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ABSTRACT: Advances in the field of goal-directed molecular optimization offer the promise to find feasible candidates for even the most 
challenging molecular design applications. However, several obstacles remain in applying these tools to practical problems, including lengthy 
computational or experimental evaluation, synthesizability considerations, and a vast potential search space. As an example of a fundamental 
design challenge with industrial relevance, we search for novel stable radical scaffolds for an aqueous redox flow battery that simultaneously 
satisfy redox requirements at the anode and cathode. To meet this challenge, we develop a new open-source molecular optimization framework 
based on AlphaZero coupled with a fast, machine learning-derived surrogate objective trained with nearly 100,000 quantum chemistry simula-
tions. The objective function comprises two graph neural networks: one that predicts adiabatic oxidation and reduction potentials and a second 
that predicts electron density and local 3D environment, previously shown to be correlated with radical persistence and stability. With no hand-
coded knowledge of organic chemistry, the reinforcement learning agent finds molecule candidates that satisfy a precise combination of redox, 
stability, and synthesizability requirements defined at the quantum chemistry level, many of which have reasonable predicted retrosynthetic 
pathways. The optimized molecules show that alternative stable radical scaffolds may offer a unique profile of stability and redox potentials to 
enable low-cost symmetric aqueous redox flow batteries.

INTRODUCTION 
The	development	of	materials	with	precisely	tuned	electro-
chemical	and	physical	properties	is	critical	in	enabling	next-
generation	energy	technologies.	One	example	appears	in	re-
dox	flow	batteries	(RFBs),	which	offer	the	potential	to	de-
liver	a	low-cost	and	reliable	energy	storage	solution	at	the	
grid-scale.1	While	vanadium-based	RFB	chemistries	are	cur-
rently	the	most	well-studied,	battery	formulations	using	or-
ganic	molecules	as	the	active	species	are	a	promising	alter-
native	as	they	are	domestically	manufacturable,	decoupled	
from	markets	for	transition	metals,	and	have	a	lesser	eco-
logical	footprint.2–4	The	stability	window	of	the	solvent	de-
termines	the	desired	electrochemical	potential	for	both	an-
ode	and	cathode	half-reactions:	 for	water-based	batteries,	
this	dictates	a	maximum	thermodynamically	stable	voltage	
of	1.23	V	at	25°C,	although	in	practice	voltages	of	approxi-
mately	2.0	V	are	possible	due	to	the	slow	kinetics	of	hydro-
gen	evolution	on	carbon	electrodes.5		
A	wide	range	of	organic	redox	couples	exist	and	have	been	
explored	 as	 charge	 carriers	 in	 flow	 battery	 applications.6	
Among	 these,	 persistent	 organic	 radicals	 are	 a	 promising	
class	 of	 active	 species	 with	 highly	 reversible	 redox	 pro-
cesses.7	These	molecules	have	an	unpaired	valence	electron	
that	can	either	be	donated	or	paired	with	an	accepted	elec-
tron	to	form	a	closed-shell	species.	However,	due	partly	to	
their	unique	and	complex	chemistry,	 relatively	 few	stable	
radical-containing	materials	have	been	explored.7,8	As	a	re-
sult,	most	studies	have	focused	on	chemical	modifications	

of	a	handful	of	well-known	stable	radical	scaffolds,9,10	pri-
marily	via	mechanism-based	approaches	that	identify	opti-
mal	side-chains	to	improve	performance	such	as	increasing	
solubility	or	limiting	possible	decomposition	reactions.11–18	
The	scarcity	of	 radical	 scaffolds	complicates	 the	 tuning	of	
their	physical	 and	electrochemical	properties	 to	meet	 the	
strict	demands	of	high-performance,	 low-cost	RFBs.2,3	For	
example,	TEMPO	(2,2,6,6-tetramethylpiperidine-N-oxyl)	is	
currently	one	of	the	best	organic	catholyte	candidates	due	
to	its	persistence	and	ability	to	undergo	reversible	one-elec-
tion	oxidation	(Fig.	1).	However,	water-soluble	TEMPO	de-
rivatives	remain	uneconomical,	with	a	low	oxidation	poten-
tial	of	+0.8	V	vs.	Standard	Hydrogen	Electrode	(SHE)	com-
pared	to	the	thermodynamic	limit	of	+1.23	V	in	water	im-
posed	 by	 the	 oxygen	 evolution	 half-reaction.19,20	 Viologen	
derivatives	have	similarly	been	explored	as	anolyte	materi-
als	due	to	their	highly	reversible	+1/+2	redox	couple	with	
a	standard	reduction	potential	of	-0.45	V	vs.	SHE.16,21	How-
ever,	with	a	molecular	weight	of	257	g/mol	(vs.	156	g/mol	
for	 TEMPO),	 batteries	 based	 on	 methyl	 viologen	 are	 un-
likely	to	satisfy	capital	cost	requirements	for	commercial	vi-
ability.3	Additionally,	the	use	of	separate	electrolytes	for	the	
anode	and	 cathode	 results	 in	 capacity	 fade	with	 chemical	
cross-over	driven	by	concentration	gradients.22	The	discov-
ery	 of	 new	 stable	 organic	 radical	 scaffolds	may	 therefore	
unlock	performance	and	cost	targets	unachievable	with	cur-
rent	materials.	
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Recent	work	has	demonstrated	that	the	stability	of	organic	
radicals,	 viewed	 in	 terms	 of	 thermodynamic	 stabilization	
and	 kinetic	 persistence,	 can	 be	 estimated	 using	 density	
functional	theory	(DFT).23	In	addition	to	stability,	the	elec-
tron	exchange	half-reactions	of	RFB	candidates	must	have	a	
precise	 redox	 potential	 for	 optimal	 performance.	 For	 or-
ganic	radicals,	their	single-electron	half-reaction	potentials	
are	determined	by	their	adiabatic	electron	affinity	and	ioni-
zation	 energy,	which	 can	be	 reliably	 estimated	 via	DFT.10	
Computational	screening	of	many	requirements	for	new	re-
dox-active	moieties	 is	 therefore	 feasible,	 enabling	 a	 high-
throughput	search	for	potential	candidates.	
The	 field	 of	 goal-directed	 molecular	 optimization	 has	
evolved	 rapidly	 in	 recent	 years,	 boosted	 in	 part	 by	 im-
proved	machine	 learning	 (ML)	 tools	 and	generative	 algo-
rithms.24	Computational	lead	generation	has	been	predom-
inantly	studied	 in	pharmaceutical	 research,	often	 through	
generating	 serialized	 molecular	 structures	 as	 SMILES	
strings	 that	 resemble	 a	 given	 training	 database	 of	 com-
pounds.25–27	 While	 algorithmic	 approaches	 like	 Bayesian	
optimization	 can	 help	 to	 efficiently	 navigate	 predefined	
chemical	spaces	in	combination	with	surrogate	models,	the	
number	of	pre-enumerated	chemical	species	is	constrained.	
In	 contrast,	 performing	 on-the-fly	 molecular	 generation	
during	exploration	enables	searching	even	larger	chemical	
spaces.24	 Techniques	 from	 reinforcement	 learning	 (RL)	
have	shown	an	excellent	ability	to	generate	valid	molecules	
with	desired	properties	without	relying	on	an	existing	data-
base	of	molecular	structures	 to	 learn	valid	structural	mo-
tifs.28,29	In	particular,	methods	based	on	a	direct	tree	search	
of	 molecular	 structures	 using	 techniques	 such	 as	 Monte	
Carlo	Tree	Search	(MCTS)	offer	the	ability	to	precisely	con-
trol	the	search	space	of	candidate	molecules.30–34	Most	mo-
lecular	optimization	work	has	been	benchmarked	on	fairly	
simple	and	fast-to-compute	functions,	such	as	Quantitative	
Estimate	of	Druglikeness	(QED)35	or	penalized	octanol-wa-
ter	partition	coefficient	(Penalized	Log-P)36	that	do	not	pro-
vide	 a	 realistic	 picture	 of	 the	 challenges	 of	molecular	 de-
sign,37	 or	 optimize	 just	 a	 single	 objective.38	 Additionally,	
generative	models	explore	millions	of	potential	candidates	
during	 a	 typical	 search	 -	 precluding	 the	 incorporation	 of	
more	 detailed	 and	 computationally	 intensive	 molecular	
evaluation	criteria	using	DFT	or	other	high-fidelity	simula-
tions.	
Machine	 learning	 (ML)	 surrogate	models,	 given	 sufficient	
training	 data,	 have	 been	 shown	 to	 reproduce	 quantum	
chemical	 calculations	 at	 a	 fraction	 of	 the	 computational	
cost.39–42	In	this	study,	we	develop	a	complex	and	multi-fac-
tored	objective	function	for	organic	radical	charge	carriers	
that	includes	radical	stability,	redox	potential,	and	synthe-
sizability	 considerations	 backed	 by	 O(105)	 DFT	 calcula-
tions.	We	next	implement	a	scalable	RL	approach	based	on	
single-player	 AlphaZero43,44	 that	 guarantees	 validity	 and	
low	synthetic	accessibility	scores35	for	optimized	molecules.	
As	an	even	more	ambitious	goal	than	simply	improving	on	
the	 single	 redox	 couple	 performance	 of	 either	 TEMPO	 or	
methyl	viologen,	we	sought	to	find	stable	radical	candidates	
that	 simultaneously	 satisfy	 both	 the	 oxidation	 and	

reduction	potential	requirements	for	a	symmetric	aqueous	
redox	 flow	 battery.	 Compared	 to	 the	 optimization	 of	 an	
asymmetric	battery	candidate,	this	requirement	imposes	a	
more	 complex	 multi-objective	 optimization	 challenge,	 as	
the	quantum	chemical	energies	of	two	one-electron	redox	
processes	must	 be	 balanced	within	 a	 single	 small	 radical	
scaffold.	Further,	we	performed	a	“synthetically	aware”	ex-
ploration	of	chemical	space	by	evaluating	synthetic	accessi-
bility	on	the	fly	and	pruning	the	search	tree	where	it	enters	
synthetically	or	topologically	impractical	regions.	
The	generative	model	yielded	a	large	distribution	of	mole-
cules	predicted	to	meet	the	desired	stability	criteria	while	
simultaneously	having	suitable	oxidation	and	reduction	po-
tentials.	 The	 accuracy	 of	 these	 ML	 surrogate	 predictions	
was	then	validated	against	DFT	calculations,	with	many	rad-
ical	candidates	passing	all	criteria	at	the	DFT	level.	Further-
more,	we	performed	a	post	hoc	analysis	of	the	predicted	ret-
rosynthetic	 routes	 for	 the	 optimized	 molecules,	 finding	
many	molecules	with	reasonable	synthetic	pathways.45	This	
study	demonstrates	that	goal-directed	molecular	optimiza-
tion,	coupled	with	a	highly	detailed	ML	surrogate	model,	can	
produce	 realistic	 candidates	 for	 demanding	 applications.	
Additionally,	this	study	suggests	that	stable	radical	scaffolds	
for	RFBs	are	likely	more	abundant	than	the	limited	but	well-
known	set	of	experimentally	characterized	motifs.	

RESULTS AND DISCUSSION 

Required features of organic active species 
We	began	by	defining	the	features	required	for	organic	sta-
ble	radical	active	species	to	be	viable	candidates	for	redox	
flow	batteries	(Fig.	1).	For	commercial	viability,	RFBs	need	
to	achieve	a	high	charge	density	and	high	reversibility	(i.e.,	
longevity)	at	low	cost.	A	benefit	of	organic	active	species	is	
their	ability	to	be	incorporated	as	pendant	groups	into	large	
macromolecules.21,46	 Polymer-based	 RFBs	 allow	 cheaper	
size-exclusion	membranes	to	be	used	and	provide	an	addi-
tional	lever	for	tuning	the	solubility	of	active	materials.	Pen-
dant	 groups	must	 therefore	have	 a	precisely	 tuned	 redox	
potential	 to	 take	 full	 advantage	 of	 the	 solvent's	 electro-
chemical	 stability	window,	 and	 a	 highly	 stable,	 long-lived	
radical	center	to	avoid	reactions	that	might	reduce	the	bat-
tery's	 capacity	 over	 time.47	 Finding	 a	 single	 redox-active	
species	that	can	perform	both	the	oxidation	and	reduction	
reactions	simplifies	the	battery	design	and	reduces	capacity	
fade	through	membrane	cross-over.48		
Radical	groups	must	also	be	synthetically	accessible.	In	this	
study,	we	estimate	standard	redox	potentials	with	adiabatic	
(i.e.,	 geometry-optimized)	 ionization	 potentials	 and	 elec-
tron	affinities	obtained	from	implicitly	solvated	DFT	ther-
mochemistry	including	vibrational	zero-point	energy.	Fur-
ther,	we	 estimate	 radical	 stability	 using	 a	 recently	 devel-
oped	metric	that	incorporates	both	thermodynamic	and	ki-
netic	stabilization	of	the	radical	center	using	3D	structural	
features	 and	 electron	 spin	 density	 obtained	 via	 DFT.23	
Highly-delocalized	and	sterically	protected	radicals	are	pri-
oritized	by	this	approach.	Synthesizability	is	considered	by		
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Figure 1. Overview of molecular design criteria used for goal-directed optimization of redox-active stable radical moieties for use in redox flow batteries. 

constraining	the	synthetic	accessibility	score	(SAscore)	of	
the	closed-shell	R-H	molecule	to	be	less	than	4.035,49	and	by	
ensuring	that	the	R-H	bond	is	relatively	weak,	with	a	homo-
lytic	 bond	 dissociation	 enthalpy	 (BDE)	 of	 60-80	
kcal/mol.50,51	While	many	thermal	and	photochemical	syn-
thetic	protocols	 exist	 to	 form	radicals	 from	a	 closed-shell	
parent	organic	compound	(e.g.,	deoxygenation,	dehalogen-
ation,	 etc.),	 this	 BDE	 constraint	 limits	 our	 candidates	 to	
those	that	could	be	generated	by	a	facile	and	selective	late-
stage	H-atom	abstraction.	

Development of a fast surrogate multi-objective 
function 
With	the	criteria	for	feasible	candidates	defined,	we	next	de-
termined	 a	 suitable	 computational	 approach	 for	 scoring	
generated	radicals.	To	ensure	the	accuracy	of	aqueous	re-
dox	calculations,	we	 first	benchmarked	a	wide	number	of	
different	density	functional,	basis	set,	and	solvation	model	
combinations	on	an	experimental	dataset	of	174	redox	po-
tentials	(Fig.	2A,	Fig.	S1).52	The	lowest	mean	absolute	error	
(MAE)	 was	 achieved	 using	 M06-2X/def2-TZVP53	 and	 the	
SMD	solvation	model.54	Full	DFT	estimation	of	the	adiabatic	
(i.e.,	including	the	effects	of	geometric	relaxation	and	vibra-
tional	zero	point	energy)	 ionization	energy	(IE)	and	elec-
tron	affinity	(EA)	for	a	given	radical	takes	hours	per	candi-
date,	and	requires	 three	separate	geometry	optimizations	
to	obtain	standard-state	Gibbs	energies	of	the	neutral	radi-
cal	and	both	anionic	and	cationic	closed-shell	species.	We	
further	obtain	oxidation	potential	(OP)	and	reduction	po-
tential	 (RP)	 values	 in	 Volts	 by	 referencing	 the	 standard-
state	Gibbs	energy	changes	to	the	absolute	potential	of	the	
SHE.55	
To	 enable	 goal-directed	 molecular	 optimization,	 we	 con-
structed	 a	 database	 of	 50,547	OP	 and	81,854	RP	 calcula-
tions	by	re-optimizing	radical	and	charged	structures	from	

an	existing	database	of	organic	radicals	in	an	implicit	water	
solvent.56	We	impose	several	quality	checks	to	ensure	con-
vergence	of	the	DFT	optimization	and	validity	of	the	result-
ing	energy	calculations,	including	checking	for	normal	ter-
mination	of	the	DFT	method,	ensuring	that	bonds	were	not	
broken	or	 formed	during	optimization,	 and	 that	 the	opti-
mized	open-shell	molecules	have	minimal	spin	contamina-
tion	(see	Methods).		
We	next	 trained	a	graph	neural	network	 (GNN)	model	 to	
predict	both	OP	and	RP	directly	 from	a	radical's	chemical	
connectivity,	 i.e.,	only	based	on	atoms	and	bonds	without	
considering	a	specific	3D	conformation	(Fig.	2B).39	A	test	set	
of	2000	radicals	was	withheld	for	validation,	consisting	of	
1773	and	1052	converged	RP	and	OP	calculations,	respec-
tively.	Learning	curves	plot	the	models’	prediction	error	as	
a	 function	of	database	 size	 (Fig	2C)	 and	demonstrate	 the	
models	continue	to	benefit	from	additional	data	even	at	the	
full	 database	 limit.	 Distributions	 of	 prediction	 errors	 (in	
volts)	for	test-set	compounds	using	the	entire	training	da-
taset	are	shown	in	Fig.	2D,	with	an	MAE	of	47.4	and	37.4	mV	
(1.1	and	0.9	kcal/mol)	for	OP	and	RP,	respectively,	close	to	
the	‘chemical	accuracy’	target	of	1	kcal/mol.		
Using	the	same	chemical	connectivity	inputs,	we	trained	a	
second	surrogate	GNN	model	on	a	recently	published	data-
base	of	 radical	 stability	 scores.23,57	 In	 this	dataset,	 radical	
stability	 is	 correlated	 with	 two	 quantum	 chemical	 de-
scriptors:	 the	delocalization	of	 the	 radical	 electron’s	 spin,	
and	the	buried	volume	at	the	location	of	maximum	spin	(cal-
culated	as	the	fractional	occupancy	of	a	3.5	Å	radius	sphere	
surrounding	a	target	atom).58	This	GNN	is	trained	to	predict	
local	aspects	of	the	optimized	3D-geometry	along	with	the	
quantum	mechanical	electron	density	(more	precisely,	the	
density	 difference	 between	 a-	 and	 b-spin	 electrons)	 at	
each	atomic	position.	Buried	volume	and	spin	density	are	
fractional	quantities	bounded	between	0	and	100	percent.	
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Figure 2. Development of a fast surrogate objective function. (A) Prediction accuracy as a function of density functional, basis set, and solvation model 
on an experimental database of 174 redox potentials.52 (B) Graph neural network topology for predicting stability and redox potential. Two separate 
models are trained. The first predicts spin density and buried volume for an input molecule at each atom. The second predicts the oxidation (OP) and 
reduction (RP) potentials for an entire molecule. (C) Learning curve for redox potentials showing prediction accuracy vs. number of training molecules. 
(D) Distribution of redox prediction errors for the final trained model. (E) Learning curve of the prediction of parameters governing radical stability. 

The	model	achieves	an	MAE	of	1%	in	buried	volume	predic-
tion	and	0.7%	in	predicting	QM	spin	densities	on	each	heavy	
(i.e.,	non-hydrogen)	atom	on	5000	radicals	withheld	for	val-
idation.	
Stabilized	 radicals	 tend	 to	 have	 highly	 delocalized	 elec-
tronic	structures,	where	substituents	can	potentially	have	a	
long-range	 influence	 on	 stability	 and	 redox	 potential.	 As	
demonstrated	by	the	learning	curves	in	Figs.	2C	and	2E,	the	
trained	 GNN	 models	 continue	 to	 benefit	 from	 additional	
training	data	even	with	nearly	100,000	training	examples.	
The	GNNs	employed	in	this	study	use	six	message-passing	
layers	and	are	therefore	able	to	exchange	localized	chemical	
information	within	a	radius	of	6	bonds.	The	ability	of	GNN	
models	 to	 learn	 long-distance	 and	 nonlinear	 interactions	
between	functional	moieties	given	sufficient	training	data	is	
an	 advantage	 over	 traditional	 fingerprint	 or	 descriptor-
based	methods.	
These	two	trained	ML	models,	one	for	redox	potential	and	
one	 for	 radical	 stability,	 quickly	 and	 accurately	 predict	
many	of	the	relevant	parameters	for	organic	radical	viabil-
ity	in	RFB	applications,	thus	fulfilling	the	role	of	a	viable	sur-
rogate	for	DFT	calculations.	Since	RL	frameworks	typically	
operate	with	scalar	reward	functions,	we	converted	the	out-
puts	of	these	two	models	into	a	single	reward	value	as	fol-
lows.	First,	we	computed	radical	stability	scores	by	combin-
ing	the	maximum	predicted	spin	and	the	buried	volume	at	
the	location	of	maximum	spin.	Stability	scores	range	from	
near	zero	for	highly	unstable	radicals	(i.e.,	the	methyl	radi-
cal)	to	75	or	higher	for	radicals	known	to	be	stable	experi-
mentally.23	 Second,	 for	 the	 redox	 potential	 score,	 a	

maximum	of	 100	 extra	points	were	 awarded	 for	meeting	
each	of	four	separate	criteria	(25	points	each):	(i)	a	reduc-
tion	potential	between	-0.5	V	and	+0.2	V,	(ii)	an	oxidation	
potential	between	+0.5	V	and	+1.2	V,	 (iii)	a	 total	voltage	
difference	of	at	least	1	V,	and	(iv)	an	R-H	BDE	between	60-
80	kcal/mol.	BDEs	were	predicted	for	the	hydrogen-termi-
nated	 radical	using	a	 recently	developed	ML	model.39	We	
added	these	two	scores	together	to	obtain	a	single	reward	
value.	Further	details	on	the	exact	structure	of	the	reward	
function	are	provided	in	the	Methods	section.	
After	constructing	an	efficient	surrogate	objective	function,	
we	next	sought	to	find	radicals	that	maximize	this	function.	
Molecule	 optimization	 was	 posed	 as	 a	 search	 over	 a	 di-
rected	acyclic	graph	(DAG),	beginning	the	search	at	an	ini-
tial	state	of	a	lone	carbon	atom.	In	a	similar	fashion	to	pre-
vious	studies,	we	next	considered	possible	actions	to	tran-
sition	between	states.28,29	In	this	study,	each	action	adds	a	
new	bond	to	the	molecule,	either	between	two	atoms	with	
free	valence	in	the	original	molecule	(forming	a	ring)	or	be-
tween	an	atom	in	the	original	molecule	and	one	of	a	set	of	
possible	atom	additions.	We	considered	only	C,	N,	O,	or	S	at-
oms	as	common	elements	found	organic	electronic	materi-
als	(Fig.	3A).	To	ensure	the	molecules	we	generated	were	
realistic,	 we	 refined	 the	 set	 of	 possible	 successor	 states	
from	a	given	starting	structure	by	(i)	enumerating	possible	
stereoisomers,	 (ii)	 canonicalizing	 molecules	 to	 tautomer	
forms,59	and	(iii)	removing	of	molecules	with	high	SAscore	
values	or	highly	constrained	ring	systems.	Additionally,	we	
removed	molecules	containing	moieties	 that	differed	sub-
stantially	 from	 the	 redox	 and	 stability	 training	 database.	
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Hydrogen	atoms	were	handled	implicitly	and	filled	free	va-
lence	positions	in	each	final	molecule.	To	generate	radical	
structures,	 additional	 terminal	 successor	 states	were	 cre-
ated	from	intermediate	molecules	where	one	atom	has	a	hy-
drogen	atom	replaced	with	an	unpaired	electron.	A	more	
complete	description	of	the	action	space,	including	a	com-
parison	against	previous	approaches,	is	given	in	the	Meth-
ods	section.	

Candidate optimization through Reinforcement 
Learning 
In	this	study,	we	limited	constructed	molecules	to	a	maxi-
mum	of	12	heavy	atoms	(approximately	the	size	of	TEMPO),	
as	 lower	molecular	weight	 redox-active	moieties	are	pre-
ferred	for	a	higher	charge-to-mass	ratio.	Including	selecting	
of	 the	 location	of	 the	radical	electron,	 this	yields	a	search	
space	 of	 approximately	 109	 possible	 valid	 radicals,	 esti-
mated	via	extrapolating	 from	smaller	maximum	sizes	and	
matching	previous	results.60	The	computational	cost	of	enu-
merating	this	grows	exponentially	with	the	maximum	mol-
ecule	size,	motivating	a	more	efficient	strategy	for	finding	
top-performing	molecules	(Fig.	S2).	
A	framework	for	MCTS	optimization	over	the	defined	DAGs	
was	implemented	that	allows	for	transpositions,	where	the	
same	molecule	 can	 be	 reached	 through	 multiple	 paths.61	
Following	the	approach	of	AlphaZero43,	this	framework	was	
augmented	with	a	policy	model	that	replaces	the	simulation	
phase	(using	a	random	policy)	of	MCTS	with	a	value	score	
predicted	from	a	GNN,	which	also	initializes	the	prior	scores	
for	 successor	 states	 from	 the	 given	molecule.	 This	 policy	
model	is	trained	in	a	concurrent	process	by	maintaining	a	
buffer	of	recent	MCTS	rollouts,	sampling	in-progress	mole-
cules,	and	minimizing	a	multi-objective	 loss	 function.	The	
loss	function	contains	both	the	difference	between	the	pre-
dicted	value	score	and	the	final	rollout	reward	and	the	dif-
ference	between	predicted	prior	probabilities	and	 the	ac-
tual	search	probabilities	for	each	of	the	molecule's	succes-
sor	 nodes	 (see	 Methods).	 As	 MCTS	 and	 the	 AlphaZero	

framework	were	originally	designed	for	competitive	games,	
the	ranked	reward	strategy	was	used	to	enable	tabula	rasa	
self-play	 for	 the	 single-player	 combinatorial	 optimization	
problem.44	 In	this	strategy,	the	final	reward	of	a	rollout	 is	
rescaled	 to	 {0,	 1}	 depending	 on	 whether	 the	 reward	 is	
greater	than	the	75th	percentile	of	the	last	250	results.	An	
overview	of	the	connectivity	between	the	rollouts,	the	data	
buffer,	and	the	policy	model	is	shown	in	Fig.	3B.	In	this	fash-
ion,	 the	 policy-guided	 rollouts	 evolve	 from	an	 initial	 ran-
dom	walk	over	molecular	space	to	a	highly	targeted	explo-
ration	of	regions	likely	to	contain	high-reward	molecules.	
To	 search	 for	 potential	 candidate	 radicals,	 200	 rollout	
workers	were	split	across	50	compute	nodes	for	four	hours,	
with	 a	 single	 node	 equipped	with	 dual	 Tesla	 V100	 GPUs	
handling	the	continual	training	of	the	policy	model.	This	ap-
proach	resulted	 in	a	 total	of	34,626	 rollouts	and	over	3.8	
million	terminal	state	radicals	evaluated	with	the	surrogate	
objective	function.	Fig.	3C	plots	the	final	reward	from	each	
molecule	rollout	as	a	 function	of	time,	along	with	the	 loss	
values	for	training	the	policy	model	to	predict	the	final	value	
and	prior	probabilities	for	intermediate	molecule	states.	Us-
ing	ranked	rewards	to	rescale	the	final	reward	as	a	function	
of	recent	rollouts	means	the	policy	model	is	forced	to	con-
tinually	adapt	to	predict	which	intermediate	states	are	the	
most	likely	to	lead	to	higher-performing	radicals.	
By	maintaining	a	cache	of	all	surrogate	reward	calculations	
performed	during	the	search,	we	can	easily	query	the	data	
buffer	for	the	top	radical	candidates	found	during	the	opti-
mization.	Of	the	3.8	million	radicals	evaluated,	1,078	had	a	
total	surrogate	reward	greater	than	195,	corresponding	to	
a	minimum	stability	score	of	95.	The	radical	stability	metric	
rewards	molecules	 with	 highly	 delocalized	 electrons	 and	
bulky	groups	offering	steric	protection	of	the	radical	center.	
As	 such,	 the	stability	metric	 tends	 to	have	a	higher	maxi-
mum	value	for	 larger	molecules.	Known	stable	radicals	 in	
this	 size	 range	 include	 TEMPO	 (with	 a	 stability	 score	 of	
93.9)	and	the	phenoxy	radical	(77.2).	The	reward	function	
includes	a	maximum	of	100	points	for	meeting	all	redox	and		

Figure 3. Overview of the Reinforcement Learning (RL) structure optimization strategy. (A) An example of how molecules are constructed through 
the iterative addition of bonds and atoms. Percentages indicate transition probabilities between states near the end of the RL optimization (not all 
possible states are shown). (B) Schematic of the architecture of the computational search. Molecule rollouts and policy training are performed asyn-
chronously and coordinated by a data buffer. (C) Evolution of the rewards for individual molecule rollouts (top) and losses for the policy model (bot-
tom) versus time as the optimization proceeds. The 75th percentile of the final reward from the most recent 200 rollouts is denoted as r75 (top), and is 
used to reshape the reward through the ranked rewards strategy.
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Figure 4. Confirmation of top-scoring RL-generated radicals with DFT calculations. (A) Distribution of redox potentials for radicals in the training 
database, highlighting the target zone for an aqueous, symmetric redox battery (B) DFT computed redox properties for RL optimized radicals that were 
predicted to fall within the target zone. (C) A comparison of ML (blue) and DFT-derived (green) stability estimates for optimized radicals, compared 
with the distribution of stability scores for radicals in the training database (orange). A stability threshold of 90 (gray) was used as a lower bound for 
determining whether a radical could be classified as stable.

bond	 strength	 criteria	 in	 addition	 to	 the	 radical	 stability	
score.	From	the	radical	training	database,	no	radicals	were	
found	that	had	a	stability	score	greater	than	90	while	satis-
fying	the	redox	criteria.	

Confirmation of RL-optimized candidates with DFT 
From	 the	 1078	 molecules	 predicted	 to	 have	 the	 desired	
properties,	a	subset	of	208	molecules	was	chosen	for	subse-
quent	 analysis	with	DFT	 to	verify	 the	accuracy	of	 the	ML	
models.	Most	 top-performing	 candidates	 had	 close	 to	 the	
maximum	 molecule	 size.	 As	 smaller	 molecules	 satisfying	
the	constraints	were	desired,	the	top	100	molecules	were	
selected	from	each	size.	The	subset	consisted	of	100	radi-
cals	containing	twelve	heavy	atoms,	100	containing	eleven	
heavy	 atoms,	 six	 radicals	with	 ten	 heavy	 atoms,	 and	 two	
radicals	with	nine	heavy	atoms.	
In	Fig.	4A,	we	plot	the	ML-predicted	redox	voltages	for	the	
chosen	subset,	which	all	lie	within	the	target	triangle	to	per-
mit	a	single	radical	to	function	as	both	the	electron	donor	
and	acceptor	in	an	aqueous	redox	flow	battery	with	a	total	
voltage	of	at	least	1V.	For	radicals	for	which	the	DFT	calcu-
lations	converged,	83.3%	fell	within	the	desired	target	re-
gion	(Fig.	4B).	The	stability	scores	of	the	radicals	predicted	
via	machine	learning	were	then	checked	against	those	ob-
tained	via	DFT.	Fig.	4C	 shows	 the	distribution	of	 stability	
scores	 for	 both	 approaches	 and	 that	 stability	 scores	 ob-
tained	via	DFT	tended	to	be	lower	than	those	predicted	with	
the	surrogate	objective	function.	Using	a	cutoff	score	of	85,	
well	within	the	stability	scores	observed	for	experimentally	
known	stable	species,	63.3%	of	radicals	were	still	classified	
as	stable.	As	shown	in	Fig.	S3,	while	buried	volume	predic-
tions	 for	 optimized	 radicals	 were	 highly	 consistent	 with	
those	obtained	from	DFT,	accurate	prediction	of	spin	den-
sity	was	more	difficult	for	these	highly	delocalized	radicals.	
Additional	 training	data	 in	 this	 region	of	molecular	 space	
may	 improve	accuracy	 in	 subsequent	experiments,	 as	 the	
generated	 radicals	 tended	 to	 be	 much	 more	 stable	 than	
those	found	in	the	training	data	(Fig.	4C).	Evaluation	of	the	
synthesizability	of	generated	molecules	

The	synthesizability	of	molecules	proposed	by	generative	
algorithms	has	been	identified	as	an	area	of	concern,	as	the-
oretically	optimized	molecules	 that	cannot	be	experimen-
tally	tested	are	of	limited	practical	value.49	To	address	this	
concern,	the	ASKCOS	retrosynthesis	prediction	web	service	
was	applied	post	hoc	to	evaluate	the	1,078	top-ranked	can-
didates	in	addition	to	on-the-fly	constraints	imposed	during	
optimization	to	prioritize	the	search	of	synthetically	tracta-
ble	space	(see	Methods).45,62	Of	these,	87	returned	putative	
synthetic	 routes	with	 a	median	 of	 5	 synthetic	 routes	 per	
candidate	and	an	average	depth	of	7.9	steps.	
We	performed	DFT	confirmation	for	all	high-scoring	mole-
cules	found	to	be	synthetically	accessible.	A	total	of	32	mol-
ecules	were	 confirmed	 to	 satisfy	 the	 redox	 requirements	
while	having	high	stability	(>90).	Chemical	structures	for	a	
representative	 subset	 of	 these	molecules	 are	 depicted	 in	
Fig.	5A.	The	RL-optimized	molecules	show	structural	varia-
bility	 through	the	varied	 inclusion	of	N,	S,	and	O	heteroa-
toms	and	extended	delocalized	structures,	frequently	with	
unsaturated	carbo-	and	heterocyclic	(e.g.,	cyclopentadienyl,	
pyrrole,	furan,	thiophene)	cores.	As	required	by	the	objec-
tive	function,	all	radicals	demonstrate	high	spin	delocaliza-
tion	 and	 high	 steric	 protection	 of	 the	 site	 of	 highest	 spin	
density.	In	Fig.	5B,	we	visually	compare	spin	delocalization	
and	buried	volumes	for	both	experimentally	known	and	RL-
optimized	radicals.	As	expected,	a	high	predicted	stability	is	
achieved	by	delocalizing	the	radical	electron	density	across	
multiple	atoms	and	centering	 the	 location	of	highest	 spin	
density	on	an	atom	with	a	high	buried	volume.	We	note	that	
in	Fig.	5A-B,	the	surrogate	model	correctly	predicts	that	the	
spin	is	predominantly	focused	at	the	location	of	highest	bur-
ied	volume,	matching	DFT	results,	even	though	the	radical	
center	 is	 formally	 specified	 at	 a	 different	 atom	 in	 the	
SMILES	string.	
We next investigated predicted retrosynthetic pathways by 
which the wide variety of top-performing radicals might be 
experimentally prepared. In Fig. 5C, we show a putative 
pathway from ASKCOS for the hydrogenated form of a thi-
ophene-based radical. Thiophenes are well-known frag-
ments in organic electronics, where their semi-conducting  
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Figure 5. De novo structures generated by RL. (A) Radical structures passing the design criteria subsequently validated with DFT. (B) Visualization of 
the radical stability metric, consisting of both spin delocalization (top row) and buried volume at the center of maximum spin (bottom row) for known 
stable radicals (left) and those generated via the RL algorithm (right). (C) A possible retrosynthetic pathway for the hydrogenated form of radical 1 
generated by ASKCOS. FF score is the estimated plausibility value for each reaction.

properties are exploited for high efficiency.63 The retrosyn-
thetic route consists of a minimum of two well-established 
transformations involving a Friedel-Crafts alkylation and an 
acidic methyl ether cleavage, starting from commercially 
available 2-methoxythiophene and tert-Butyl chloride.64–66 

Error analysis of the surrogate objective function 
The	surrogate	objective	function	successfully	guided	mole-
cule	optimization	towards	regions	meeting	the	desired	cri-
teria	at	the	DFT	level.	However,	approximately	half	of	the	
radicals	 predicted	 to	meet	 the	 desired	 criteria	 ultimately	
fell	 short	 upon	DFT	 confirmation.	Understanding	 the	pri-
mary	modes	by	which	the	surrogate	objective	fails	will	help	
better	 understand	 the	 limitations	 of	 machine-learning	
guided	 molecular	 design	 and	 further	 improve	 predictive	
methods	for	subsequent	rounds	of	optimization.	
In	Fig.	6A,	we	show	optimized	radicals	with	a	substantially	
lower	DFT-calculated	stability	than	that	predicted	with	the	
surrogate	model.	A	significant	reason	for	such	failure	is	the	
incorrect	prediction	of	the	maximum	spin	location,	with	a	
higher	fraction	of	spin	residing	on	an	atom	that	is	not	highly	

shielded	 by	 bulky	 substituents.	 This	 failure	 partly	 repre-
sents	a	weakness	of	 the	 chosen	stability	metric,	 as	minor	
differences	 in	predicted	resonance	 form	can	often	 lead	 to	
large	swings	in	the	combined	score.	However,	erroneously	
predicted	loci	of	maximum	spin	were	chemically	reasona-
ble,	generally	corresponding	to	the	 location	of	 the	second	
highest	 DFT	 spin	 density.	 Extended	 conjugated	 thiocar-
bonyl-based	 radicals	 are	 encountered	 frequently	 in	 these	
outliers.	With	DFT	relaxation,	the	maximum	spin	typically	
locates	on	the	terminal	S	atom,	while	the	surrogate	objec-
tive	model	predicts	greater	spin	at	a-	or	g-	positions,	in	ac-
cordance	with	the	general	principle	of	vinylogy.67	Retrain-
ing	 the	 surrogate	 objective	 with	 additional	 examples	 of	
these	systems	may	improve	predictions	in	subsequent	gen-
eration	rounds.	
Errors	 in	redox	predictions	also	tended	to	occur	for	 func-
tional	groups	absent	from	the	training	data.	 In	Fig.	6B	we	
show	 the	 structure	of	one	 such	outlier.	Using	 the	embed-
dings	assigned	by	the	surrogate	model's	penultimate	pre-
diction	layer,	we	can	explore	which	training	set	molecules	
are	closest	in	structure	to	the	target	prediction.	A	nearest-
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neighbors	search	on	this	latent	space	reveals	several	cyclo-
pentadienyl	radicals	with	calculated	redox	potentials	close		

Figure 6. Sources of error in the ML surrogate model and strategies for tuning redox potential. (A) Outliers in ML-predicted stability scores relative to 
DFT values. The predicted location of maximum spin is highlighted for both methods, and the resulting stability score is shown in gray for DFT and 
green for ML. (B) An example prediction error for redox potential due to lack of similar molecules present in the training database. The input radical is 
shown on the left, with the five closest training set radicals shown on the right. (C) On the left, the distribution in redox potentials for all training set 
molecules is shaded by each radical’s SOMO energy. On the right, the distribution of SOMO energies of radicals in the training database is shown, with 
the gray region extending from the 5th to 95th percentiles of the range observed in RL-optimized candidates. Example structures from the radical data-
base are shown for various SOMO energies.

to	the	erroneous	prediction.	The	thioether	substituent	on	a	
cyclopentadienyl,	which	is	not	found	in	any	of	the	molecules	
in	 the	 redox	 potentials	 training	 database,	 strongly	 influ-
ences	redox	behavior	in	a	way	not	captured	by	the	surro-
gate	model.	The	sulfur	atom	provides	additional	stabiliza-
tion	of	the	oxidized	form	through	resonance	and	of	the	re-
duced	 form	 through	 inductive	effects	 (i.e.,	 stabilization	of	
the	a-anion	resonance	structure).	These	types	of	prediction	
outliers	could	be	remedied	by	augmenting	the	redox	poten-
tial	database	with	additional	structural	diversity.	Learned	
strategies	for	precisely	tuning	redox	potential	
Searching	 for	 a	 symmetric	 electrolyte	 candidate	 places	 a	
challenging	constraint	on	the	electronic	properties	of	opti-
mized	molecules,	as	both	the	oxidation	and	reduction	po-
tentials	must	be	precisely	and	independently	tuned.	To	ex-
plore	the	strategies	used	by	the	RL	algorithm,	we	plot	the	
relationship	between	oxidation	potential	(derived	from	the	

ionization	 energy)	 and	 the	 reduction	 potential	 (derived	
from	 the	 electron	 affinity)	 in	 Fig.	 6C.	 Electron-rich,	more	
readily	oxidized	(e.g.,	planar	aminal)	radicals	are	found	in	
the	lower-left	corner,	while	electron-deficient,	more	readily	
reduced	(e.g.,	heterocyclic	sp2)	radicals	are	found	in	the	top	
right	corner	of	this	plot	(Fig.	S4).		
For	 open-shell	 molecules	 studied	 with	 spin-unrestricted	
Kohn–Sham	DFT,	the	analog	to	Koopmans’	theorem	relates	
the	energy	of	the	highest	singly-occupied	molecular	orbital	
(SOMO)	with	the	vertical	 ionization	energy.68	Further,	the	
lowest	 unoccupied	 molecular	 orbital	 (LUMO)	 is	 linked	
closely	to	vertical	electron	affinity,	mainly	when	using	long-
range	corrected	density	 functionals.69	From	our	computa-
tions	we	observe	a	 correlation	between	a	 radical’s	 SOMO	
energy	 and	 both	 redox	 potentials	 (Fig.	 6C).	 This	 interde-
pendence	of	the	SOMO	energy	and	both	redox	potentials	il-
lustrates	the	challenge	of	 independently	tuning	the	anode	
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and	 cathode	 half-reactions.	 Qualitatively,	 electron-poor	
(low	SOMO	energy,	electrophilic)	radicals	tend	to	be	easily	
reduced	and	difficult	 to	oxidize,	while	 electron-rich	 (high	
SOMO	energy,	nucleophilic)	radicals	are	easily	oxidized	and	
hard	to	reduce.		
However,	the	RL	algorithm	still	manages	to	find	candidates	
that	meet	both	redox	criteria.	Radicals	with	the	required	re-
dox	properties	for	aqueous	batteries	have	a	SOMO	energy	
in	the	range	of	-6.5	to	-7	eV	(gray	region	in	Fig.	6C).	To	in-
dependently	optimize	oxidation	and	reduction	potentials	at	
a	fixed	SOMO	energy,	AlphaZero	learns	to	harness	captoda-
tive	stabilization	of	the	radical	center.70	Captodative	stabili-
zation	 involves	 the	 incorporation	 of	 conjugated	 electron-
donating	 and	 electron-withdrawing	 groups,	 and	 provides	
enhanced	stability	to	all	three	important	redox	states:	the	
radical,	 oxidized,	 and	 reduced	 states.	 Interestingly,	 this	
strategy	mirrors	the	use	of	bipolar	redox-active	molecules	
(BRMs),	an	emerging	strategy	in	the	development	of	non-
aqueous	RFBs	such	as	2-phenyl-4,4,5,5-tetramethylimidaz-
oline-1-oxyl-3-oxide	(PTIO).71	The	algorithm	thus	rediscov-
ers	 a	 fundamental	 concept	 in	 radical	 chemistry	 that	 has	
shown	 promise	 in	 the	 development	 of	 symmetric	 RFBs.	
However,	unlike	existing	BRMs	with	relatively	bulky	func-
tional	groups,	those	discovered	by	RL	more	efficiently	blend	
all	 required	 functionality	 into	 a	 much	 lower	 molecular	
weight	moiety.	

CONCLUSION 
In	 this	 study,	we	 have	 performed	 a	 search	 for	molecular	
structures	 that	 simultaneously	 satisfy	 several	 complex	
quantum	chemical	phenomena	important	in	advanced	en-
ergy	 applications.	We	 have	 demonstrated	 that	 combining	
high-fidelity	 quantum	 chemistry	 simulations,	 machine	
learning	predictive	models,	and	state-of-the-art	reinforce-
ment	learning	strategies	is	an	effective	tool	in	efficiently	ex-
ploring	 molecular	 space.	 Without	 being	 explicitly	 pro-
grammed	on	how	to	construct	resonantly	stabilized	radicals	
with	appropriate	orbital	energies,	the	RL	algorithm	learns	a	
range	 of	 strategies	 that	 lead	 to	 high-performance	 candi-
dates.	As	the	optimization	criteria	in	molecular	design	chal-
lenges	grow	more	complex,	the	need	for	efficient	search	al-
gorithms	also	grows.	

The	construction	and	optimization	of	a	surrogate	model	for	
an	 otherwise	 costly	 simulation	 or	 experiment	 is	 widely	
used	 in	many	 fields,	 including	molecular	design.	While	 in	
this	 study,	 candidates	 were	 found	 with	 reasonable	 effi-
ciency	(50%	of	optimized	radicals),	iterative	refinement	of	
the	surrogate	model	with	respect	to	the	ground-truth	calcu-
lations	would	improve	the	model's	accuracy.	Additionally,	
while	molecules	with	putative	synthetic	routes	were	found	
from	among	the	top-performing	candidates,	more	accurate	
and	 faster	 methods	 of	 searching	 synthetically	 accessible	
space	 are	 required.	Additional	 refinement	 of	 the	 top-per-
forming	candidates	is	also	required	before	they	are	likely	to	
be	applicable	in	aqueous	organic	redox	flow	batteries.	Opti-
mizing	solubility	with	predictive	models72,73	and	including	
charged	moieties	in	both	the	training	data	and	action	space	
will	be	particularly	important	in	achieving	high	charge	den-
sity.	Addressing	these	limitations	to	achieve	holistic	predic-
tion	of	improved	bipolar	redox	actives	candidates	remains	
a	 future	goal.	All	 software,	data,	and	models	generated	 in	

this	 study	 have	 been	 made	 available	 as	 open-source	 re-
sources	(see	Methods).		

METHODS 

Calculation and validity analysis of redox potentials 
Gaussian	1674	was	used	for	all	DFT	calculations	with	a	de-
fault	ultra-fine	grid	 for	all	numerical	 integration.	The	pri-
mary	database	of	redox	potentials	was	built	using	the	M06-
2x/def2-TZVP	level	of	theory	by	separately	optimizing	the	
neutral,	oxidized,	and	reduced	radical	species.	The	calcula-
tions	were	performed	using	the	SMD	solvation	model	with	
a	water	solvent	at	298K.54	The	same	initial	structures	were	
used	for	all	three	calculations	and	were	taken	from	previous	
calculations	 performed	 in	 the	 gas	 phase.56	 Iodine-based	
molecules	in	the	experimental	redox	benchmark	were	opti-
mized	with	 the	 LAN2DZ	basis	 set	 in	 combination	with	6-
31G(d,p)	and	6-31g+(d,p).	
An	automated	workflow	was	developed	to	check	optimiza-
tions	for	convergence	by	ensuring	the	absence	of	imaginary	
vibrational	frequencies	and	that	all	bond	lengths	remained	
within	0.4	Å	of	the	sum	of	their	covalent	radii.	Additionally,	
molecules	were	inspected	to	see	whether	new	bonds	were	
formed	during	optimization,	as	this	often	led	to	difficult-to-
predict	 redox	 potentials.	 Atom	 adjacency	 matrices	 were	
used	 to	determine	 if	 any	 two	atoms	were	 closer	 than	1.3	
times	the	sum	of	their	covalent	radii,	and	these	molecules	
were	removed	from	the	training	dataset.	This	primarily	oc-
curred	during	oxidation,	as	8,566	oxidized	molecules,	602	
reduced	molecules,	and	177	neutral	radicals	were	removed	
from	the	database	in	this	fashion.	

Reduction Potential (V) =
𝐺(𝑅 ⋅) − 𝐺(𝑅!)
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Spin	contamination	was	checked	by	looking	at	the	expecta-
tion	value	of	the	total	spin,	⟨𝑆$⟩.	Radicals	were	expected	to	
have	an	 ⟨𝑆$⟩ = 0.75,	 and	a	handful	of	optimizations	were	
discarded	where	spin	contamination	resulted	in	an	⟨𝑆$⟩ >
0.8.	Anions	 and	 cations	were	 assumed	 to	 adopt	 a	 closed-
shell	 singlet	 state,	 with	 an	 ⟨𝑆$⟩~0.	 To	 improve	 the	 con-
sistency	of	the	dataset,	open-shell	anions	and	cations	with	
⟨𝑆$⟩ > 0.25	were	removed.	

Training the surrogate objective models 
Two	separate	machine	learning	models	were	developed	to	
predict	quantum	mechanical	properties	as	a	 function	of	a	
candidate	radical's	SMILES75	notation.	The	first	model	pre-
dicts	spin	delocalization	and	buried	volume	on	each	heavy	
atom	in	the	molecule.	The	second	model	predicts	the	radi-
cal's	 oxidation	 and	 reduction	 potential	 (in	 V	 relative	 to	
SHE).	SMILES	strings	were	first	converted	to	a	graph	repre-
sentation	using	the	nfp76	and	RDKit77	python	libraries.	At-
oms	and	bonds	were	classified	depending	on	features	de-
termined	via	RDKit.	For	atoms,	 this	 included	 their	atomic	
type,	 chirality,	 presence	 in	 a	 ring,	 number	 of	 heavy	 atom	
neighbors	(degree),	aromaticity,	number	of	neighboring	hy-
drogens,	and	presence	of	a	formal	radical	center.	For	bonds,	
this	included	the	atom	types	of	the	joined	atoms,	the	bond	
type	(single,	double,	aromatic),	and	presence	in	a	ring,	and	
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Z/E	stereochemistry	(if	present).	The	GNN	edges	are	direc-
tional,	and	therefore	two	graph	edges	are	created	for	each	
bond	in	the	molecule,	one	pointing	from	atom	A	to	atom	B	
and	another	pointing	from	atom	B	to	atom	A.	Each	model	
consisted	of	a	GNN	with	a	similar	core	structure	depicted	in	
Fig.	2	and	further	detailed	in	Fig.	S5.	The	GNN	generates	rep-
resentative	embeddings	at	the	atom,	bond,	and	global	level	
by	passing	the	initial	features	through	a	series	of	message	
blocks.78	In	the	stability	prediction	GNN,	the	final	atom	fea-
ture	vector	 is	 reduced	 to	 two	output	predictions	 for	each	
atom's	buried	volume	and	spin	density.	In	the	redox	GNN,	
the	final	global	feature	vector	is	reduced	to	two	output	pre-
dictions	 for	 the	 reduction	 and	 oxidation	 potentials.	 Both	
models	are	trained	with	a	batch	size	of	128	molecules	for	
500	epochs	over	the	training	data,	using	the	AdamW	opti-
mizer	with	an	initial	learning	rate	of	1E-4,	decayed	by	1E-5	
each	 update	 step.	 The	weight	 decay	was	 set	 to	 an	 initial	
value	of	1E-5	(1E-6	for	the	redox	model)	and	was	decayed	
by	1E-5	each	update	step.		
Data	and	trained	models	for	both	radical	stability	and	redox	
potential	are	available	at	github.com/pstjohn/redox-mod-
els.	The	initial	training	data	for	redox	potential	is	provided	
as	 SMILES	 strings	with	 associated	 potentials	 (vs	 SHE)	 in	
Volts.	For	the	final	set	of	32	radicals,	optimized	3D	coordi-
nates	from	DFT	for	the	oxidized,	radical,	and	reduced	states	
are	provided,	as	well	as	the	calculated	stability	and	redox	
potentials.	

Details of the reward function 
To	 find	 radicals	 that	meet	 all	 the	desired	 criteria,	 predic-
tions	and	desired	ranges	for	multiple	properties	were	syn-
thesized	into	a	scalar	reward	function.	A	continuous	piece-
wise	 linear	 function	was	used	 to	 convert	predictions	 to	a	
score	between	0	and	1,	where	a	1	was	assigned	if	the	pre-
dicted	was	inside	the	desired	range,	0	outside,	and	a	linear	
transition	between	the	two	scores	if	the	prediction	was	near	
the	boundary	(with	width	equal	to	one	sixth	the	width	of	the	
desired	region).		
The	overall	 reward	 function	was	 then	composed	by	sum-
ming	over	individual	scores	from	different	properties	
𝑟𝑒𝑤𝑎𝑟𝑑 = 50	(1 −max 𝑠() + 100	𝐵𝑉)

+ 25	window�𝑅*+,- , [−.5	𝑉, 0.2𝑉]�
+ 25	window�𝑂*+,- , [0.5	𝑉, 1.2𝑉]�
+ 25	window�𝑅*+,- −𝑂*+,- , [1	𝑉, 0.2𝑉]�
+ 25	window�𝐵𝐷𝐸*+,- , [60, 80]�	

where	𝑠(	represents	the	predicted	fractional	spin	on	atom	𝑖,	
and	𝐵𝑉	is	a	vector	of	predicted	buried	volumes.	The	reward	
function	 was	 constructed	 to	 place	 approximately	 equal	
weight	between	the	stability	score	(including	spin	and	bur-
ied	volume	contributions,	typically	near	100	for	highly	sta-
ble	radicals)	and	the	remaining	BDE	(in	kcal/mol)	and	re-
dox	requirements.	

Description of the molecular action space 
Beginning	with	the	initial	state	of	a	single	carbon	atom	(i.e.,	
methane	after	adding	implicit	hydrogens),	possible	actions	
were	enumerated	following	a	series	of	expansion	and	filter-
ing	steps.	First,	all	possible	tautomers	of	the	given	starting	
molecule	 were	 considered	 as	 possible	 starting	 states.59	
From	each	starting	state,	a	new	bond	was	added	between	

an	atom	in	the	molecule	and	a	second	atom,	either	already	
in	the	molecule	(forming	a	ring)	for	an	unbonded	C,	N,	O,	or	
S	atom.	New	molecules	were	generated	for	every	possible	
atom	pair	and	bond	type	(single,	double,	or	triple)	for	which	
valency	 rules	were	 satisfied.	 From	 this	 set	 of	 all	 possible	
next	actions,	molecules	were	 filtered	according	 to	several	
ring,	 saturation,	 and	 synthetic	 accessibility	 criteria,79	 in-
cluding	restricting	molecules	to	a	maximum	SAScore	of	4.0.	
The	action	space	was	then	further	expanded	by	enumerat-
ing	all	possible	stereochemical	configurations	of	the	start-
ing	molecule,	followed	by	a	reduction	to	canonical	tautomer	
forms.	 Next	 actions	 were	 then	 de-duplicated	 by	 SMILES	
string.	
Our	action	space	differs	from	previously	described	molecu-
lar	‘environments’	in	several	ways.	Unlike	the	environment	
proposed	in	MolDQN,29	our	approach	results	in	a	directed	
acyclic	graph	(DAG)	over	possible	molecules	by	eliminating	
the	possibility	to	remove	atoms	and	bonds	from	molecules	
under	construction.	This	DAG	property	prevents	the	search	
from	searching	cyclically	and	guarantees	forward	progress	
when	 building	 a	 radical.	 It	 also	makes	 learning	 the	 value	
function	easier	by	eliminating	conflation	and	cross-contam-
ination	 from	 cyclical	 paths	 in	 the	 search	 graph.	 Our	 ap-
proach	is	similar	in	that	respect	to	the	generation	environ-
ment	proposed	by	You	et	al.,28	where	atom	and	bond	addi-
tions	are	guided	by	a	policy	network.	Unlike	in	You	et	al.,	we	
do	not	decompose	the	action	into	a	node	selection	and	link	
selection	step,	and	instead	only	evaluate	policy	predictions	
once	both	the	atom	and	bond	type	have	been	chosen.	This	
allows	us	to	easily	filter	the	action	space	based	on	valency	
rules	and	dramatically	reduces	the	number	of	invalid	mole-
cules	constructed	by	the	algorithm.	It	additionally	allows	us	
to	 easily	 consider	 additional	 modifications	 of	 the	 action	
space,	including	stereochemical	enumeration	(e.g.,	at	tetra-
hedral	 carbon	 atoms	 and	 of	 double	 bonds),	 tautomeriza-
tion,	and	synthesizability	considerations.	

Details of the RL algorithm 
The	RL	optimization	was	performed	using	the	rlmolecule	li-
brary81	 (github.com/nrel/rlmolecule),	 which	 implements	
the	AlphaZero	approach	for	molecule	and	material	design.	
In	this	study,	the	RL	agent	learned	to	select	from	a	paramet-
ric	action	space,	where	the	molecular	structures	resulting	
from	possible	next	actions	were	passed	through	a	trainable	
policy	GNN.	The	policy	GNN	had	a	similar	structure	to	that	
used	 for	redox	prediction	(Fig.	2B),	using	only	3	message	
passing	 layers	 and	 a	 feature	 dimension	 of	 64.	 The	 policy	
model	was	trained	with	the	ADAM	optimizer	with	a	learning	
rate	of	1E-3	and	a	batch	size	of	32	positions.	Within	each	
batch,	the	policy	model	is	presented	with	a	molecule	state	
and	a	 list	of	potential	next	actions	 from	a	recently	played	
MCTS	rollout.	The	policy	model	is	trained	to	simultaneously	
predict	the	actual	visitation	frequency	from	MCTS,	as	well	
as	the	outcome	of	the	resulting	molecule	rollout	(0	or	1	as	
scored	via	 ranked	rewards).	Starting	at	 the	 root	methane	
state,	molecule	rollouts	consisted	of	conducting	250	MCTS	
samples	(or	for	a	maximum	of	30	seconds)	and	selecting	the	
subsequent	molecule	state	with	probability	proportional	to	
the	softmax	of	the	visit	counts.	This	procedure	is	repeated	
until	a	terminal	state	is	selected.		
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The	wall	time	limit	was	imposed	to	mitigate	the	effects	of	
problematic	regions	of	chemical	space	where	the	number	of	
possible	next	actions	per	molecule,	and	therefore	the	time	
required	 to	 enumerate	 them,	 vastly	 outnumbered	 typical	
molecules.	This	was	typically	encountered	with	molecules	
with	many	possible	tautomers	and	resulted	in	rollouts	be-
ing	added	to	the	replay	buffer	that	used	an	outdated	version	
of	the	policy	model.	
Communication	between	the	policy	network	training	script	
and	the	MCTS	rollout	workers	is	handled	through	a	shared	
filesystem	and	a	PostgreSQL	server.	Policy	checkpoints	are	
previously	written	to	a	shared	filesystem	location,	which	is	
checked	at	the	beginning	of	each	rollout	by	the	workers.	Fi-
nal	 statistics	 and	 molecule	 reward	 calculations	 are	 then	
written	 to	 the	 shared	 SQL	 database.	 The	 policy	 training	
script	 in	 turn	 selects	 the	 256	 most	 recent	 rollouts	 each	
training	epoch,	with	each	epoch	consisting	of	100	training	
steps.	

Synthesizability prediction 
Retrosynthetic	routes	are	predicted	using	the	ASKCOS	web	
interface	 tool	 (https://askcos.mit.edu)	 using	 the	 tree	
builder	module.	Settings	were	chosen	to	match	those	used	
in	a	previous	study	evaluating	the	synthesizability	of	gener-
ative	models.49	 Specifically,	 the	maximum	 tree	depth	was	
limited	to	9	steps,	the	maximum	branching	ratio	is	set	to	25,	
a	maximum	wall	time	of	each	expansion	is	limited	to	60	s,	a	
maximum	reagent	cost	of	$100/g,	1000	max	templates,	and	
a	maximum	 target	 probability	 of	 0.999.	 Employing	 these	
settings	along	with	no	defined	banned	chemicals	and	reac-
tions	 for	 the	 radical	1(Fig.	5A),	we	obtained	a	 total	of	43	
routes,	containing	90	chemicals	and	970	reactions.	
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