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Abstract

Protein kinases are among the most important drug targets because their dysregu-

lation can cause cancer, inflammatory, and degenerative diseases. Developing selective

inhibitors is challenging due to the highly conserved binding sites across the roughly

500 human kinases. Thus, detecting subtle similarities on a structural level can help

to explain and predict off-targets among the kinase family.

Here, we present the kinase-focused and subpocket-enhanced KiSSim fingerprint

(Kinase S tructural Similarity). The fingerprint builds on the KLIFS pocket definition,

composed of 85 residues aligned across all available protein kinase structures, which
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enables residue-by-residue comparison without a computationally expensive alignment.

The residues’ physicochemical and spatial properties are encoded within their struc-

tural context including key subpockets at the hinge region, the DFG motif, and the

front pocket.

Since structure was found to contain information complementary to sequence, we

used the fingerprint to calculate all-against-all similarities within the structurally cov-

ered kinome. Thereby, we could identify off-targets that are unexpected if solely consid-

ering the sequence-based kinome tree grouping; for example, Erlobinib’s known kinase

off-targets SLK and LOK show high similarities to the key target EGFR (TK group)

though belonging to the STE group. KiSSim reflects profiling data better or at least as

well as other approaches such as KLIFS pocket sequence identity, KLIFS interaction

fingerprints (IFPs), or SiteAlign. To rationalize observed (dis)similarities, the finger-

print values can be visualized in 3D by coloring structures with residue and feature

resolution.

We believe that the KiSSim fingerprint is a valuable addition to the kinase re-

search toolbox to guide off-target and polypharmacology prediction. The method

is distributed as an open-source Python package on GitHub and as conda package:

https://github.com/volkamerlab/kissim

Introduction

Protein kinases are involved in most aspects of cell life due to their role in signal trans-

duction. Their dysregulation can cause severe diseases such as cancer, inflammation, and

neurodegeneration,1 which makes them a frequent target of drug discovery campaigns. In

2015, 30% of FDA-approved small molecules targeted kinases.2 The roughly 500 kinases in

the human genome share a highly conserved binding site, which challenges selective drug de-

sign for a single kinase or a well-defined set of kinases (polypharmacology) avoiding binding

to undesired off-targets.3,4
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Protein kinases bind adenosine triphosphate (ATP) to catalyze the transfer of its phos-

phate group to serine, threonine, or tyrosine residues of themselves or other proteins. ATP

and most other ligands bind to the front cleft of the kinase pocket that lays between the

two kinase domains, the C- and N-terminal lobes. These domains are connected via a hinge

region, which is forming important hydrogen bonds to ATP as well as most studied ligands.

The gate area contains the conserved DFG (aspartate-phenylalanine-glycine) motif, whose

phenylalanine flips in and out of the front pocket, opening and closing a hydrophobic region

in the back cleft, i.e., the DFG-in and DFG-out conformation, respectively. The back cleft

also comprises the αC-helix with a conserved glutamine residue, which forms a salt bridge

with a conserved lysine residue in the gate area. Such a conformation is called αC-in as

opposed to αC-out.5

Researchers have studied kinase similarity between the full — or parts of the — kinome

from many different angles. Manning et al. 6 used a multiple sequence alignment (MSA) to

cluster the kinome into eight main groups of eukaryotic protein kinases (ACG, CAMK, CK1,

CMGC, STE, TK, TKL, and Other) and the atypical protein kinase families. Recently, Modi

and Dunbrack 7 assigned some kinases, which were left unassigned in the Other category,

based on a structurally validated MSA.

While sequence comparison — and thus, evolutionary similarity — can explain many ob-

servations from kinase profiling experiments, other more distantly related off-targets remain

undetected. For example, profiling Erlotinib against 48 kinases revealed high affinity against

the on-target EGFR (TK group) but also the non-TK off-targets SLK, LOK, and GAK;8 or

the chemical probe SGC-STK17B-1 binds both DRAK2 and CaMMK,9 although they are

dissimilar when judged solely by their sequence.6 Focusing on the kinase pocket instead of

the whole sequence already helps: The 50 most similar kinases to EGFR are only TK ki-

nases when ranked by full-length sequence while listing non-TK kinases when considering the

pocket sequence only.10 The KinCore phylogenetic tree produced by a kinome-wide structure-

guided MSA7,11 overall confirms the assignment from Manning et al. 6 but provides higher
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precision, e.g. regarding previously unassigned kinases. Schmidt et al. 12 have recently inves-

tigated the similarities between a panel of nine kinases — EGFR, ErbB2, PIK3CA, KDR,

BRAF, CDK2, LCK, MET, and p38a — based on different pocket encodings, including the

pocket sequence identity, pocket structure similarity, interaction fingerprint similarity, and

ligand promiscuity. Individual kinase relationships differed according to these different per-

spectives, while some trends could be observed such as the atypical kinase PIK3CA being

an outlier amongst the otherwise typical kinases in this panel.

In an attempt to facilitate computer-aided kinase similarity studies, we here aim to add

another perspective. Binding site comparison methods employed so far can be applied to

any binding site regardless of the protein class. Kuhn et al. 13 have applied such a method,

Cavbase, to the structurally resolved kinome and could detect expected and unexpected

kinase relationships. Since kinases are highly conserved and have been aligned and annotated

across the full structurally covered kinome, a binding site comparison method tailored to

kinases may provide an extended perspective on kinase similarities. We make use of data

in the KLIFS14 database, a rich resource for kinase research that extracts protein kinase-

focused information on structures from the PDB,15 on inhibitors in clinical trials from the

PKIDB,16 on bioactivities from ChEMBL,17 and much more. All kinase structures from

the PDB are split into single chains and models and aligned with respect to sequence and

structure across the full structurally covered kinome. The KLIFS authors defined the kinase

pocket as a set of 85 residues that interact with co-crystallized ligands in the initial KLIFS

dataset of more than 1200 structures.5 Thanks to this structural alignment, it is possible to

look up all 85 residues in any kinase structure, given the residue is structurally resolved and

not in a gap position. This pocket alignment is the basis for the here introduced KiSSim

fingerprint.

The kinase-focused and subpocket-enhanced KiSSim (Kinase Structural Similarity) fin-

gerprint builds on the KLIFS14 pocket, whose alignment allows a computationally inexpen-

sive residue-by-residue comparison. The residues’ physicochemical and spatial properties are
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encoded within their structural context including important kinase subpockets — the hinge

region, DFG region, and front pocket — building on features from previously published

methods such as SiteAlign,18 KinFragLib,19 and Ultrafast Shape Recognition (USR).20 We

used the fingerprint to calculate all-against-all similarities within the structurally covered

kinome and to generate a KiSSim-based kinome tree. Detected similarities can be used to

predict off-targets or guide polypharmacology studies and to rationalize profiling observa-

tions on a structural level. We distribute the method as an open source Python package at

https://github.com/volkamerlab/kissim and as conda package, alongside the data and

analyses notebooks at https://github.com/volkamerlab/kissim_app to support FAIR21

science.

Methods & Data

In the following, we outline the KiSSim methodology and implementation, the datasets

used, and the method’s evaluation. All data, fingerprints, and analyses are available at

https://github.com/volkamerlab/kissim_app.

KiSSim methodology

The KiSSim methodology consists of three steps: the encoding of a set of kinase binding

sites as KiSSim fingerprints (Figure 1), the all-against-all comparison of these structures

using their fingerprints, and — since one kinase can be represented by multiple structures

— the mapping of multiple structure/fingerprint pairs to one kinase pair.

Encoding: From structure to fingerprint

The KiSSim fingerprint encodes the 85 KLIFS pocket residues in the form of physicochem-

ical and spatial properties as illustrated in Figure 1. We summarize the encoding procedure

in the following; for a detailed description please refer to the Supplementary methods section.
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Figure 1: KiSSim fingerprint encodes physicochemical and spatial properties of
kinase pockets. The fingerprint builds on the KLIFS14 pocket definition, i.e. 85 residues
aligned across all available protein kinase structures, which enables residue-by-residue com-
parison without a computationally expensive alignment. Each residue is encoded physic-
ochemically and spatially. Physicochemical properties include the following features per
residue (example: phenylalanine/PHE): (a) Pharmacophoric features and size categories are
taken from the SiteAlign18 binding site comparison methodology. (b) Side chain orientation
is adapted from SiteAlign and defined as inward-facing, intermediate, or outwards-facing
depending on the vertex angle between the pocket centroid, the residue’s side chain repre-
sentative (Table S3), and CA atom. (c) Solvent exposure is defined as high, intermediate, or
low, depending on the ratio of CA atoms in the upper half of a sphere cut in half by a normal
plane spanned by the residue’s CA-CB vector. The implementation is based on BioPython’s
HSExposure.22,23 Spatial properties are defined as follows: (d) Each residue’s distance to the
pocket center and important kinase subpockets, i.e., the hinge region, DFG region, and the
front pocket. On the right, example locations are shown in the 3D representation of kinase
EGFR (PDB ID: 2ITO, KLIFS structure ID: 783). (e) The distance distributions per pocket
center and subpocket are furthermore described by their first three moments, i.e. the mean,
standard deviation, and skewness.
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Physicochemical properties are encoded by eight features in the form of categorical values.

Pharmacophoric and size features are taken from the SiteAlign categories for standard amino

acids.18 They encode the size based on the number of heavy atoms, the number of hydrogen

bond donors (HBD) and hydrogen bond acceptors (HBA), the charge (negative, neutral,

or positive), and aromatic and aliphatic properties (present or not present) of a residue

(Table S1). The side chain orientation (inward-facing, intermediate, or outward-facing) is

based on the vertex angle from the residue’s CA atom (vertex) to the pocket center and

to the residue’s outermost side chain atom, the side chain representative (Table S3). The

solvent exposure of a residue (high, intermediate, or low) is based on the ratio of CA atoms

in the upper half of a sphere that is placed around the residue’s CA atom (radius 12 Å) and

cut in half by a normal plane spanned by the residue’s CA-CB vector, as implemented in

BioPython’s HSExposure module.22,23

Spatial properties are described by discrete values, i.e., distances and moments. Spatial

distances are calculated from each residue’s CA atom to the pocket’s geometric center and to

prominent subpocket centers. The pocket center is the centroid of all pocket CA atoms. The

selected subpocket centers include functionally well-characterized kinase regions such as the

hinge region, DFG region, and front pocket. Each subpocket center is calculated based on

the centroid of three anchor residues’ CA atoms (Table S4), following the idea described in

the KinFragLib methodology.19 We added the code to calculate the subpocket centers to the

structural cheminformatics library OpenCADD (module opencadd.structure.pocket)24 to

allow for easy access in other projects. Spatial moments describe each of the four distributions

of distances to the pocket center, hinge region, DFG region, and front pocket. In KiSSim,

the first three moments are used: the mean, the standard deviation, and the cube root of

the skewness. This procedure is inspired and adapted from the ligand-based Ultrafast Shape

Recognition (USR)20 method.

Fingerprint length. The final full-length fingerprint encompasses eight discrete physic-

ochemical features (8 features x 85 residues), four continuous spatial distance features (4
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features x 85 residues), and three continuous spatial moment features (3 moments x 4 dis-

tributions), resulting in a 1032 bit vector. Optionally, a subset of residues can be selected

to generate a subset fingerprint emphasizing certain residues. We offer a subset of residues

that is based on frequently interacting co-crystallized ligands,25 see more details in the Sup-

plementary methods section.

Normalization. Fingerprints are normalized to values between 0 and 1 by applying a min-

max normalization. For discrete features, the minimum and maximum categorical values are

used. For continuous features, the minimum and maximum values for each spatial feature are

set to the minimum and maximum values observed across all structures; distance extrema

are defined for each residue position individually, while moment extrema for the first, second,

and third moment individually.26

Pairwise structure comparison

Two kinase pocket structures — encoded as two fingerprints — can be compared in two

steps (Figure 2). First, we calculate for each feature the distance between the corresponding

two feature vectors across the 85 residue entries, producing a feature distances vector of

length 15 (i.e., aggregating over the columns in Figure 2 a). For example, the two fingerprints’

85-bit size feature vectors — representing the size of each of the 85 pocket residues — will be

reduced to a single size feature distance. The distance between discrete features is defined

as the scaled L1 norm ‖x‖1 = 1
n

∑n
i=1 |xi| (scaled Manhattan distance), whereas the distance

between continuous features is defined as the scaled L2 norm ‖x‖2 = 1
n

√∑n
i=1 x

2
i (scaled

Euclidean distance), where x is a vector of length n.27 Second, we calculate the weighted

sum of the 15-bit feature distance vector with feature-level weights α1...15 to produce the

final fingerprint distance. By default, the 15 features are equally weighted with a weight of

1
15

each.

Summarizing both steps, the fingerprint distance d(fi, fj) between two fingerprints fi

and fj is defined in Equation 1. The different KiSSim features are denoted as m: 1=size,
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Figure 2: Structures — encoded as KiSSim fingerprints — are compared pair-
wise and mapped to kinase pairs. (a) The discrete physicochemical features (blue) are
compared using the scaled L1 norm, while the continuous spatial features (yellow/orange)
are compared using the scaled L2 norm, resulting in a feature distances vector composed of
one distance per feature. Custom weighting of these features results in the final fingerprint
distance. By default, the features are weighted equally. (b) Two kinases of interest may
have multiple structures each. Thus, multiple structure/fingerprint pairs can represent the
same kinase pair. By default, we select the minimum (fingerprint) distance value amongst
all structure/fingerprint pairs to represent the (kinase) distance between a kinase pair.
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2=HBD, 3=HBA, 4=charge, 5=aromatic, 6=aliphatic, 7=side chain orientation, 8=solvent

exposure, 9=distance to pocket center, 10=distance to hinge region, 11=distance to DFG

region, 12=distance to front pocket, 13=first moment, 14=second moment, and 15=third

moment.

d(fi, fj) =
8∑

m=1

αm

∥∥fmi − fmj
∥∥

1

85
+

12∑
m=9

αm

∥∥fmi − fmj
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2

85
+

15∑
m=13

αm

∥∥fmi − fmj
∥∥

2

4
(1)

Kinome-wide comparison

The kinome-wide comparison is based on an all-against-all comparison of all available

structures. Note that a kinase can be represented by multiple structures (see KLIFS data

section), thus, a kinase pair can be represented by multiple structure pairs with multiple

distance values. Our final goal is to assign one distance value to each kinase pair as a

measure of the similarity between these two kinases (Figure 2 b). The structural coverage of

kinases is highly imbalanced: Some kinases are represented by one structure only, others like

EGFR or CDK2 by more than 100. We select the structure pair with the lowest distance

as representative for the kinase pair, hence always picking the two closest structures in the

dataset. For example, if a dataset consists of ten structures representing three kinases, the

10 × 10 all-against-all structure distance matrix will be reduced to a 3 × 3 all-against-all

kinase distance matrix, consisting of the lowest distance values only after mapping structure

pairs to kinase pairs.

Fingerprint and similarity visualization in 3D

Fingerprint features can be visualized in 3D using the NGLviewer28,29 and IPyWidgets30

for the following applications: (a) Fingerprint features of a structure can be visualized in 3D

by coloring the residues by different feature values. (b) The difference between two struc-

tures can be highlighted to spot positions of high or low similarity between two structures.

The differences are shown for each feature type individually. (c) The standard deviation
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of spatial features between all structures available for one kinase can be mapped onto an

example structure in 3D to show regions of high or low variability between different kinase

conformations.

KiSSim tree

The kinase distance matrix produced as described in the Kinome-wide comparison section

is submitted to a hierarchical clustering as implemented in SciPy31 using as metric the

Euclidean distance and as linkage Ward’s criterion. We generate a phylogenetic tree in

the Newick format based on this KiSSim kinase clustering. The tree branches are labeled

with the mean of all distances belonging to that branch; the tree leaves are annotated with

the kinase names and their assigned Manning kinase groups. We visualize the tree in an

automatized way using BioPython’s Phylo22,32 module to be used in Jupyter Notebooks, and

in a manual way using the freely available FigTree33 software to produce publication-ready

circular trees.

KiSSim implementation

The kissim library is implemented as an open-source Python package, which is available

on GitHub at https://github.com/volkamerlab/kissim and as conda package at conda-

forge.34,35 Structures are retrieved via the OpenCADD-KLIFS module24 and are encoded

as fingerprints using the FingerprintGenerator class; fingerprints can be compared using

the FingerprintDistanceGenerator class. We also offer quick access encode and compare

functionalities as Python API and as command-line interface (CLI), see Figure 3. Lastly, the

kissim.encoding.tree module offers an automatized all-against-all clustering and phylo-

genetic tree generation, while the 3D visualization of fingerprints and pairwise comparisons

is implemented in the kissim.viewer module.

Structural data is read and processed with BioPython22 and BioPandas;36 computation

is performed with NumPy,37 Pandas,38 SciPy,39 and Scikit-learn.40 The code for operations
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that are of use outside of the KiSSim project has been added to the OpenCADD library:24

KLIFS queries are implemented in the OpenCADD-KLIFS module and subpocket centers

can be defined and visualized with the OpenCADD-pocket module.

All code is written in Python 341 following the PEP8 style guide. We document the code

following NumPy docstrings42 as well as format and lint the code and notebooks with black,43

black-nb,44 flake8,45 and flake8-nb.46 A detailed documentation is hosted on ReadTheDocs47

at https://kissim.readthedocs.io using sphinx.48 We test the kissim code using pytest49

with a code coverage of over 90%, measured with CodeCov.50 Notebooks are checked with

nbval51 and continuous integration is deployed with GitHub Actions52 on a weekly basis.

Structures Fingerprints
All-against-all

fingerprint distances
(& feature distances)

kissim.api.encode 
function

kissim.api.compare 
function

FingerprintGenerator FingerprintDistanceGenerator
FeatureDistancesGenerator 

Structure KLIFS IDs

kissim encode 
command

kissim compare 
command

Python 
API

CLI

Figure 3: The kissim library’s Python API and CLI. Structures from the
KLIFS database can be encoded as fingerprints using the FingerprintGenerator

class (details in Figure 1) and compared using the FeatureDistancesGenerator and
FingerprintDistanceGenerator class (details in Figure 2). The package offers the wrappers
encode and compare for quick and easy access from within a Python script (Python API)
or from the command line (CLI). Please also refer to the kissim library’s documentation at
https://kissim.readthedocs.io.

Data

We are using the following sources of external data: KLIFS kinase structures14 and the

profiling datasets by Karaman et al. 8 and Davis et al. 53 , filtered and processed as described

in the following. All prepared datasets described here are accessible via the src.data module
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at https://github.com/volkamerlab/kissim_app.

KLIFS data

We downloaded the human structural kinase dataset from the KLIFS database version

3.214 on 2021-09-02. This dataset contained 11806 human monomeric structures, i.e., PDB

entries split into monomeric structures if consisting of multiple chains and alternate models.

We filtered the dataset for human kinases with a resolution ≤ 3Å and a KLIFS quality

score ≥ 6. The KLIFS quality score ranges from 0 (bad) to 10 (flawless) and describes the

quality of the structural alignment and resolution regarding missing residues and atoms. In

addition, we excluded structures with more than three pocket mutations or with more than

eight missing pocket residues. In order to reduce computational costs, we selected the best

structure per kinase in each PDB entry (kinase-PDB pair); the best structure per kinase-

PDB pair is defined as the structure with the least missing pocket residues, the least missing

pocket atoms, the lowest alternate model identifier, and the lowest chain identifier (in that

order). Structures were excluded if they are flagged as problematic structures in KLIFS

and if they could not be encoded as KiSSim fingerprint. We produced three final datasets

of structures for KiSSim fingerprint generation and all-against-all comparison: structures in

any DFG conformation, DFG-in conformation only, and DFG-out conformation only. Table 1

lists the number of structures remaining after each filtering step.

Bioactivity profiling data

To compare predicted and measured on- and off-targets, we use two kinase bioactivity

datasets available through KinMap:56 The Karaman et al. 8 and the Davis et al. 53 datasets

on KinMap contain inhibition profiles (Kd values) for 38 and 72 kinase inhibitors across 317

and 442 kinases, respectively. The lower the Kd value, the higher the binding affinity, which

is used as a proxy for activity. We pooled data from both datasets by taking the union

of all kinase-ligand pairs. If kinase-ligand pairs have bioactivity values in both datasets,

13

https://github.com/volkamerlab/kissim_app


Table 1: KiSSim dataset. Upper half: Filtering steps performed on the human dataset
from KLIFS version 3.214 downloaded on 2021-09-02 to generate the KiSSim dataset. Lower
half: Number of structures and kinases as well as number of structure and kinase pairs
encoded and compared with the KiSSim methodology; number of structure/kinase pairs
does not contain self-comparisons. See notebooks for more details.54,55

Number of structures
all DFG-in DFG-out

Select species: human 11806
Select KLIFS structures without flag 11650
Select resolution: ≤ 3 10690
Select quality score: ≥ 6 10236
Select mutated pocket residues: ≤ 3 10155
Select missing pocket residues: ≤ 8 10150
Select conformation 10150 8982 786
Select best structure per PDB and kinase pair 4690 4120 407
Encode structures as fingerprints 4681 4112 406

Number of structures 4681 4112 406
Number of kinases 279 257 71
Number of structure pairs 10953540 8452216 82215
Number of kinase pairs 38781 32896 2485

we proceeded as follows: If both measurements Kd,1 and Kd,2 are (a) below or equal to or

(b) above or equal to the chosen activity cutoff of Kcutoff
d = 100 nM, we kept the lower Kd,

i.e. the more active compound. If one of the measurements is above and the other below

that cutoff, we kept the lower Kd if the difference is |Kd,1 −Kd,2| ≤ 100 nM, otherwise, the

measurements were discarded. That way we keep the measurement with the lowest Kd if both

measurements agree on the ligand’s activity, including a tolerance zone around our defined

activity cutoff; and we remove measurements if they disagree considerably. This approach

results in a 353× 80 kinase-ligand matrix with 7619 measurements, named Karaman-Davis

dataset from here on.

Evaluation

We evaluate our KiSSim results by comparison to profiling data as well as alternative

similarity measures based on KLIFS pocket sequences, KLIFS pocket interaction finger-
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prints (IFPs), and SiteAlign.18 All prepared datasets and evaluation strategies described

here are accessible via the src.data and src.evaluation modules at https://github.

com/volkamerlab/kissim_app.

KiSSim evaluation using profiling data

To evaluate how well KiSSim detects kinase similarities, we need to define a ground

truth of kinase similarities. We use profiling data as a surrogate for this, since it is safe

to assume that kinases that are targeted by the same ligand share similar binding sites.

To this end, we use the profiling Karaman-Davis dataset, which describes the activity of

ligands against a panel of kinases. We assign each ligand li in the profiling dataset to their

reported key target(s) kj(li) in the PKIDB,16 ranging from one target to multiple targets,

e.g. Erlotinib is assigned to EGFR only while Imatinib binds to ABL1, KIT, RET, TRKA,

FMS, and PDGFRa. These examples result in the following kinase-ligand pairs: EGFR-

Erlotinib, ABL1-Imatinib, KIT-Imatinib, RET-Imatinib, TRKA-Imatinib, FMS-Imatinib,

and PDGFRa-Imatinib. Note that we only included (a) kinases whose name could be mapped

to the KinMap kinase names and (b) ligands that are listed in the PKIDB and are FDA-

approved. Furthermore, only kinase-ligand pairs were included (a) whose kinase was tested

active against the ligand (Kd ≤ 100 nM) and (b) that share at least 10 kinases between

the Karaman-Davis and KiSSim datasets, of which at least three have measured ligand

activities of Kd ≤ 100 nM. For example, the EGFR-Erlotinib pair shares Erlotinib profiling

measurements and EGFR KiSSim distances for 50 kinases, of which four are defined as

active using the aforementioned Kd cutoff. Each remaining kinase-ligand pair is evaluated

as demonstrated here for the EGFR-Erlotinib pair (l1 = Erlotinib and k1(l1) = EGFR):

1. We define the kinases in both lists as active or inactive based on the chosen activity

threshold of Kd = 100 nM.

2. We rank all kinases by their KiSSim distance to EGFR. These are our KiSSim-based

kinase similarities.
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3. We calculate ROC curves to demonstrate how well the profiling data is predicted by

our KiSSim-based kinase similarities.

Some kinase activities measured in the profiling dataset are rather unexpected from

a sequence-based similarity point of view. For the EGFR-Erlotinib example, we use the

KinMap server to plot the profiling-based and KiSSim-based ranked kinases onto the kinome

tree by Manning et al. 6 . For example, we highlight kinases with measured activities against

Erlotinib as well as the 50 most similar kinases to EGFR as detected by KiSSim. All kinases

that are part of the KiSSim dataset are shown as well to define which data points are available

for similarity predictions.

KiSSim comparison to other methods

We outline here the preparation of all-against-all kinase distance matrices based on dif-

ferent similarity measures to be compared to the KiSSim kinase distance matrix (KiSSim

dataset section): KLIFS pocket sequence, KLIFS pocket-ligand interaction fingerprint (IFP),

and SiteAlign’s pocket structure. All distance matrices underwent a min-max normaliza-

tion57 and can be loaded via src.data.distances at https://github.com/volkamerlab/

kissim_app.

KLIFS pocket sequence. We performed an all-against-all comparison of the sequence

identity within the KLIFS pocket of 85 residues. The sequence identity is defined as the

number of identical pocket residues divided by all 85 pocket residues; gap positions are

treated as identical if both structures show a gap. If two sequences are identical, the sequence

identity is 1; if two sequences do not have a single residue in common, the sequence identity

is 0. In order to make these values comparable with the kinase distance matrices, we define

distance = 1− identity.

KLIFS pocket IFP. We performed an all-against-all comparison of the KLIFS IFP de-

scribing interactions between co-crystallized ligands and the KLIFS pocket. For each pocket

residue, seven potential protein-ligand interaction types were defined as described by Marcou
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and Rognan 58 . The presence or absence of a certain type of interaction is noted as 1 or 0

in the bit-string. This results in an 85 · 7 = 595-bit long IFP per pocket-ligand pair. The

Jaccard distance is used to compare the IFPs. If multiple IFP pairs describe the same kinase

pair, we selected the minimum distance as the representative measure for the kinase pair,

following the same procedure as described for the KiSSim methodology.

SiteAlign. We performed an all-against-all comparison using the pocket comparison

method SiteAlign18 (version 4.0). In this approach, properties of a binding site are pro-

jected to a triangulated sphere positioned at the pocket center, stored as a fingerprint to

be compared and aligned to another binding site fingerprint iteratively. Since we used the

existing KLIFS alignment, a few SiteAlign parameters were adapted to reduce runtime: we

decreased the number of alignment steps in SiteAlign from 3 to 1, the translational steps

from 5 to 3, and reduced the rotational and translational intensity from 2π to 1
4
π and from

4 to 1, respectively. Comparison of the SiteAlign performance for > 4000 structure pairs

with the default and adjusted settings, showed that the adjusted settings resulted in lower

distances (average decrease of 6%), while matching a higher number of triangles (average

increase of 15%). Pocket residues with modifications (e.g. phosphorylated threonines) were

excluded to avoid segmentation faults.

Results and Discussion

We present here the generated KiSSim dataset and the resulting KiSSim-based kinome

tree. Furthermore, we evaluate the KiSSim results in comparison to profiling data (KiSSim

evaluation using profiling data section) and other pocket encoding methods (KiSSim com-

parison to other methods section).
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KiSSim dataset

KLIFS structures are filtered as described in detail in the KLIFS data section (Table 1),

then encoded and compared as described in the KiSSim methodology section. When con-

sidering structures in DFG-in conformations only, 4112 fingerprints representing 257 kinases

result in a 4112 × 4112 structure distance matrix and — after mapping structure to kinase

pairs as described in the Kinome-wide comparison section — in a 257× 257 kinase distance

matrix (Table 1).

Fingerprint feature value distribution

The KiSSim fingerprint encodes the 85 KLIFS pocket residues in the form of physic-

ochemical and spatial properties. Physicochemical properties include pharmacophoric and

size features, side chain orientation, and solvent exposure; spatial properties include each

residue’s distance to the pocket center as well as to three subpockets and the first three mo-

ments of the resulting distance distributions (Figure 1). We investigate here the fingerprint

feature value distribution across all KiSSim fingerprints.

The value distributions for pharmacophoric and size features differ depending on the

feature type (Figure 4a) and the residue position (Figure S2 and S3). For example, the

amino acid size is more evenly distributed than the aromatic or charge feature, since most

amino acids are neither aromatic nor charged (Figure 4a, left). Since the five pharmacophoric

and residue size features encode — in an abstracted manner — the pocket sequence, features

are more robust at more conserved pocket positions than at other positions; examples are

the conserved salt-bridge between residues 17 and 24 or the DFG residues 81–83 (Figure S2).

Spatial distances range between 2–33 Å (Figure 4a, middle), however, depending on the

residue position, the values cover only a subset of this range. For example, the hinge region

residues 46–48 are close to the hinge region center, while further away from the DFG region

center (Figure S3). Distances from subpocket centers to regions such as the G-rich loop

(residues 4–9), the αC-helix (residues 20–30), and the DFG motif vary more than for example
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to the hinge region, which agrees with knowledge on more flexible vs. more stable regions in

the kinase pocket. The spatial moment features describe the distance distributions between

the pocket residues to the subpocket centers. They show lower variability for the mean and

the standard deviation but high variability for the skewness (Figure 4a, right).

The spatial features are based on the KiSSim subpockets as described in the Encoding:

From structure to fingerprint section. These subpockets are calculated for each structure

individually, however, show robustness over the structural kinome. The subpocket centers

occupy the same space across the aligned KLIFS structures, while the front pocket and

DFG region center show higher variability than the hinge region and pocket center (Fig-

ure 4b), as to be expected. Therefore, the subpocket definition procedure seems to be robust

enough to span comparable subpocket centers while fine-grained enough to encode structural

differences.

In conclusion, the feature space encoded in the KiSSim fingerprint, on the one hand, re-

flects sequence-related similarities between kinases on a generalized level through the defined

physicochemical properties and, on the other hand, incorporates information on flexible and

stable regions through the defined spatial properties.

Fingerprint distances to compare structures

Moving on from the structure encoding (fingerprints) to the structure comparison (finger-

print distances), we aimed to explore if the KiSSim fingerprint can be used to discriminate

between kinases and between DFG-in and DFG-out conformations.

First, we measured the discriminating power between kinases by comparing KiSSim fin-

gerprint distances between DFG-in structures of the same kinase and of different kinases,

i.e. intra-kinase and inter-kinase distances, respectively. With a median of 0.02 compared

to 0.11, the (about 200000) intra-kinase distances are significantly lower than the (about

8.2 million) inter-kinase distances as shown in Figure 5a, indicating that the fingerprint can

discriminate between kinases. Note that the distances between structure pairs describing the
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Figure 4: Fingerprint feature and subpocket distributions. (a) Distribution of all over
400, 000 feature values aggregated from all structures and all pocket residues. Categorical
physicochemical features (in blue) include size, hydrogen bond donor count (HBD), hydrogen
bond acceptor count (HBA), charge, aromatic, aliphatic, side chain orientation (SCO), and
solvent exposure. Distance features (in yellow) include distances to the subpocket centers
for the hinge region, DFG region and front pocket as well as the pocket centroid. Moment
features (in orange) include the first three moments, i.e. mean, standard deviation, and
scaled skewness, for each structure’s distance distribution. (b) The subpocket centers are
shown in 3D for example structures (left), highlighted by DFG conformations (middle) and
αC-helix conformations for example DFG-in structures (right). See notebooks for more
details.59–61 Note: We show here unnormalized fingerprints; for the downstream fingerprint
comparison, the fingerprints are normalized to values between 0 and 1 first.
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same kinase pair can vary a lot (Figure S4); for the all-against-all comparison, we consider

only the most similar structure pair per kinase pair.

Second, we measured KiSSim’s discriminating power between DFG conformations by

comparing fingerprint distances between structure pairs in DFG-in/in, DFG-out/out, and

DFG-in/out conformations. For this analysis, we used the distances based on only the

spatial fingerprint features to exclude the eight physicochemical features and thereby to

focus on conformational information. While the distributions for the three categories are

similar when considering all kinases (data not shown), they differ when split by kinase

as shown exemplarily for the BRAF kinase in Figure 5b, indicating that the fingerprint can

discriminate between DFG conformations. We conducted this analysis for other kinases with

sufficient structural coverage for DFG-in and -out conformations and observed the same for

CDK8, EphA2, MET, and p38a (see details in notebook62).

Before we use the KiSSim fingerprints for an all-against-all comparison, we confirmed

two important properties: First, the KiSSim fingerprint distances for structures describing

the same kinase are significantly lower than for structures describing different kinases (here

based on DFG-in structures only). Second, the fingerprint distances for structures in the

same DFG conformation are lower than for DFG-in/out structure pairs (here based on spatial

features only).

KiSSim-based kinome tree

Structure is known to be more conserved than sequence,64 and previous studies have

shown that including structural information adds orthogonal information to shed light on

unexpected similarities between kinases and off-target effects.7,12 To help detect such rela-

tionships between more distantly related kinases, we generated KiSSim kinome trees based

on the DFG-in conformations, as described in detail in the KiSSim tree section, to inves-

tigate all-against-all relationships between kinases compared to the sequence-based kinome

tree by Manning et al. 6 . Note that we can base the comparison on structurally resolved
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Figure 5: KiSSim fingerprint can distinguish between kinases and DFG confor-
mations. (a) We compare fingerprint distances (based on all fingerprint bits) for struc-
ture pairs representing any kinase (all), the same kinase (intra-kinase), or different kinases
(inter-kinase); here we use only DFG-in conformations. Dataset includes about 8.4 million
pairwise structure distances, of which about 200000 and 8.2 million are intra-kinase and
inter-kinase pairs, respectively. (b) We compare fingerprint distances (based on spatial dis-
tance fingerprint bits only) for structure pairs representing the BRAF kinase in different
DFG-conformations. Dataset includes 28 DFG-in and 21 DFG-out structures, resulting in
378 DFG-in/in, 210 DFG-out/out, and 588 DFG-in/out pairwise structure distances. The
box-and-whisker plot extends from the Q1 to Q3 quartile values of the data; the whiskers
extend no more than 1.5 · IQR with IQR = Q3−Q1. See notebooks for more details.62,63
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kinases only, i.e., 257 out of the roughly 500 human kinases.

The KiSSim-based kinome tree (structure-based) shows large overlap with most kinase

groups as annotated by Manning et al. 6 (sequence-based). We will summarize the KiSSim

clusters and highlight differences in comparison to Manning’s kinase groups AGC, CAMK,

CK1, CMGC, STE, TKL, TK, the atypical group, and the unassigned kinases (Other).

Kinases from the TK group build a single large cluster with two outliers, i.e., the pseudok-

inases TYK2-b and JAK1-b. Known highly similar kinases, which form (sub)families in the

Manning tree, are grouped together, e.g. the families Erb (EGFR, Erb2, Erb3, Erb4), Eph

(EphB[1,4] and EphA[1,2,3,5,7,8]), JakA (JAK1, JAK2, JAK2, TYK2), and JakB (JAK1-b,

TYK2-b).

Kinases from the CAMK group mainly cluster together. In addition, the following kinases

from other kinase groups are included in our CAMK-like cluster: (a) CaMKK2 (Other), (b)

MSK1 (AGC), (c) CK2a2 (CMGC), and (d) AurA, AurC, PLK4, TTK, and MPSK1 (Other).

This is partly in agreement with the findings by Modi and Dunbrack 7 who have reassigned

10 kinases from Manning’s Other group to the CAMK group, of which seven are part of the

KiSSim dataset (AurA, AurC, CaMKK2, PLK1, PLK2, PLK3, and PLK4) and three are

not (AurB, CaMKK1, PLK5). The KiSSim-based similarity of CaMKK2 to CAMK kinases

is further supported by profiling data for the chemical probe SGC-STK17B-1, which targets

both CaMKK2 and DRAK2 (part of the CAMK group).9 Note that the following kinases

belong to the CAMK group but are found outside of our CAMK-like cluster: (a) Trb1, (b)

LKB1, and (c) PASK, PIM1, and PIM2.

Kinases from the STE group are assigned mostly to a single cluster that is, however,

shared with kinases from many other kinase groups. The STE kinases MAP2K[1,4,6,7] and

OSR1 are separated from the other STE kinases.

Kinases from the CMGC group are clustered in two subgroups: kinases from the CDK,

CDKL, and MAPK families build one cluster, while kinases from the DYRK, SRPK, and

CLK family build another. The CK2a2 kinase (CK2 family) is an outlier.
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Kinases from the TKL group are mainly clustered together with kinases from the Other

group but some are separated from the rest (DLK, BRAK, IRAK2, and LIMK1). Kinases

from the CK1 group build one group except for TTBK1 and TTBK2. Kinases from the AGC

group cluster together as well; MSK1 is the only outlier that is found closer to the CAMK

kinases. Lastly, only three atypical kinases are included in the KiSSim dataset (ADCK3,

RIOK1, and RIOK2) and build their own cluster, neighboring to the CK1 kinases.

Overall, the KiSSim dataset retrieves the sequence-based kinome tree by Manning et al. 6 ,

including subbranches as discussed for the kinases assigned to the TK and CMGC groups.

This is not surprising because we do encode the sequence in an abstracted manner in the

physicochemical KiSSim fingerprint bits. However, some kinases show deviating relation-

ships, of which some can be rationalized such as the CaMKK2 and DRAK2 relationship

shown also in profiling data. Thus, the addition of structural information in the KiSSim

fingerprint allows us to cluster more distantly related kinases. This aspect of the KiSSim

tree is of interest because it predicts novel information on kinase similarities.

KiSSim evaluation using profiling data

As discussed, the KiSSim tree shows expected and unexpected kinase (dis)similarities.

In order to evaluate the specificity and sensitivity of our method, we use profiling data as a

surrogate for (real) expected kinase (dis)similarities: if a ligand targets a set of kinases with

high activity, these kinases have similar binding sites and are therefore treated as similar

kinases.

To this end, we pooled the Karaman et al. 8 and Davis et al. 53 datasets and filtered for

FDA-approved inhibitors and their targets as listed in the PKIDB.16 The dataset preparation

is described in detail in the Bioactivity profiling data section. We show the KiSSim method’s

performance in the form of ROC curves for each inhibitor’s listed targets.

For example, Imatinib has three reported on-targets (assigned in PKIDB) and two off-

targets (based on activity data in the Karaman-Davis dataset); KiSSim’s performance is
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Figure 6: KiSSim-based kinome tree based on 257 structurally resolved kinases in
the DFG-in conformation. Tree nodes are colored from red to blue showing small to large
distances (0.01–0.20), describing high to low similarities; tree leaves represent kinases colored
by kinase group. The tree is based on a clustering of the kinase distance matrix using as
metric the Euclidian distance and as linkage Ward’s criterion. The clusters are converted to
the Newick format and visualized using FigTree.33 See notebook for more details.65
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evaluated by checking for these five Imatinib targets in KiSSim’s most similar kinases to

the on-targets (1) ABL1, (2) KIT, and (3) FMS, producing three ROC curves (Figure 7,

first row, second plot). Details are described in the KiSSim evaluation using profiling data

section. In total, we analyzed KiSSim’s performance across 48 kinase-ligand pairs involving

21 ligands; the AUCs range from 0.49 to 1.0 with a mean of 0.75 ± 0.12. In the following,

we discuss a few examples in Figure 7 (first row); please refer to the full set of ligands in

Figure S5.

The Erlotinib profiling and KiSSim datasets share 50 kinases, of which 4 show high

activity (Kd ≤ 100 nM), i.e., the on-target EGFR (TK, Kd = 19.0 nM) and the off-targets

SLK (STE, Kd = 3.10 nM), LOK (STE, Kd = 0.67 nM), and GAK (Other, Kd = 0.67 nM).

The top 20 KiSSim ranks for EGFR are dominated by TK kinases but include the STE

kinases LOK and SLK on ranks 11 and 20 out of the 50 shared kinases, respectively; the

GAK kinase is not detected by KiSSim, being found on rank 44 only (AUC = 0.641). The

EGFR-GAK fingerprint pair shows many differences in their physicochemical bits, which

stem from their relatively high pocket sequence dissimilarity (Figure 8). The fingerprint

differences for the EGFR-GAK pair are visualized in 3D in Figure 9 for selected fingerprint

features with high differences such as the HBA, aliphatic, and the hinge region features.

The Imatinib profiling and KiSSim datasets share 18 kinases, of which 5 TK kinases show

high activity, i.e., the key target ABL1 as well as ABL2, LCK, KIT, and FMS. Compared

to ABL1, all active kinases are ranked within KiSSim’s top 7 most similar kinases (AUC =

0.908).

The Bosutinib profiling and KiSSim datasets share 108 kinases, of which 33 show high

activity, mainly from the TK and STE groups. Compared to ABL1, which is one of the key

targets, the TK kinases are found first in the top 35, followed by the STE kinases in the

top 61 (AUC = 0.796).

The Doramapimod profiling and KiSSim datasets share 43 kinases, of which 8 show high

activity, including the on-target p38a and four additional CMGC kinases (p38b, p38d, p38g,
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Figure 7: Performance of KiSSim and other similarity measures against profiling
data. ROC curves comparing predicted and profiling-based kinase similarities (FPR = False
positive rate; TPR = True positive rate). Predicted similarities against a selected kinase k
are based on the KiSSim similarities (KiSSim), the KLIFS pocket IFP similarity (KLIFS
IFP), the KLIFS pocket sequence identity (KLIFS seq), and the SiteAlign pocket structure
similarity (SiteAlign). Profiling-based kinase similarities define kinases as similar if they
are targeted by the same ligand with Kd ≤ 100 nM, including the ligand’s on-target(s)
as reported in the PKIDB. The kinases, for which the ligand shows lower activities with
Kd > 100 nM, are treated as dissimilar to the ligand’s on-target(s). Find more details in the
Bioactivity profiling data section. The first rank is always occupied by the kinase k. We
show here only a selection of kinase-ligand pairs, please refer to Figures S5–S8 to inspect the
full datasets. See notebooks for more details.66–70
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and JNK2), two STE kinases (HGK and LOK), and the TK kinase TIE2. Compared to

p38a, the CMGC kinases cover the top 7 KiSSim ranks, followed by the STE kinases and

TIE2 in the top 25 (AUC = 0.845).

Furthermore, we performed the same profiling-based evaluations for subset KiSSim fin-

gerprints, solely including residues that interact with the respective ligand were included.

Ligand-interacting residues were selected from X-ray kinase structures based on the KLIFS

IFP, i.e. 12, 57, 26, and 13 structures have cumulatively 21, 31, 27, and 35 interacting residues

with Erlotinib, Imatinib, Bosutinib, and Doramapimod, respectively. In the case of Erlotinib

and Bosutinib, the performance improves when including only the ligand-interacting residues

— LOK, SLK, and the previously KiSSim-undetected GAK are all in the top 20 most kinase

similarities compared to EGFR —, while the performance decreases slightly in the case of

Imatinib and Doramapimod (see notebook71 for more details). Thus, depending on the user’s

research question such as predicting off-target for one or multiple ligands of interest, known

interaction profiles can be used to guide the selection of residues for the KiSSim fingerprint.

Note that the prediction tasks evaluated with the ROC curves may vary in difficulty: (a)

Generally, only few data points are available for this analysis. (b) Erlotinib- vs. Imatinib-

based evaluations stem from predictions across different kinase groups vs. within the TK

group only. (c) Erlotinib- vs. Bosutinib-based evaluations are based on a dataset with a

share of active kinases of 1 out of 10 and 1 out of 3, respectively.

Comparison of KiSSim to other methods

In the next step, we investigated all-against-all comparisons based on the KiSSim fin-

gerprints, the KLIFS pocket sequence, KLIFS ligand-pocket interaction fingerprints (IFP),

and the SiteAlign scores. The data preparation steps are described in detail in the KiSSim

comparison to other methods section.

The KiSSim fingerprint contains physicochemical bits, which generalize the pocket se-

quence, and spatial bits, which consider the individual atom/residue positions in the under-
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Figure 8: KiSSim similarities between EGFR and Erlotinib’s off-targets SLK,
LOK, and GAK. (left) The KinMap56 tree shows the Karaman profiling data for Erlotinib
(cyan), the top 50 most similar kinases to Erlobtinib’s on-target EGFR (blue), and all kinases
that are covered by the KiSSim dataset (grey). (right) KiSSim fingerprint pair differences
between EGFR and selected kinases: ErB2 (as an example for highly similar kinases) as
well as SLK, LOK, and GAK (unexpected off-targets for Erlotinib). Similarities between
EGFR and SLK/LOK are detected by KiSSim (top 50 of all 279 kinases covered in KiSSim)
while GAK stays undetected due to higher differences in the overall KiSSim fingerprints.
See notebook for more details.72
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Figure 9: 3D visualization of KiSSim fingerprint differences between EGFR
and GAK (EGFR and GAK structure KLIFS IDs: 1215973 and 10329,74 respectively).
(a) Highlight residues with at least one large difference in their physicochemical bits
(∆dnormalized = 0.6, blue), spatial bits (∆dnormalized = 0.2, yellow), or both (green). Color
residues by their differences in their (b) HBA, (c) aliphatic, and (d) hinge region feature,
ranging from no difference (white) to highest difference (blue). See notebook for more de-
tails.72
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lying kinase conformations. First, we use the KLIFS pocket sequence (KLIFS seq) to probe

if the KiSSim fingerprint’s generalized sequence and spatial information improve predictions

compared to sequence information only. Second, we use the KLIFS pocket IFP (KLIFS

IFP) to probe if the KiSSim fingerprint, which does not contain any information about in-

teractions, improves kinase similarity predictions compared to interaction-based fingerprints.

The advantage of IFPs is that they emphasize important residues and interactions as seen

based on one or more ligands; the disadvantage is that not all possibly relevant interactions

have been seen, yet. Note that combining the IFP information with KiSSim — using only

interacting residues in the KiSSim fingerprint — can improve the KiSSim performance as

discussed in the KiSSim evaluation using profiling data section. Third, we use kinase similar-

ities calculated with the SiteAlign methodology (SiteAlign), from which we adapted some of

the physicochemical KiSSim features, to confirm that the KiSSim fingerprint adds relevant

kinase-focused information.

Correlation. We compared the pairwise kinase distances between the four different

method setups (Figure S9). We observed a rather strong correlation between the KiSSim

distances and (a) the KLIFS pocket sequence distances (r = 0.77), reflecting the sequence-

generalizing physicochemical features in the KiSSim fingerprint, and (b) the SiteAlign dis-

tances (r = 0.73), reflecting the partly shared physicochemical features in KiSSim and

SiteAlign (pharmacophoric and size features). In contrast, the correlation between KiSSim

and KLIFS IFP distances is low (r = 0.39), possibly reflecting the lack of information on

ligand-kinase interaction patterns.

Performance. We performed the same profiling analysis, which we discussed for KiSSim

(mean AUC 0.75±0.12) in the KiSSim evaluation using profiling data section, for the KLIFS

seq (mean AUC 0.78 ± 0.15), KLIFS IFP (mean AUC 0.63 ± 0.12), and SiteAlign (mean

AUC 0.71± 0.12) datasets, see Figure 7.

The KiSSim approach performs slightly worse compared to the KLIFS pocket sequence

comparison in case of ligands like Imatinib, whose reported on-targets all belong to the TK
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group, but shows better performance for Erlotinib, Bosutinib, and Doramapimod, which

have known kinase targets belonging to different kinase groups. Hence, while the sequence-

based approach picks up kinase group assignments as to be expected, KiSSim picks up more

distant and less obvious off-targets.

The KLIFS pocket IFP comparison performs similarly to the KiSSim comparison in the

case of Erlotinib, however, worse for the other three ligands. In contrast to the KiSSim

approach, pocket similarities can only be detected by the IFP approach if the respective

kinases have been co-crystallized with ligands that form similar interaction patterns. Such

an IFP-based comparison probably can be more successful for a defined kinase set with high

coverage of co-crystallized ligands in contrast to a kinome-wide comparison as performed

here.

The SiteAlign methodology projects topological and chemical properties onto a sphere

that sits in the center of a protein pocket. The spheres are aligned based on these projec-

tions and a similarity score is calculated between the aligned fingerprints. Finding the right

alignment is a time-consuming step, hence we offered SiteAlign already the KLIFS-aligned

structures as a starting point and reduced the iterations as described in the KiSSim com-

parison to other methods section. KiSSim outperforms the SiteAlign results in most cases,

however, often not considerably much.

Runtime. The runtime for the methods discussed here differ considerably: Generating

the KLIFS seq dataset takes about a second (based on about 500 kinases), while the KLIFS

IFP dataset is ready within half a minute (based on about 8800 IFPs); both procedures

build on the processed and curated KLIFS datasets, i.e. both the pocket sequences and the

pocket interaction fingerprints are ready for use. Generating the KiSSim kinase matrix takes

about 24 hours, while the all-against-all comparison with SiteAlign is ready after > 20000

hours using the optimized SiteAlign settings (both based on over 4000 structures and a

single-core/thread execution). Parallelization is built-in for the KiSSim approach to speed

up the calculation.
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Taking all these findings together, the KiSSim methodology compares well with estab-

lished methods while often improving predictions between kinase pairs without an obvious

relationship based on the sequence. The pocket sequence and IFP based methods are much

faster than the structure-based methods KiSSim and SiteAlign, however, the overall kinase

similarity assessment benefits from the added structural pocket information. KiSSim’s setup

and runtime are more convenient than for the SiteAlign method, however, KiSSim does rely

on the KLIFS 85-residue pocket alignment.

Conclusion

We presented here the KiSSim (Kinase Structural Similarity) fingerprint as a novel

structure-enabled pocket encoding tailored to kinase pockets. The fingerprint encodes physic-

ochemical and spatial properties of the 85 KLIFS residues, which are aligned across the

structurally covered kinome. On the one hand, the majority of physicochemical bits — size,

HBD, HBA, charge, aromatic, and aliphatic, which are adapted from the SiteAlign method

— encode the pocket sequence in a generalized, pharmacophoric way. On the other hand, the

side chain orientation, solvent exposure, and the spatial bits — the distances to the pocket

center and key subpocket centers and the distance distributions’ moments — account for the

structural conformation. Across all fingerprints, we saw that the fingerprint captures the

physicochemical property variability (e.g., most residues are uncharged, whereas HBD/HBA

features vary) and the conserved residue positions (e.g., distances to DFG region are more

widely spread than to the hinge region).

We used the fingerprint to calculate all-against-all distances — small distances refer to

high similarity, large distances to low similarity – within the structurally covered kinome:

the DFG-in and DFG-out dataset consist of 4112 and 406 structures, representing 257 and

71 kinases, respectively. We found that the fingerprint can distinguish between intra- and

inter-kinase similarities and between DFG-in and DFG-out structures.
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Some kinases are represented by multiple structures, hence some kinase pairs are repre-

sented by multiple structure pairs. The distribution of structure distances for one kinase pair

can be broad; we selected per kinase pair the closest structure pair that is experimentally

observed. We clustered the resulting kinase distance matrix to produce a KiSSim-based ki-

nome tree. While the tree reproduced large parts of the sequence-based Manning tree, some

relationships could be observed that are unexpected from a sequence perspective only. For

example, we found similarities between CaMKK2 (STE) and DRAK2 (CAMK), which are

targeted by the same chemical probe SGC-STK17B-1;9 we also could confirm the reassign-

ment of AurA, AurC, PLK4, and CaMMK2 from the Other to the CAMK group as proposed

by Modi and Dunbrack 7 .

Besides the averaged tree view, we also investigated the top-ranked kinases given a query

kinase to show that KiSSim can partially explain profiling data. While some ligand profiles

are reflected completely in the KiSSim dataset (e.g., Imatinib), other ligand profiles are

covered partially (e.g., Erlotinib’s off-targets LOK and SLK are detected while GAK is not).

In comparison with other similarity measures — focusing on the pocket sequence (KLIFS

seq), interaction profiles (KLIFS IFP), or topological- and chemical pocket properties (SiteAlign)

— KiSSim performs equally or slightly better in most cases. The sequence- and IFP-based

measures are easy and fast to compute thanks to the preprocessed kinase pockets available

at KLIFS; we recommend to include these datasets in any case when investigating kinase

similarities. SiteAlign is a powerful tool to compare pockets across all protein classes; if

interested only in kinases, KiSSim is a kinase-focused and faster alternative with slightly

better results in most of the investigated cases.

As for all structure-based methods, the imbalanced dataset of kinase structures is a

challenge. Some kinases are structurally well represented (e.g., EGFR or CDK2), while others

have only few structures available. And unfortunately still roughly half of the humane kinome

has no structural information available at all. The recent breakthrough of AlphaFold275

could help here; predicted structures for almost all human kinases are available now on the

34



AlphaFold DB.76 Modi and Dunbrack 77 have already classified the structures’ conformations

and found most structures in the DFG-in conformation. An AlphaFold-enhanced KiSSim tree

may further increase the usefulness of the KiSSim methodology for kinome-wide similarity

studies. Furthermore, the KiSSim fingerprint can be applied in machine learning, e.g. to

extract the most important features in the kinase pocket.

We believe that the KiSSim fingerprint is a valuable tool for kinase research to explain

and predict off-targets and polypharmacology. Since the code is open sourced and available

as Python package, the KiSSim fingerprint can easily be integrated in other larger-scale

workflows.

Code and data availability

• KiSSim library (kissim): https://github.com/volkamerlab/kissim and https://

kissim.readthedocs.io

• KiSSim datasets: https://doi.org/10.5281/zenodo.5774521

• KiSSim application and analyses (kissim app): https://github.com/volkamerlab/

kissim_app
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List of abbreviations

• KiSSim: Kinase Structural Similarity

• ATP: Adenosine triphosphate

• IFP: Interaction fingerprint

• DFG: Asparagine-phenylalanine-glycine

• MSA: Multiple sequence alignment

• SCO: Side chain orientation

• HBD: Hydrogen bond donors (here: number of HBD)

• HBA: Hydrogen bond acceptors (here: number of HBA)

• ROC: Receiver operating characteristic

• AUC: Area under the curve
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