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ABSTRACT: The rapid synthesis of cyclic scaffolds is of high importance to the chemistry community. Strategies for the convergent synthesis 
of substituted carbocycles and heterocycles remain underexplored despite the plethora of applications that these cyclic motifs have in the phar-
maceutical and materials industries. Reported herein is a tandem carbene and photoredox-catalyzed process for the convergent synthesis of 
substituted cycloalkanones via a formal [5+1] cycloaddition. Featuring two distinct photoredox cycles and a novel α-oxidation of benzylic ke-
tones, this reaction offers a mild approach to construct two contiguous C–C bonds and eliminates the need for strong bases or expensive metal 
catalysts. The utility of this method is highlighted through various product diversification reactions that allow access to a range of important 
cyclic scaffolds.   

The convergent synthesis of privileged small molecules remains a 
significant challenge among the organic and medicinal chemistry 
communities.1 Of particular importance is the synthesis of carbocy-
clic and heterocyclic scaffolds, which are highly prevalent in FDA-
approved drugs2 as well as a multitude of bioactive compounds3 and 
are common intermediates in the synthesis of various materials (Fig-
ure 1A).4 These scaffolds can often be accessed from cycloalka-
nones, thus highlighting the need for methods that enable the con-
vergent construction of cyclic ketones.5 Cyclohexanones are most 
frequently synthesized in industry by reduction of the corresponding 
phenol6 or oxidation of cyclohexane or cyclohexanol derivatives 
(e.g., Chapman-Stevens oxidation).7 These processes often require 
elevated temperatures and strong redox agents or are plagued by 
over-reduction or over-oxidation. Cycloadditions (e.g., [4+2] reac-
tions)8 and various other cyclization processes (e.g., Dieckmann 
condensation,9 Robinson annulation,10 etc.) offer alternative routes 
for accessing cyclic scaffolds, but their applications in the synthesis 
of structurally complex cyclohexanones are limited due to electronic 
requirements or vigorous reaction conditions (Figure 1B). 

The recent renaissance of radical chemistry through the emer-
gence of photocatalysis11 and electrosynthesis12 has resulted in new 
approaches for the formation of C–C bonds, thus enabling non-tra-
ditional disconnections. While the versatile reactivity enabled by 
these radical redox strategies is unquestionable, significant limita-
tions still exist. In particular, the majority of approaches in recent 
years for the photocatalytic synthesis of ketones concentrate on 
building acyclic products.13 Apart from work focused on the synthe-
sis of fused ring systems via radical cascade mechanisms, the synthe-
sis of carbocyclic or heterocyclic rings via radical C–C bond for-
mation remains underexplored.11a,14 Moreover, structural complex-
ity can be achieved efficiently by the formation of multiple bonds in 
a one-pot procedure, yet few protocols have been established for the 
construction of highly functionalized cyclic products. Recent ad-
vancements in metal catalysis (e.g., zinc, samarium, etc.) and photo-
redox strategies (e.g., iridium catalysis, single-electron carbene 

catalysis, etc.) have enabled the facile construction of ketones via C–
C bond formation,13e,15 and these reactivity modes have been ex-
tended to radical relay processes for the formation of multiple bonds 
in a single reaction.14a,16 While these strategies can afford highly func-
tionalized products, they tend to feature 1,3-bond formation pat-
terns, thus restricting their scope and overall utility. As a result, de-
velopment of a new methodology for the synthesis of multi-func-
tionalized cyclic scaffolds would allow for the exploration of new 
chemical space. 

Given our recent investigations on the synthesis of ketones in 
combination with the rise in methods utilizing single-electron ben-
zylic oxidations, we envisioned that oxidation of benzylic ketones 
might be possible. Benzylic C–H bonds are highly prevalent in many 
bioactive compounds (e.g., ~40% of the top 200 small molecule 
drugs by retail sales in 2020 contain benzylic or benzylic-like C–H 
bonds),17 and their functionalization using single-electron catalysis 
has been of great interest in recent years.18 Given that ketones are 
highly valuable functional groups that are often the center of reactiv-
ity and diversification, the efficient synthesis of benzylic ketones has 
also received significant attention; advancements in the construc-
tion of these prevalent motifs include the α-arylation of ketones (e.g., 
via transition metal catalysis) and various radical coupling strategies 
(e.g., via an acyl/ketyl radical).18a,19 We were surprised to identify few 
strategies for the mild α-functionalization of benzylic ketones. We 
hypothesized that combined carbene and photoredox catalysis 
would allow for the construction of two contiguous C–C bonds via 
radical α-functionalization of in-situ generated benzylic ketones un-
der mild reaction conditions. Reported herein is the tandem carbene 
and organophotoredox-catalyzed convergent synthesis of α,β-disub-
stituted cyclohexanones (Figure 1C). This process features consec-
utive photoredox cycles that facilitate two distinct transformations 
in one pot for the rapid generation of chemically complex cyclic scaf-
folds. Generation of a linear ketone occurs via a light-driven, car-
bene-catalyzed intermolecular radical-radical coupling, and subse-
quent oxidation of the corresponding enol in a second photoredox  



 

 

 
Figure 1. A) Cyclohexanone-derived scaffolds found in bioactive compounds. B) Selected synthetic routes to prepare cyclohexanones. C) 
Combined light-driven carbene and photoredox catalyzed approach and its inherent advantages. D) A new strategy to build substituted cyclo-
hexanones featuring an initial intermolecular radical-radical coupling followed by an intramolecular cyclization via oxidation of a benzylic enol. 
 
cycle enables intramolecular cyclization to the α,β-disubstituted cy-
clohexanone product (Figure 1D). 

Using our previously optimized reaction conditions for the syn-
thesis of aliphatic ketones as a starting point,19n it was quickly deter-
mined that further optimization of the solvent, N-heterocyclic car-
bene (NHC) precursor, and base was unnecessary. Given that this 
process features two distinct photoredox cycles by the same photo-
catalyst, choice of photocatalyst unsurprisingly was found to be crit-
ical in optimizing for the desired reactivity. Use of iridium photo-
catalyst [Ir(dF[CF3]ppy)2(dtbpy)]PF6 led primarily to linear ke-
tone 3a' (Table 1, entry 2), confirming the feasibility of the first re-
action step. Highly oxidizing or highly reducing photocatalysts were 

not suitable for this process (Table 1, entries 3-4), as their range of 
redox potentials were not broad enough to enable the various oxida-
tions and reductions. When organophotocatalyst 3DPAFIPN was 
employed, significant cyclized product was observed (Table 1, entry 
1), suggesting that the necessary redox potentials fall near its redox 
range (E1/2 PC*/PC•– to E1/2  PC/PC•– = +1.09 to –1.59 V vs. 
SCE).11h Although this process was optimized with Hantzsch es-
ters,20 use of organophotocatalyst 4CzIPN afforded product using 
benzyl potassium trifluoroborate salts (Bn–BF3Ks)21 as an alterna-
tive oxidatively-generated radical precursor (ORP; Table 1, entry 
5). Final optimization of the reaction concentration proved to be es-
sential, as this one-pot transformation features both intermolecular  

 
Table 1. Optimization of reaction conditions and reaction sensitivity.a  

 
a See SI for details. b 1H NMR yield using 1,3,5-trimethoxybenzene as an internal standard. c Isolated yield. 
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and intramolecular bond-forming steps. The screening of various re-
action concentrations revealed that the cyclization occurred most 
readily under dilute reaction conditions (Table 1, entries 1,6-8). 

The optimized reaction was evaluated for its sensitivity to demon-
strate the practical nature of this protocol and ensure a high degree 
of reproducibility with differing reaction setups (Table 1, right, see 
SI for details).22 Only minor deviations in yield were observed for 
small changes in concentration, light intensity, and temperature. As 
expected, it was found that high oxygen levels are detrimental to the 
reaction efficiency, with a dramatic change in yield (i.e., 0% yield) 
when air was bubbled through the reaction solution prior to irradia-
tion. Similarly, addition of water decreased the reaction efficiency, 
but normal reactivity was restored using non-degassed acetonitrile 
without additional drying under inert atmosphere (i.e., low oxygen 

and low water). The demonstrated overall robustness of this reac-
tion suggests that little-to-no difficulty should be encountered when 
these reactions are run in other laboratories.  

These reaction conditions were used to synthesize cycloalka-
nones with a variety of substituted α-aryl substituents and a diverse 
array of β-substituents (Table 2). Substituted benzyl radical precur-
sors featuring electron-withdrawing or electron-donating groups 
were found to be suitable coupling partners and allowed for signifi-
cant conversion to the corresponding cyclohexanone product (3b-
3f). Many benzylic oxidation strategies are inefficient or completely 
ineffective with electron-poor arenes, as these groups increase the 
oxidation potential of the arene ring significantly. The strategy re-
ported herein, however, tolerates electron-withdrawing groups, with 
yields up to 66% (3d) over two C–C bond-forming steps in our one- 

 

Table 2. Substrate scope of reaction and application of the products to synthesize heterocyclic scaffolds in high yields.a,b 

 
a See SI for details. b Diastereomers were assigned by analogy to ORTEPs of 3a and 3k. A single diastereomer was observed by 1H NMR analysis for all 
reactions. c Isolated from the corresponding pentenoyl imidazole 1. 
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pot procedure. This difference in reactivity likely stems from the 
mechanism of oxidation, wherein deprotonation of the α- position 
gives the enol, which can be oxidized at lower potentials. 

A diverse array of β-substituted cycloalkanones was also accessed 
using this protocol. Various substituted β-benzyl cyclohexanone 
products were isolated in moderate-to-good yields (3g-i,k). Disub-
stituted alkenes were also tolerated, with isolation of 3j in 81% yield. 
Cyclohexanones featuring heteroaromatic substitution were also 
constructed using this tandem cyclization process, with thiophene-
substituted 3l and furan-containing 3m isolated in moderate-to-
good yields. The diversity of products that may be synthesized under 
these reaction conditions was further showcased by isolation of δ-
ester 3n in high yield, providing a functional group handle for diver-
sification. Isolation of 4-geminal-diester 3o in excellent yield sug-
gests that highly functionalized cyclohexanones may be synthesized 
using this method by pre-functionalization of the linear starting ma-
terial; moreover, the excellent yield obtained for 3o demonstrates 
the potential utility of this method for the construction of key syn-
thetic building blocks. Although these conditions were optimized for 
the synthesis of cyclohexanone derivatives, isolation of 3p and 3q 
suggests that this process may be employed for the synthesis of cy-
clopentanones and other cycloalkanones with additional optimiza-
tion.  

Reactions of cyclic ketones have been extensively reported in the 
literature (e.g., reduction to the corresponding cyclohexane, con-
densation with an amine, etc.), highlighting their versatility as syn-
thetic intermediates.23 As such, the utility of this process in synthesis 
was demonstrated through a brief series of product diversification 
reactions (Table 2). When 3a was subjected to established modified 
Beckmann conditions, the corresponding caprolactam 4a was iso-
lated in 77% yield.24 Similarly, subjecting 3a to standard Baeyer-Vil-
liger conditions enabled the corresponding lactone 4b to be fur-
nished in quantitative yield.25 A multitude of additional diversifica-
tion directions can be envisioned for these products given their syn-
thetic utility. 

While the mechanism of the carbene-catalyzed radical-radical 
coupling has been studied previously,19n,26 a series of key mechanistic 
experiments were employed to study the reaction mechanism of the 
benzylic oxidation. Subjecting linear ketone 3a' to the organophoto-
catalyst and light under basic conditions yielded cyclic 3a in 90% 
yield, supporting linear ketone 3a' as an intermediate in this reaction 
(Scheme 1A) and offering an alternative route to access these prod-
ucts. Control experiments strongly support a photocatalytic trans-
formation, as no reaction occurred in the absence of base, photocata-
lyst, or light (Scheme 1A). A TEMPO-trapping experiment further 
suggests production of an α-benzylic radical, as the mass of TEMPO-
adduct 5a was observed by high-resolution mass spectrometry 
(HRMS; Scheme 1B). Stern-Volmer fluorescence quenching ex-
periments reveal that both 3a' and a basic mixture of 3a' with cesium 
carbonate quench the photocatalyst, with the basic mixture being 
the more prominent quencher (Scheme 1C). Together with the re-
quirement of basic reaction conditions as indicated by the control 
experiments (vide infra), these results suggest that the enol or eno-
late form of 3a' likely undergoes single-electron oxidation by the 
photocatalyst. Lastly, the reaction was run under standard reaction 
conditions in deuterated acetonitrile to shed light on the final step of 
this reaction. Analysis of the isolated cyclized product revealed sig-
nificant deuterium incorporation at the ketone α-positions, an ex-
pected result given the acidity of these protons. Moreover, approxi-
mately 50% deuterium incorporation was identified at the γ-benzylic  

 
Scheme 1. A) Control reactions for the benzylic oxidation. B) 
TEMPO-trapping experiment. C) Stern-Volmer fluorescence 
quenching experiment used to identify the species that is oxidized by 
the photocatalyst. D) Deuterium labeling experiment that reveals 
deuterium incorporation from the solvent terminates the reaction 
approximately 50% of the time (blue highlighted deuterium atom). 
TEMPO = 2,2,6,6-tetramethylpiperidine 1-oxyl radical. 

position of the cyclic product (blue highlight, Scheme 1D), suggest-
ing that the mechanism terminates by hydrogen-atom abstraction27 
or reduction followed by protonation.28 

Using our previous knowledge and the results of these mechanis-
tic experiments, we propose a mechanism featuring two distinct pho-
toredox cycles (Scheme 2; see SI p12 for detailed mechanism in-
cluding NHC catalytic cycle). Single-electron oxidation of the oxi-
datively-generated radical precursor (ORP) yields radical cation I, 
which fragments to provide benzyl radical II. Single-electron reduc-
tion of acyl azolium III, derived in situ from acyl imidazole 1, affords 
acyl azolium radical IV. Intermolecular radical-radical coupling and 
loss of the NHC gives linear ketone intermediate 3'. Single-electron  
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Scheme 2. Proposed mechanism for the tandem cyclization pro-
cess. 

oxidation of the corresponding enol or cesium enolate V affords α-
benzylic radical VI, which engages in an intramolecular cyclization 
with the alkene. The resulting γ-benzylic radical VII may undergo 
hydrogen atom transfer (HAT) or be reduced by the photocatalyst 
to the corresponding anion, which deprotonates the solvent or bi-
carbonate to afford the desired cyclohexanone product 3. 

In summary, we have developed a tandem carbene and photore-
dox-catalyzed strategy for the convergent synthesis of α,β-disubsti-
tuted cyclic ketones. This process enables the construction of two 
contiguous C–C bonds via a formal [5+1] cycloaddition and high-
lights a novel method for the α-functionalization of ketones under 
mild reaction conditions. Through the combination of two distinct 
processes in one pot, this reaction offers a route to synthesize com-
plex cycloalkanone products that can be leveraged to access scaffolds 
relevant in both the pharmaceutical and materials industries.   
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The convergent synthesis of highly functionalized carbocycles and heterocycles remains a high priority among organic chemists due to 
their numerous applications in the pharmaceutical and materials industries. Descried herein is a tandem carbene and photoredox-cata-
lyzed process for the synthesis of substituted cycloalkanones via a formal [5+1] cycloaddition that features a novel α-oxidation of ben-
zylic ketones.   
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