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Abstract 

Macromolecules often exchange between functional states on timescales that can be accessed 

with NMR spectroscopy and many NMR tools have been developed to characterise the kinetics 

and thermodynamics of the exchange processes, as well as the structure of the conformers that 

are involved. However, analysis of the NMR data that report on exchanging macromolecules 

often hinges on complex least-squares fitting procedures as well as human experience and 

intuition, which, in some cases, limits the widespread use of the methods. The applications of 

deep neural networks (DNNs) and artificial intelligence have increased significantly in the 

sciences, and recently, specifically, within the field of biomolecular NMR, where DNNs are 

now available for tasks such as the reconstruction of sparsely sampled spectra, peak picking, 

and virtual decoupling. Here we present a DNN for the analysis of chemical exchange 

saturation transfer (CEST) data reporting on two- or three-site chemical exchange involving 

sparse state lifetimes of between approximately 3 - 60 ms, the range most frequently observed 

via experiment.  The work presented here focuses on the 1H CEST class of methods that are 

further complicated, in relation to applications to other nuclei, by anti-phase features. The 

developed DNNs accurately predict the chemical shifts of nuclei in the exchanging species 

directly from anti-phase 1HN CEST profiles, along with an uncertainty associated with the 

predictions. The performance of the DNN was quantitatively assessed using both synthetic and 

experimental anti-phase CEST profiles. The assessments show that the DNN accurately 

determines chemical shifts and their associated uncertainties. The DNNs developed here do not 

contain any parameters for the end-user to adjust and the method therefore allows for 

autonomous analysis of complex NMR data that report on conformational exchange.   
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Introduction 

 

Many functional aspects of a macromolecule can be understood from its time-averaged three-

dimensional structure. However, often the functionality of these molecules depends on their 

ability to exchange between different conformational states. Thus, quantifying the 

interconversion between these states is an important first step towards understanding how these 

biomolecules work1–7. When conformational exchange is present, there is often one major 

populated state, the ground state, and a set of transiently low-populated states that, despite their 

low populations and short lifetimes, often play crucial roles for function. Several NMR 

techniques are now available to characterise reaction dynamics and transiently populated states 

at atomic resolution, including, chemical exchange saturation transfer (CEST)8–10, dark-state 

exchange saturation transfer (DEST)11–13, Carr-Purcell-Meiboom-Gill (CPMG)14–16 relaxation 

dispersion, and relaxation in the rotating frame (R1ρ, R2ρ)
17–19. CEST-based methods, which 

report on conformational exchange involving sparse states with lifetimes ranging from  

approximately 3 - 60 ms, have expanded tremendously over the last decade and have provided 

invaluable insights into the function of macromolecules20. However, although several tools are 

available for the analysis of NMR data reporting on conformational exchange, challenges do 

exist, particularly when the exchange deviates from a simple two-state model21. For 1H CEST 

methods reporting on the exchange of amide-protons22 and methyl-protons23 analyses are 

further complicated by anti-phase features caused by the requirement to eliminate 1H-1H cross-

relaxation effects, leading to broad lineshapes, with resolution significantly more limited than 

for ‘typical’ CEST profiles comprised of absorptive-like dips. 

Deep learning and deep neural networks (DNNs) have led to huge advances in many 

fields of science, including computer vision and natural language processing, and the 

methodology is now a crucial component of  many everyday technologies24. In supervised deep 

learning, DNNs are trained to map an input to a desired output, and once trained, these networks 

can perform analyses autonomously. Deep learning is particularly successful at extracting 

features in complex data25. It has been used for several years within the field of clinical 

magnetic resonance imaging (MRI) and some of the tools have already been approved by the 

FDA26 for image enhancement and classification. Within biomolecular NMR there has been a 

surge in applications of DNNs over the last couple of years, and networks are now available 
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for the reconstruction of sparsely sampled spectra27–30, peak picking31, estimating initial fitting 

parameters32, and virtual decoupling33.  

A key hurdle with many machine learning applications is that training robust models 

requires a large amount of curated training data. The in-depth understanding of the theory 

behind biomolecular NMR and the ability to simulate even complex NMR experiments means 

that the required amount of realistic training data can be generated synthetically. Importantly, 

it has now become clear that DNNs trained on fully synthetic data show robust performance 

on experimental data27,28,33, which allows for sophisticated DNNs to be developed for the 

transformation and analysis of NMR spectra.  

Overall, there is enormous potential for the development of deep learning approaches 

for the general analysis of NMR data and in particular for experiments reporting on 

conformational exchange. Below we have designed and trained DNNs to extract chemical 

shifts from the notably complex amide-proton anti-phase CEST experiment. The DNNs were 

trained solely on synthetically generated CEST profiles and are able to extract accurate 

chemical shifts of exchanging species as well as their uncertainties, thereby demonstrating that 

NMR data reporting on conformational exchange can be analysed autonomously using deep 

neural networks. 

 

Methods 

Deep Neural Network Architectures 

Figure S2 shows the architecture for the DNN used to transform time-domain anti-phase CEST 

profiles into time-domain in-phase CEST profiles, DNNTR. This architecture is built from two 

modules, a module akin to a block in the FID-Net architecture28 and a modified LSTM 

module27. The reason for this choice was that the main objective for the DNN is to ‘decouple’ 

anti-phase CEST profiles, which we have recently shown can be accomplished by the FID-Net 

architecture28. The PYTHON code for generating the model architecture in Tensorflow/Keras is 

provided in Supporting Material. The input to the DNN consists of two vectors of size 2×65 = 

130. The first vector, cestAP(t) = c0 holds the zero-filled real Fourier transform (real and 

imaginary components) of the antiphase CEST profile and the second vector holds the time-

points associated with the first vector, t0. The output of the network is the in-phase CEST 

profile, sampled at 128 offsets. The network contained 3,782,423 trainable parameters. 

 The second DNN, DNNCS, used to determine chemical shifts and their confidences was 

built using a densely connected convolutional neural network architecture34, Fig S4. The input 
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for the network is the output from the first transformation described above, that is, frequency 

domain data describing the in-phase CEST profile, cestIP(ω), a vector of 128 real points. In its 

current form, the network detects a maximum of three chemical shifts as well as their 

confidences and the output of the network is therefore a 3×2 tensor, whose elements comprise 

three chemical shifts and their confidence values. The PYTHON code for generating the model 

in Tensorflow/Keras is provided in Supporting Material. Overall, the network has 1,591,526 

trainable parameters. 

 

Training the deep neural networks 

The first DNN, DNNTR, was trained on 15×106 anti-phase CEST profiles over 1500 epochs, 

where the range of training data is detailed in Table 1. An epoch refers to a single cycle of 

training of the neural network with training data. The training data was generated on-the-fly 

using code written in PYTHON and using functions from the Tensorflow and numpy libraries. 

To obtain smooth simulated CEST profiles, similar to those generated by experiment, previous 

simulations have used a distribution of B1 fields or other dephasing methods8. Here the 

dephasing was achieved by only retaining the eigenvectors of the Liouvillian corresponding to 

real eigenvalues in the propagator. Thus, if L is the matrix describing the Liouvillian, under 

which the spin-system evolves during the CEST period, then the eigenvalues and eigenvectors 

of L are initially found: L Λ = Λ D, where Λ is a matrix of eigenvectors and D is a diagonal 

matrix of eigenvalues. The submatrix of D that holds the real eigenvalues is denoted Dre and 

the matrix holding the eigenvectors corresponding to the real eigenvalues is denoted Λre. 

Propagation of the spin-system is carried out with the propagator, Λre exp(-TexDre)  Λ-1
re. As an 

example, for a simple Liouvillian, L, represented by a 3×3 matrix in the basis set of the three 

product operators, Ix, Iy, and Iz there is typically only one real eigenvalue. After an 

eigendecomposition of L, the matrix holding the eigenvectors, Λ, and the diagonal matrix 

holding the eigenvalues, D, are 3×3 matrices. The submatrix Λre has dimensions 3×1, Dre, is a 

1×1 matrix, and Λ-1
re is a 1×3 matrix. Thus, Λre Dre  Λre

-1 produces a 3×3 matrix that is the 

projection of the original Liouvillian onto the space spanned by the real eigensystem and Λre 

exp(-TexDre)  Λre
-1 is the propagator corresponding only to the real eigensystem. For the code 

written with the Tensorflow library functions, where sizes of matrices should remain constant, 

the dephasing is achieved my multiplying any eigenvalue that has an imaginary part larger than 

10-3 by 109, which means that evolutions caused by non-real eigenvalues are eliminated within 

nanoseconds. 
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The anti-phase CEST profiles were then obtained by propagating the Liouvillian over 

the first INEPT and the CEST element in the anti-phase 1HN pulse sequence. For each anti-

phase CEST profile an in-phase CEST profile was also generated by setting 1JHN = 0 Hz and 

integrating the Liouvillian over the CEST element8. The stochastic ADAM35 optimiser was 

employed with standard parameters and an adaptive learning rate calculated as 0.0004 ×

(𝐿freq + 𝐿uncer)
3/4 (final learning rate of 10-6). A batch size of 256 was used throughout the 

training and random gaussian noise was added with a standard deviation of 0.01 of the 

maximum value of each anti-phase CEST profile. 

 

Table 1. Parameters used to generate training data. 

Experimental parameters 

B0 {14.1 T, 16.4 T, 18.8 T, 

21.1 T, 23.5 T} 

B1 15 Hz to 50 Hz 

Range of offset points 3.4 ppm 

Sampled points 50 to 128  

Inter-scan delay 0.5 s 

CEST delay, Tex 0.4 s 

Parameters reporting on the spin system 

Rotation correlation, τM, used to 

calculate all relaxation rates of the 

ground state. 

3 ns to 20 ns 

1H-15N scalar coupling, 1JHN -91 Hz to -95 Hz  

Micro-second exchange 

contribution added to all states, 

Rex 

Absolute value of a 

normal distribution: 

μ=1.0 s-1, σ = 2.0 s-1 

R2,H(E1) – R2,H(G) and 

R2,H(E2) – R2,H(G) 

Normal distribution: 

μ=0.0 s-1, σ = 2.0 s-1 

Chemical exchange 

Probability of three-site exchange 25% 

kex,GE, kex,GE1, kex,GE2 10 s-1 to 300 s-1 

pE, pE1, pE2 0.01 to 0.15 

 

 After training the DNNTR network the DNNCS network was trained. The input data for 

training the DNNCS network was obtained from output of the trained DNNTR network. Random 
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gaussian noise with a standard deviation between 0.001 and 0.04 of the maximum value of 

each anti-phase CEST profile was added to anti-phase CEST profiles before these were 

transformed with the DNNTR network. A total of 1.5×107 CEST profiles were used for training, 

which was done over 110 epochs, with a batch size of 128. The stochastic ADAM35 optimiser 

with standard parameters and a learning rate of 3.3×10-4 was used.  

 

 Initial training was carried out using a desktop computer (Intel Core I7-6900K, 3.2 

GHz, 64 GB RAM), equipped with an NVIDIA GeForce GTX 1080 TI GPU graphics card and 

subsequent training carried out using the CAMP cluster (NVIDIA Tesla V100 GPU). 

 

Experimental amide-proton CEST data 

A 1.5 mM U-[15N, 2H] L99A T4L sample produced as described previously36 and 

dissolved in 50 mM sodium phosphate, 25 mM NaCl, 2 mM EDTA, 2 mM NaN3, pH 5.5, 

90%H2O/10%D2O was used to record the anti-phase 1HN CEST experiments. L99A T4L anti-

phase 1HN CEST experiments were performed as described previously22. Briefly, the 

experiments were measured on a 800 MHz Bruker spectrometer equipped with an x,y,z-

gradient cryogenically cooled probe. 1HN-CEST measurements were performed with a B1 field 

of 30.5 Hz at 282 K using a CEST delay of Tex = 400 ms. A range of 1H offsets on a regular 

grid from 6.5–9.5 ppm was used, with step sizes of 30 Hz. An additional reference 2D dataset 

was obtained by setting the B1 offset to −12 kHz. 

 A 1.35 mM sample of [U-15N,2H; Ileδ1-
13CHD2; Leu, Val-13CHD2/

13CHD2; Met-

13CHD2] G48A Fyn SH3 domain was prepared as described previously22. The sample was 

dissolved in 50 mM sodium phosphate, 0.2 mM EDTA, 0.05% NaN3, pH 7.0, 90% H2O/10% 

D2O. 1HN CEST experiments were measured for the G48A Fyn SH3 domain using a 600 MHz 

Bruker spectrometer at 285 K (x,y,z-gradient cryogenically cooled probe). The 1HN CEST 

datasets were recorded as described previously22; specifically, a pair of datasets was recorded 

using B1 fields of 26.7 Hz and 42.0 Hz. A CEST delay of Tex = 400 ms was used and B1 offsets 

between 5.5 and 10.5 ppm with step sizes of 25 Hz (B1 = 26.7 Hz) or 40 Hz (B1 ∼ 42 Hz) were 

recorded. In addition, a 2D reference dataset was obtained with a B1 offset of −12 kHz that is 

equivalent to setting B1 = 0 Hz. 
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Results and Discussion 

Chemical exchange saturation transfer profiles are normally visualised and analysed as, 

I(ωoffset)/I0, where I(ωoffset) is the intensity observed for a given site when a weak radio-

frequency pulse (B1) is applied at a frequency of ωoffset, and I0 is the corresponding intensity 

with no B1 pulse applied. A feature of standard CEST profiles is that they resemble inverted 

one-dimensional NMR spectra, where the ‘dips’ are centered at the chemical shifts of the 

exchanging species. Thus, the related CEST profile, max(I/I0) – I/I0, resembles a simple NMR 

spectrum and its real Fourier transform therefore resembles an FID. Analysis of the CEST 

profiles with DNNs shown below first involved transformation of the data into the time domain, 

through a real Fourier transform, Figs. 1A,B. It should be noted that for a real Fourier 

transform, or equivalently a discrete Fourier transform of pure real data (N data points), the 

output is Hermitian-symmetric and approximately half (N/2 – 1 for even N and (N – 1)/2 for odd 

N) of the points are therefore redundant, see Supporting Material and Fig S1. 

To show the strength of the developed DNNs for the analysis of CEST data, we consider 

the amide-proton anti-phase CEST22, whose profiles are complicated relative to those 

generated by other CEST experiments since the ‘dips’ are anti-phase in nature (i.e., multiplet 

components from the scalar coupling between one-bond 1H-X spins are of opposite phase). 

These CEST profiles are challenging to analyse primarily because the chemical shifts may not 

be easily accessible directly from the profiles. To facilitate the analysis of amide-proton CEST 

profiles the overall process is divided into two tasks, each with their own optimal DNN. The 

first DNN, DNNTR, transforms each anti-phase CEST profile into a ‘classical’ profile, where 

the doublet nature of the dips are eliminated, thereby improving resolution, and also upsamples 

the profile to a fixed number of points in the CEST dimension. The second DNN, DNNCS, then 

determines the 1H chemical shifts for each of the exchanging species and an associated 

confidence in the shift values.  

 

A deep neural network for the transformation of amide-proton CEST profiles  

We have previously developed DNNs using the FID-Net architecture28 to decouple and analyse 

NMR spectra28,33 by using FIDs as input. Since amide-proton anti-phase CEST profiles 

resemble anti-phase one-dimensional NMR spectra, our rationale was that a DNN similar to 

FID-Net can be trained to transform anti-phase CEST profiles into ‘decoupled’ standard CEST 

profiles. Thus, the DNNTR architecture used was built of two modules, a module akin to a block 

in the FID-Net architecture28 and a modified Long short-term memory (LSTM) module27. The 
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architecture is described in detail in Supporting Material, Fig S2, where the PYTHON code for 

generating the model in Tensorflow/Keras37,38  is also provided. The theory for spin-evolution 

during CEST experiments is well-established8,39,40, and synthetic training data can therefore 

easily be generated by propagating the Liouvillian over the desired element. 

 

Fig. 1. Transformation of an amide-proton CEST profile from anti-phase to in-phase. Initially the input 

anti-phase CEST profile (A) is transformed with a real Fourier transform to give the time-domain CEST 

profile, followed by zero-filling (an additional 17 complex points) to generate a time-domain profile of 

65 complex points (B), independent of the size of the original CEST profile. The DNNTR network 

decouples the time-domain anti-phase CEST profile to give (C), which is transformed with an inverse 

real Fourier transform to give the final in-phase CEST profile in (D). (E) Schematic representation of 

the transformation from anti-phase CEST profiles to in-phase CEST profiles with a fixed size. 

 

The first DNN, referred to as DNNTR, was trained to transform an input amide-proton 

anti-phase CEST profile to the hypothetical CEST profile of an isolated 1H spin, with 1JHN = 0 

Hz, Fig 1. Thus, DNNTR decouples the anti-phase amide proton CEST profile and upsamples 

it to 128 points. The upsampling to a constant size, in this case 128 real points, makes the 

prediction of chemical shifts with a second DNN feasible, since DNNs are typically trained 

with a constant size of the input and output data (see below). A maximum of three exchanging 

states was assumed and only the forked three-site exchange model was used to generate the 

data, that is, E1 ⇌ G ⇌ E2, where E1 and E2 are sparsely populated states. For 75% of the 

training data the population of E2 was set to zero. Because of the strong correlation between 
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CEST data reporting on different three-site exchange models, for example, E1 ⇌ G ⇌ E2 versus 

G ⇌ E1 ⇌ E2, it is anticipated that DNNTR will robustly transform anti-phase CEST profiles 

derived from any three-site exchange process. Briefly, DNNTR was trained on 15×106 CEST 

profiles, where the range of training data is indicated in Table 1. The loss function was 

calculated from the mean-squared-error between the transformed in-phase CEST profile and 

the target function, see Fig 1D. The network was trained to a normalised mean-squared-error 

(MSE) of 4×10-4 and a mean-absolute-error (MAE) of 0.01. 

The trained DNNTR network was evaluated separately on synthetic data for two- and 

three-site exchanging systems. Figure 2 shows the evaluation on 100,000 randomly generated 

CEST profiles for two- (Fig. 2A) and three-site (Fig. 2B) exchanging systems. Figure S3 shows 

the performance of the DNN transformation as a function of the strength of the weak field, B1, 

the population of the sparse state E, pE, the overall exchange rate, kex (kex = kGE + kEG, for two-

site interconversion) and the number of sampled offsets. The transformation of profiles from 

anti-phase to in-phase by the DNNTR network is robust and there is only limited variation in 

the performance with different parameters used to generate the CEST profiles. Of particular 

interest is that the transformation is only minimally affected by the number of points sampled 

in the input profile, Fig. S3D, suggesting that the upsampling is robust. 
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Fig. 2. Evaluation of the transformation of anti-phase 1H CEST profiles to in-phase CEST profiles using 

a DNN. (A) RMSD between target and transformed in-phase CEST profile (see Fig 1). Statistics for 

100,000 two-site exchange, G ⇌ E, CEST profiles, where 10 s-1 ≤ kex ≤ 300 s-1, 0.01 ≤ pE ≤ 0.15, 15 Hz 

≤ B1 ≤ 50 Hz, 50 ≤ Sampled points ≤ 128, −95 Hz ≤ 1JHN ≤ −91 Hz, B0 ∈ {14.1 T, 16.4 T, 18.8 T, 21.1 

T, 23.5 T}. (B) Statistics for 100,000 three-site exchange CEST profiles (E1 ⇌ G ⇌ E2), where 10 s-1 ≤ 

kex,E1, kex,E2 ≤ 300 s-1, 0.01 ≤ pE1, pE2 ≤ 0.15, 15 Hz ≤ B1 ≤ 50 Hz, 50 ≤ Sampled points ≤ 128, −95 Hz ≤ 

1JHN ≤ −91 Hz, B0 ∈ {14.1 T, 16.4 T, 18.8 T, 21.1 T, 23.5 T}. 

 

Having evaluated the DNNTR network on synthetic data it is important to assess how 

the DNN performs on experimental anti-phase 1HN CEST profiles. Figure 3 shows two 

examples, where 1HN anti-phase CEST profiles for the L99A mutant of T4 lysozyme recorded 

at 18.8 T have been transformed to in-phase CEST profiles (with the scalar coupling removed). 

This representation immediately allows estimation of the chemical shifts of 1H nuclei of the 

exchanging states, which can be used as initial parameters for a least-squares analysis. 

However, these experimental CEST profiles are associated with uncertainty and since the 
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ground truth (exact value) is not known a detailed evaluation of the performance is not directly 

possible. 

 

Fig. 3. Transformation of experimental anti-phase 1HN CEST profiles (AP CEST) recorded on a sample 

of the L99A mutant of T4 lysozyme into in-phase CEST profiles (IP CEST). The AP CEST profiles 

were recorded at a static magnetic field of 18.8 T, a temperature of 284 K, and using a 30 Hz 1H B1 

field; 86 points were obtained in the CEST dimension. (A) Transformation and upsampling to 128 

points of the anti-phase CEST profile for Gly12, (B) transformation and upsampling to 128 points of 

the anti-phase CEST profile for Thr142. 

 

Determining 1H chemical shifts in exchanging states using a deep neural network 

With the in-phase CEST profiles available it becomes substantially easier to estimate the 

chemical shifts of the exchanging species. DNNs are particularly adept at locating specific 

features in data, for example, localising particular elements in an image. Thus, it is expected 

that a DNN could be trained to determine the position of peaks in one-dimensional NMR 

spectra and, consequently, trained to determine the chemical shifts of the exchanging species 

from in-phase CEST profiles or the related profiles, max(I/I0) – I/I0. The densely connected 

convolutional neural network architecture34, which was originally developed for object 

recognition tasks, was adapted here, Fig S4, to determine the chemical shifts from CEST 

profiles. Moreover, our goal was not only to determine the chemical shifts of the 

interconverting conformers, but to also train the DNN to estimate the uncertainties with which 
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it determined these shifts, thereby providing an output similar to a traditional least-squares 

fitting procedure. 

 The output from a DNN is typically a fixed length and a decision about the maximum 

number of exchanging states therefore has to be made before training the network. Since the 

time for training the DNN increases rapidly when increasing the maximum number of 

exchanging states, we chose for this application to only focus on CEST profiles reporting on 

three or less states, which covers most of the CEST-based studies reported to date. For a 

maximum of three exchanging states the output from the DNNCS network is a 3×2 matrix whose 

elements are three chemical shifts, fω,pred, and their corresponding confidences, cpred. When the 

input CEST profile derives from a two-site exchanging system, the DNN should report one 

confidence approaching zero and when the input CEST profile is only reporting on one state, 

two of the confidences should tend to zero.  

To facilitate an end-to-end analysis, that is chemical shifts and their uncertainties 

obtained directly from the experimental anti-phase CEST profiles, the network to determine 

chemical shifts was trained on outputs from DNNTR, i.e. in-phase CEST profiles generated 

from anti-phase profiles. Having the second DNN, referred to as DNNCS, determine both 

chemical shifts and their confidences requires special attention to the loss function used for 

training. Naturally, the DNNCS network should be trained to optimise the confidence and thus 

obtain as accurate peak positions as possible, however, it should also be penalised, when the 

predicted confidence does not match the accuracy of the predicted chemical shifts. 

 The last layer of DNNCS has sigmoidal activation, Fig S4, which means that the output 

values, three values reporting on chemical shifts and three confidences, are between 0 and 1. 

The predicted chemical shifts in the range (0,1), referred to as fω,pred, are easily converted into 

the range of offsets obtained in the CEST dimension of the original data using a linear mapping. 

For example, if the CEST profile is recorded with points between 6.6 ppm and 10.0 ppm, then 

the linear mapping will be δ ← 3.4 ppm × fω,pred + 6.6 ppm. Moreover, a predicted uncertainty, 

σpred, was calculated from the predicted confidence as σpred = k (1/cpred – 1), where k is a constant 

and σpred structured such that it can take values between 0 and infinity. In order to make the 

predicted uncertainties match actual uncertainties of the prediction, the first part of the loss 

function was defined in a manner similar to a standard χ2, that is: 

 

𝐿freq = ∑
(𝑓𝜔,pred,𝑖 − 𝑓𝜔,true,𝑖)

2

𝜎pred,𝑖
2

𝑖=0,1,2

                                                                                          (1) 
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where the sum is over the three states. The constant k was initially set to 1 during training, and 

subsequently set to (max( H1  offsets) − min( H1  offsets))√𝐿freq to rescale Lfreq to have an 

expectation value of 1 and so that σpred reports on the expected uncertainty. The purpose of the 

loss function in Eq (1) is to make the predicted chemical shifts approach their true values. 

However, if Lfreq was the only loss function used during training, then training of DNNCS would 

simply lead to very low confidences (high uncertainties), which would minimise the function 

in Eq. (1). A second loss function was therefore added during training: 

 

𝐿uncer = 10
−4 ∑ 𝟏𝑖√𝜎pred,𝑖

𝑖=0,1,2

                                                                                            (2) 

 

where, 1 = {1,1,1} for three-state exchange input and 1 = {1,1,0} in the case of two-state 

exchange, thereby allowing large uncertainties, σpred, when a state is not present in the input. 

The loss function in Eq. (2) serves to force DNNCS to predict high confidences (low 

uncertainties) where, and only where, the input profiles report on a real state. Briefly, DNNCS 

was trained on 1.5×107 randomly generated CEST profiles, with a final value of Lfreq =  

7.3×10-5, and Luncer = 2.8×10-4. For the synthetic CEST data analysed below, the range of 1H 

offsets was 3.4 ppm and therefore k = 0.029 ppm. Full details of the network architecture and 

the training are provided in the Methods and Supporting Information sections. 

 

End-to-end one-shot analysis of amide proton CEST 

The two DNNs, DNNTR and DNNCS, described above can be applied sequentially to provide 

an end-to-end one-shot analysis of anti-phase CEST profiles:  

 

AP-CEST, 𝐜𝐞𝐬𝐭AP(𝜔)  
 real FT,   DNNTR,   inverse FT 
→                        IP-CEST, 𝐜𝐞𝐬𝐭IP(𝜔)  

  DNNCS  
→        {𝑓𝜔,pred,𝑖, 𝜎pred,𝑖}𝑖=0,1,2 

 

The overall performance of this sequential DNN was first evaluated using synthetically 

generated data. Specifically, (i) 100,000 anti-phase CEST profiles were generated for a variety 

of two-site chemical exchange processes and a further 100,000 profiles for three-site exchange. 

The range of B1 offsets used was 3.4 ppm for all profiles, and all other input parameters are 

given in Table 1. (ii) Random gaussian noise with a standard deviation of 0.01 of the maximum 
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value of each anti-phase CEST profile was added to the input anti-phase CEST spectrum. (iii) 

The DNNTR network was first used to transform all the CEST profiles from anti-phase to in-

phase. (iv) The second network, DNNCS, was used to determine the chemical shifts of the 

exchanging states and their associated uncertainties. 

 

 

Fig 4. Quantitative assessment using 100,000 synthetic anti-phase 1HN CEST profiles reporting on a 

two-site chemical exchange and analysed using the sequential DNN to determine the chemical shifts of 

nuclei from the exchanging states. (A,C,E) assessment of the ground-state predictions, (B,D,F) 

assessment of the predictions of the low-populated state. (A) and (B) show differences between 

predicted (δpred) and true (δtrue) chemical shift values, versus cpred for the 100,000 analysed CEST profiles 

(red dots). The full-drawn line corresponds to the average and the dashed lines correspond to the 

standard confidence levels, 68.3%, 95.4%, and 99.7%, respectively. (C) and (D) show 2D histograms 

of the points in (A) and (B); that is, a 2D histogram of the differences between δpred and δtrue versus the 

predicted confidence, cpred. The histogram was calculated with a resolution of 0.05 along cpred and 0.005 

ppm along δtrue – δpred. The blue dashed lines show the predicted uncertainty, σpred = 0.029(1/cpred – 1), 
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which for cpred > 0.4 agrees well with the confidence levels obtained from the analysis of the 100,000 

profiles. (E) and (F) shows the distributions of uncertainties obtained from the assessment. 

 

 Figure 4 shows a summary of the quantitative assessment of the 100,000 CEST profiles 

corresponding to a two-state chemical exchange process. From Fig. 4 it is clear that the 

sequential DNN is able to accurately predict the chemical shifts of exchanging states from anti-

phase CEST profiles. From the chemical shift predictions made on the 100,000 random CEST 

profiles the difference between a predicted chemical shift, δpred, and a true chemical shift, δtrue, 

was calculated, which gives an estimate of the performance and the confidence levels of the 

DNN as a function of cpred and σpred. Importantly, as shown in Fig 4C and 4D, the DNN has 

also successfully been trained to predict the uncertainty associated with the predicted chemical 

shifts. Specifically, for cpred ≥ 0.4, the predicted uncertainty, σpred, agrees well with the 68.3% 

confidence level estimated from the analysis of the 100,000 profiles. For cpred < 0.4, σpred is no 

longer an accurate measure of the uncertainty. Not surprisingly, the ground state chemical 

shifts, Fig 4E, are generally predicted with a higher accuracy than the chemical shifts of the 

low-populated state, Fig. 4F, where lower confidences are obtained for small chemical shift 

differences between the two states, see Fig S5. The corresponding assessment carried out on 

100,000 synthetic anti-phase 1HN CEST profiles reporting on a three-site chemical exchange 

process, E1 ⇌ G ⇌ E2, is shown in Supporting Material, Fig S6. Figure S7 shows the summary 

of evaluations where random gaussian noise with a standard deviation of 0.01, 0.02, 0.04 of 

the maximum value of each anti-phase CEST profile was added to the input anti-phase CEST 

spectrum. The performance of the stacked DNN shown above strictly only holds for the ranges 

of data that were used for training and for the quantitative assessments, Table 1. However, as 

shown below, the performance of the DNN is rather robust and if the parameters of the CEST 

profile to be analysed deviate only slightly from the training parameters one would still expect 

the analysis to be valid. The ranges of parameters shown in Table 1 cover those obtained in 

most of CEST-based studies to date and it is therefore expected that most experimental anti-

phase CEST profiles can be accurately analysed using the DNNs.  

 

Assessment of the stacked DNN to analyse experimental CEST profiles 

Experimental anti-phase 1H CEST profiles for the L99A mutant of T4 lysozyme were analysed 

using the stacked DNN to gain insight into its performance on experimental data. As a 

validation of the performance of the fully stacked DNN two analyses were performed: in the 

first all of the 86 B1 offsets were used to predict chemical shifts, while in the second, half of 
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the offsets (every second point) were removed. Figure 5A shows the example of Gly12, where 

the predicted chemical shifts and uncertainties using half of the B1 offsets agrees well with the 

values obtained using the full dataset. Generally, this holds for all sites, Fig. 5B and the RMSDs 

obtained are in line with those expected from the predicted uncertainties, σpred. The differences 

in chemical shifts based on analyses of the full and half datasets, for all profiles, as a function 

of the confidence level are highlighted in Fig. 5C. Finally, it should be noted that the DNNTR 

network was only trained on profiles with 50-128 input points. The fact that the stacked DNN 

is able to accurately predict the chemical shifts from profiles with less data (43 points) than 

those used for training points to the robustness of the DNN. 
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Fig 5. Predicting the chemical shifts of exchanging states of L99A T4 Lysozyme. The DNN for the 

transformation of anti-phase to in-phase profiles, DNNTR, upsampled the recorded data to 128 points 

and DNNCS determined the chemical shifts. Two full analyses were performed: One on the original 86 

points recorded and another analysis on half of the data. (A) Analysis of the anti-phase profile for Gly12 

1HN emphasizes the robustness by which the sequential DNN determines chemical shifts and their 

predicted uncertainties. (B) Consistency plot showing excellent agreement between the chemical shifts 

determined from the full dataset (x-axis) and half of the data (y-axis). Only data for which cpred > 0.4 

are shown. (C) Differences between the predicted chemical shifts from the full dataset (δpred [86 pts]) 
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and half of the data (δpred [43 pts]) versus the minimum of the confidence, min(cpred) = min(cpred [86 pts], 

cpred [43 pts] ). All data are included. 

 

To further assess the performance of the stacked DNNs in determining the chemical 

shifts of the exchanging states, anti-phase CEST profiles were obtained for the G48A mutant 

of the SH3 domain from Fyn22. At a static magnetic field of 14.1 T, two sets of data were 

obtained with B1 fields of 26.7 Hz and 42 Hz. Figure 6A shows that the chemical shifts 

predicted using the stacked DNNs, independently, on the two different datasets agree well 

(RMSD of 7 ppb), and Fig 6B highlights the difference in shifts based on the separate analyses 

of the two full datasets. Subsequently, the two experimental datasets were analysed 

simultaneously using a standard least-squares analysis22 with the software package ChemEx 

(https://github.com/gbouvignies/chemex) and the results were compared with the predictions 

made by the DNN, Fig 6C. Again, the agreement between the chemical shifts predicted by the 

DNN and those obtained by least-squares fitting agree well, with an RMSD of 7 ppb.  
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Fig 6. Predicting the chemical shifts of exchanging sites of the G48A mutant of the SH3 domain from 

Fyn. (A) Two datasets were recorded using different B1 field strengths, 26.7 Hz and 42 Hz. The 

consistency plot shows that the chemical shifts determined independently from the two datasets agree. 

(B) Differences between the predicted chemical shifts from the two datasets (δpred [27 Hz] and δpred [42 
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Hz]) versus the minimum of the confidence, min(cpred) = min(cpred [27 Hz], cpred [42 Hz]). All data are 

included. (C) Consistency plot showing that the chemical shifts determined using the stacked DNNs 

(one dataset) agree with the chemical shifts determined from least-squares fitting (two datasets). Only 

data for which cpred > 0.4 are shown. 

 

Uncertainties obtained from the covariance matrix in a least-squares analysis of CEST 

profiles are typically around 1 ppb, which is 6 times smaller than the uncertainties obtained 

from the DNN, indicating that the stacked DNNs have not fully reached the level of accuracy 

obtained by least-squares fitting. Still, the predictions obtained from the analysis with the 

stacked DNNs are of an accuracy where they can be used for downstream analyses and are well 

beyond the level of accuracy by which these shifts can be predicted from a high-resolution 

structure41. Alternatively, the DNN-predicted chemical shifts can serve as excellent starting 

parameters for a subsequent least-squares analysis. It is also possible that larger or alternative 

DNN architectures along with longer training periods could improve the performance of the 

DNN predictions. 

 

Conclusions 

A deep neural network was developed and trained to determine amide proton chemical shifts 

of exchanging states from anti-phase 1HN CEST profiles. The approach first leads to the 

conversion of anti-phase to in-phase 1HN CEST profiles, whereafter the chemical shifts are 

predicted along with their uncertainties. Compared with other analysis tools, the DNN does not 

require any additional training and there are no user adjustable parameters, which makes the 

analysis autonomous and suitable for automated processing pipelines. Thus far, the DNN only 

predicts chemical shifts. If additional parameters are sought, such as exchange rates and 

populations, the output shift values from the DNN can then serve as excellent starting points 

for a least-squares fitting procedure. The methodology and DNNs presented here add to the 

growing applications of deep learning and artificial intelligence for the analysis of NMR data, 

and provide an example of the autonomous analysis of complex NMR data reporting on 

macromolecular dynamics and chemical exchange. 
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