 7 b. that the mean time taken for all the episodes
for a molecule that is guessed correctly is ≈ 305 seconds,
whereas the mean time for molecules that are guessed in-
correctly is ≈ 780 seconds. This difference of distribution
can be used to have more reliable predictions and improve
the potential practical use-case of this framework. Stop-
ping the search at a threshold time can improve accuracy
for predicted molecules while also saving computational ex-
pense. When the framework makes predictions for all the
molecules, i.e without any threshold time, the correct struc-
ture is among the guesses made for 94.8% of the molecules.
Having a threshold time of 300 seconds leads to the frame-
work making predictions for 72% of the molecules and
timing-out for the rest of the molecules. The correct struc-
ture is among these guesses for 99% of the molecules. Sim-
ilarly, when the threshold is set to 1000 seconds, the frame-
work makes predictions for 94% of the molecules. The cor-
rect structure is among the guesses for 97% of the time.

Conclusion
This manuscript provides a framework using graph convo-
lution networks and reinforcement learning to solve the in-
verse molecular problem of NMR spectra. We introduce a
novel method to train the policy and value networks apri-
ori in guided MCTS runs (Training Mode on) and demon-
strate the utility of Monte Carlo Tree Searches in navigating
the chemical space. Unlike other prior attempts to solve this
problem like (Jonas 2019) where the model makes a pre-
diction only 50% of the time, or (Zhang et al. 2020) where
the model is tested only on 9 hand-picked target spectra, our
model shows good promise by predicting the correct struc-
ture among its Top3 guesses, ∼ 80% of the time.
Still, there are various avenues for improvement for future
work. Since the RL algorithm is dependent on the forward
model for its intermediate reward, a better scoring function
would potentially improve the prediction accuracy. In the
event that a better, albeit computationally expensive scor-
ing function is deviced, the overall practical accuracy can
still be improved while being more time efficient. This can
be done by scoring only the TopN guesses of the agent with
the time intensive scoring function. As can be seen in Figure
6 b, target spectra’s correct molecular structure is present in
the Top7 of the guesses > 85% of the time for all the runs
with nmcts > 200.
13C NMR is just one of the many spectroscopy tech-
niques that are widely used. For example, 1H NMR spec-
troscopy has a higher signal to noise ratio owing to the sig-
nificantly larger abundance of spin-active isotope. Infrared
spectroscopy sheds light on the vibrational transitions in a
molecule and is considered to be complementary to NMR
spectroscopy (Paulsen 2015) (Crowther 2008). A promising
extension of work presented in this manuscript would be to
incorporate other spectral data and leverage different kinds
of information to elucidate the correct structure of an un-
known molecule. Finally, we believe that this work is can be
a crucial step in high-throughput synthesis, where swift and
efficient verification of structures generated can make the
whole process of drug discovery more robust and reliable.
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