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Abstract 

 

The motivation of this study was the investigation into the metallothermic reduction of chromite 

ores. Spinel materials have complex structures and as a result, balancing of the reduction reactions by 

traditional methods become very time consuming. A method to calculate the stoichiometric coefficients 

for chemical reactions using first a modified matrix-inverse method and then a new optimised method 

is proposed. The mathematical basis of both methods is explored using matrix algebra and then 

demonstrated using a typical chromite reduction reaction.   

 

Introduction 

 

One of the first concepts that students of chemistry learn is that of conservation of mass. Physical 

changes that demonstrate that mass is conserved during phase change are typically demonstrated, after 

which chemical reactions are introduced.  In a chemical reaction the mass and elements are still 

conserved but the initial substances, reactants, will be transformed into new substances, products. In  

pioneering work done during the late 1700’s, Antoine Lavoisier showed conclusively that the law of 

conservation of mass also applies to chemical reactions with the publication of his Traité élémentaire 

de chimie "In all the operations of art and nature, nothing is created; an equal quantity of matter exists 

both before and after the experiment; the quality and quantity of the elements remain precisely the 

same." (Lavoisier, 1789).  

It was then understood that since the quantities of each element cannot change, even though they 

would form part of different substances, the amounts of reactants and products must be scaled by integer 

coefficients for the law of conservation of mass to hold (IUPAC, 1997). This insight led to the 

development of stoichiometry which studies the relationship between the amounts of reactants 

consumed and products produced in chemical reactions (Brown et al, 2015). As demonstration, consider 

the hypothetical single displacement reaction below: 

 

1 2 3 4      a b c d e fx A B x C x A C x B+ → +   

 

The stoichiometric coefficients 
1 2 3 4, ,  and x x x x   must be some integers such that the number of 

atoms of elements A, B and C are the same on both sides of the arrow. The dominant method taught at 

high school and even university level to find the values of the coefficients is solving by inspection (Toth, 

1997). This casual approach works well with simple chemical equations such as the one shown above. 

But for even slightly more complex reactions involving larger quantities of reactants and products, this 

inspection method becomes slow and unreliable. 

Most students of chemistry would also be familiar with linear algebra and its techniques. To 

demonstrate some of the applications of linear algebra, systems of linear equations are introduced and 

then applied to chemical equations. This algebraic method of using a matrix of coefficients results in a 

much more systematic approach to balancing chemical equations and with the advent of modern 

scientific calculators that can store and manipulate matrices, has become the standard. However, this 

system of equations method becomes cumbersome to work with for large reaction equations with many 

substances and elements. Therefore, it is the goal is to develop a general method that can be applied to 

all chemical equations with ease. 
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Discussion 

 

This project came about during the study of metallothermic reduction of metal oxide ores. These 

ores typically consist of complicated mineral structures which, when undergoing reduction, become 

very burdensome to balance by hand. Consider the following chromite molecule and its subsequent 

reduction with aluminium: 

 

( )( )1 0.44 0.55 1.36 0.55 0.08 4 2 3 4 5 6 2 32
          x Mg Fe Cr Al Fe O x Al x Mg x Fe x Cr x Al O+ → + + +   

 

It is readily apparent that solving the following by inspection would be a very time-consuming task. 

However, below we outline a new augmented matrix method to calculate the coefficients using a simple 

spreadsheet application with ease. 

 

Methodology 

 

The steps that can be followed to solve the stoichiometric coefficients are outlined below: 

1) Construct a composition array for the reaction 

2) From this array extract the coefficient matrix ijK  

3) Construct the augmented matrix 
nmA  according to the following rules: 

• If n i and m j  then nm ija c=   

• If n i and m j  then insert the reversal matrix ajJ    

• If n i and m j  then insert the null matrix 0ad
   

• If n i= and m j  then insert the matrix  1 1 0 0dH    

• If 1n i −  and m j  then insert reversal matrix ( )1i d
J

−
 with first column of zeros 

• Where ( ) ( ), ,k Max i j Min i j= − then 2a i k= + +  and 2d j k= + +  

4) Extract the final coefficient matrix xyB  such that x y=  according to the rules: 

• If i j  then x i k= +  and y j=  or, 

• If i j  then 1x i= +  and 1y j k= + +  or, 

• If i j=  then 1x i= +  and 1y j= +  

5) Determine the inverse matrix 
1

xyB −
 as well as the determinant ( )det xyB   

6) Transpose the last column of 
1

xyB −
 into a new matrix 

1nD  

7) Multiply 
1nD  by the absolute value of the determinant e.g. ( ) 1 1det xy n nB D E =  

8) Divide each element of 
1nE  the greatest common divisor e.g. ( )1 11 1 1/ gcd , ,n n nE e e F=  

9) The resulting matrix 
1nF now contains the stoichiometric coefficients from left to right. 

 

The above method may seem needlessly complex, but the repeatability will become readily apparent. 

In the final section of the paper an optimised method for determining the stoichiometric coefficients is 

revealed. First, we will demonstrate the above methodology using a simple double displacement 

reaction: 
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The reaction of iron(III) oxide with sulfuric acid 

 

This reaction can be represented with coefficients as follows: 

 

( )1 2 3 2 2 4 3 2 4 4 23
      x Fe O x H SO x Fe SO x H O+ → +   

 

Step 1: 

Construct a composition array for the reaction: 

 

( )2 3 2 4 2 4 23

2 0 2 0

3 4 12 1

0 2 0 2

0 1 3 0

Fe O H SO Fe SO H O

Fe

O

H

S

−

− −

−

−

 

 

Note that the coefficients for the products are all assigned the negative value. This is a direct 

consequence of the law of conservation of mass since the quantity of any element needs to add to zero 

on both sides of the chemical equation. This is usually the method employed when using a system of 

linear equations to determine the coefficients (Gabriel et. al, 2015). 

 

Step 2: 

From this array we then extract the matrix K : 

 

 

2 0 2 0

3 4 12 1

0 2 0 2

0 1 3 0

K

− 
 

− −
 =
 −
 

− 

  

 

Step 3: 

Construct the augmented matrix A: 

 

4

6

i j

a d

= =

 = =
  

 

2 0 2 0 0 0

3 4 12 1 0 1

0 2 0 2 0 0

0 1 3 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

A

− 
 

− −
 
 −

=  
− 

 
 
  

 

 

 

Step 4: 

Extract the coefficient matrix B: 
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4

5

i j

x y

= =

 = =
 

2 0 2 0 0

3 4 12 1 0

0 2 0 2 0

0 1 3 0 1

0 0 0 1 0

B

− 
 

−
 
 = −
 

− 
  

 

Step 5: 

Determine the inverse matrix 
1B−
 as well as the determinant: 

1

2 1 2 1
0

3 9 9 3

1
0 0 0 1

2

1 1 2 1
0

6 9 9 3

0 0 0 0 1

1 1 1
1 0

2 3 6

B−

 
− 

 
 
 
 
 = −
 
 
 
 
 

− 
 

 and ( )det 36B = −  

 

Step 6: 

Transpose the last column of 
1B−
 into a new matrix D: 

1 1
1 1 0

3 3
D

 
=  
 

 

 

Step 7: 

 

Multiply D by the absolute value of the determinant: 

 36 12 36 12 36 0D E−  = =  

 

Step 8: 

 

Divide each element of E the greatest common divisor: 

( )11 15gcd , , 12e e =     1 3 1 3 0F =   

 

And therefore, 1w y= =   and 1x z= =  resulting in the balanced chemical equation: 

( )2 3 2 4 2 4 23
  3     3Fe O H SO Fe SO H O+ → +  
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Mathematical Background 

  

To fully understand why the method above yield the stoichiometric coefficients we can explore the 

mathematics behind the method in greater detail. Consider the following hypothetical double 

displacement reaction: 

1 2 3 4a b c d o p q rx A B x C D x A D x C B+ → +   

Setting up the composition array at the coefficient matrix: 

B

0 0

0 0

0 0

0 0

a b c d o p q rA C D A D C B

A a o

B b q

C c r

D d p

−

−

−

−

 and then 

0 0

0 0

0 0

0 0

a o

b q
K

c r

d p

− 
 

−
 =
 −
 

− 

 

 

Supposing that the steps to augment the matrix are not followed and the matrix-inverse method is 

directly applied. The inverse of K can then be found by multiplying the transposed cofactor matrix CT 

with the inverse of the determinant of K: 

( ) ( )
( )

11 1
det

det

1

T

T

K K adj K C
K

C
acpq bdor

−− = =

=
−

 

 

The problem encountered with chemical reactions that yield square coefficient matrices is that the 

determinant is always zero i.e. ( )det 0K = and therefore ( )
1

det = undefinedK
−

such that matrix K is 

degenerate and not invertible. This can easily be shown by using the composition matrix and the 

traditional method for solving the stoichiometric coefficients by using a system of equations: 

 

 

1

2

3

4

0 0 0

0 0 0
      Kx 0        

0 0 0

0 0 0

xa o

xb q

xc r

xd p

−     
    

−
    = → =
    −
    

−    

 

 

It is immediately apparent that if Kx=0 then column vector x must be equal to zero. Furthermore, it 

can be conclusively demonstrated that ( )det 0K =   by setting up the system of linear equations from 

the above and solving them simultaneously: 

 

( )

( )

( )

( )

1 3

1 4

2 4

2 3

0        1

0        2

0        3

0        4

ax ox

bx qx

cx rx

dx px

− =

− =

− =

− =
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1 42 2 2 4

11 4
42 2

4 1 1 1

  and    and  

so that becomes

bx qxdx px cx rx

bxpax rx
xdx x

qo c

rx pax bx paxdr
d

c o c q o

== =

== =

  
= =  

   

 

and then 

0

drb pa

cq o

drbo pacq

acpq bdor

=

=

− =

 

 

Revealing that determinant of the square coefficient matrix is indeed zero. If the equation is viewed 

carefully and keeping in mind that the column vector x is zero, we can see why this occurs. These 

reaction equations can be balanced in an infinite number of ways and therefore do not have a single 

unique solution, for example: 

 

( )2 3 2 4 2 4 23
  3     3

2              6                  2                       6

3              9                  3                        9

                                               

Fe O H SO Fe SO H O+ → +

          

 

 

The algebraic method is still a step up from solving by inspection and the coefficients can be solved 

by hand or using a suitable software package, such as Matlab, (Gabriel et. al, 2015) by finding the row 

echelon form of the augmented matrix K and solving the subsequent system of equations. However, as 

the complexity of reaction equations increases so does the effort required to solve by row echelon form. 

It is therefore apparent that a better method is needed to approach these problems by making use of 

the tools available to modern scientific calculators which almost every chemistry student will be 

equipped with. The steps outlined in the first section allows us to construct an invertible matrix such 

that ( )det 0B  . Let us now repeat the first hypothetical reaction with this method: 

 

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0 1 0

a o

b q

B c r

d p

− 
 

−
 
 = −
 

− 
  

 and 1

1
0 0 0

1
0 0 0

1
0 0

0 0 0 0 1

1

q

b b

r

c c

a aq
B

o bo bo

p ap d acpq bdor

o bo c bco

−

 
 
 
 
 
 
 = −
 
 
 
 
 −
− − 
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Now we have that ( )det B bco= and then computing matrix D and E: 

 

 0

bco D E coq bor acq bco acpq bdor

E coq bor acq bco

 = = −

=
 

 

Depending on the values of  e11 – e14 we potentially have to divide by ( )11 14gcd , ,e e  if necessary, 

so that the lowest stoichiometric coefficients are obtained. The validity of this result can be 

demonstrated by using another system of linear equations: 

1

0 0 0 0

0 0 0 0

Kx 0      0 0 0 0

0 0 1 0

0 0 0 1 0

wa o

xb q

yc r

zd p

k z

−     
    

−
    
    = →  =−
    

−     
        

  

 

Yielding a slightly modified version of the set of equations found in the first instance: 

 

( )

( )

( )

( )

( )

4 3

1 4

2 4

2 3 1

4 4

0        1

0        2

0        3

0        4

      5

ax ox

bx qx

cx rx

dx px k

x x

− =

− =

− =

− + =

=

 

 

It can now be seen that the reason for the augmentation with reversal matrices specifically, as per 

step 3 of the methodology, is that the coefficients 
1 2, ik k k  will be equal to zero and several trivial 

equations such as 
4 4x x=  will be formed. This way the augmentation does not change the meaning of 

the original equation itself and therefore is mathematically sound. Solving the system of equations: 

 

( )

( )

1 3 2

1 4

4

1 4

k px dx

ax rx
p d

o c

x acpq bdor

obc

obc k x acpq bdor

= −

   
= −   

   

−
=

 = −
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However, we have that 
1 2 3 4, , , 0ix x x x k =  and from the earlier example ( )det 0K acpq bdor= − =

and therefore we can conclude that: 

( ) ( )

( ) ( )

1 4

1 4 0

obc k x acpq bdor

obc k x

 = −

 =
 

 

From which it follows that 4x obc= leading to: 

4 4 1
1 2 3

  and    and  

qx rx ax
x x x

b c o

q obc r obc a coq

b c o

coq rob acq

= = =

  
= = =

= = =

 

 

Therefore 
1 2 3 4 1  ;     ;     ;     ;   x coq x bow x acq x bco k acpq bdor= = = = = −  as expected.  

 

We will explore the general case and show why this method should work for all chemical equations. 

Focusing on the matrix of minors: 

 

11 12 1

21 22 2

1 2

m

m

n n nm

M M M

M M M
M

M M M

 
 
 =
 
 
 

 

 

Where Mij denotes at row i and column j. Since the first row of a composition matrix for any chemical 

reaction cannot be all zeros, in fact it must contain at least two non-zero elements, the minors of the ith 

row will never be equal to zero. Furthermore, any appended kth columns will necessarily lead to the 

minors of the ith row containing only elements from the original composition array. These two 

propositions can be demonstrated by using simple Laplace expansion: 

 

11 12 13

21 22 23

31 32 33

0

0

1

0 0 1 0

a a a

a a a
B

a a a

 
 
 =
 
 
 

  then 

22 23

11 32 33 22

0

1

0 1 0

a a

M a a a= = −  

 

and so forth for all minors until the matrix of  minors is found: 
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( )

22 21 21 32 22 31

12 11 11 32 12 31

11 22 12 21

12 23 13 22 11 23 13 21 11 22 12 21

0

0

0 0 0

det

a a a a a a

a a a a a a
M

a a a a

a a a a a a a a a a a a A

 − − − 
 

− − − =
 −
 

− − −  

 

 

This assumed a square composition matrix as starting point, but the above method holds for the other 

2 types of matrices as per step 3 of the methodology as well. Additional examples as well as possible 

real-life applications are shown in Appendix A. Re-examining the previous equation and matrix K, the 

minor of K becomes: 

0 0 0

0 0

0 0 0

0 0 0 0

bd bdp

co ac acp

M bo bdo

bco

coq bor acq bco acpq bdor

− − 
 
− − −
 
 = − −
 

− 
 − − − 

 

 

Notice that the last row of minors yields the stoichiometric coefficients and indeed only contain 

elements from the composition array. This is a result of step 5 – 7 in the methodology, where we 

multiplied the previous result with the ( )det B :  

( )

( )

1

1

1

det

det

T

T

B C
B

B B C

−

−

=

 =

 

 

Since CT is found by the minors ( )1
i j

ij ijC M
+

= −   a more efficient modified method is now revealed. 

Follow steps 1 – 4 as before but then instead of determining the inverse of the matrix B, calculate and 

use the absolute values of the minors of the yth row of B only: 

( )

 

det

0

E coq bor acq bco K

coq bor acq bco

=   

=
 

 

And then dividing each element by the greatest common divisor. This new method yields the same 

stoichiometric coefficients in far fewer steps and since the tools available to chemistry students enable 

them to calculate determinants with relative ease, find the minors in last row becomes a relatively trivial 

task. 
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Reduction of Chromite with Aluminium 

 

Let us return our attention now to the original problem presented by the reduction reaction of 

chromite.  

( )( )1 0.44 0.55 1.36 0.55 0.08 4 2 3 4 5 6 2 32
          x Mg Fe Cr Al Fe O x Al x Mg x Fe x Cr x Al O+ → + + +  

 

We will now solve the stoichiometric coefficients using the cofactors only and using the matrix-

inverse method below: 

 

( )

( )
0.44 0.55

2 3

1.36 0.55 0.08 42

44 0 1 0 0 0

63 0 0 1 0 0

136 0 0 0 1 0

55 1 0 0 0 2

397 0 0 0 0 3

Mg Fe
Al Mg Fe Cr Al O

Cr Al Fe O

Mg

Fe

Cr

Al

O

−

−

−

−

−

 

 

 

From this array we then extract the matrix K : 

 

44 0 1 0 0 0

63 0 0 1 0 0

136 0 0 0 1 0

55 1 0 0 0 2

397 0 0 0 0 3

K

− 
 

−
 
 = −
 

− 
 − 

  

 

Construct the augmented matrix A according to the rules and extract the coefficient matrix B: 

 

44 0 1 0 0 0

63 0 0 1 0 0

136 0 0 0 1 0

55 1 0 0 0 2

397 0 0 0 0 3

0 0 0 0 0 1

B

− 
 

−
 
 −

=  
− 

 −
 
  

 

 

Determine the absolute minors M61 – M66 : 

 

 3 629 132 189 408 397E =   

 

Since ( )11 15gcd , , 1e e =  we have the balanced equation: 

 

( )( )0.44 0.55 1.36 0.55 0.08 4 2 32
3 629 132 189 408 397Mg Fe Cr Al Fe O Al Mg Fe Cr Al O+ → + + +  
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Using the full augmented matrix-inversion method as described earlier. Determine the inverse matrix 
1B−
 as well as the determinant ( )det B : 

 

1

1 3
0 0 0 0

397 397

55 629
0 0 0 1

397 397

44 132
1 0 0 0

397 397

63 189
0 1 0 0

397 397

136 408
0 0 1 0

397 397

0 0 0 0 0 1

B−

 
 
 
 −
 
 
 −

=  
 
 −
 
 

− 
 
  

 and ( )det 397B =  

 

Transpose the last column of 
1B−
 into a new matrix D: 

 

3 629 132 189 408
1

397 397 397 397 397
D

 
=  
 

 

 

Multiply D by the absolute value of the determinant: 

 

 397 3 629 132 189 408 397D E = =  

 

Since ( )11 15gcd , , 1e e =  we again get the balanced equation: 

 

( )( )0.44 0.55 1.36 0.55 0.08 4 2 32
3 629 132 189 408 397Mg Fe Cr Al Fe O Al Mg Fe Cr Al O+ → + + +  

 

Given the large values of the stoichiometric coefficients it would have taken a considerable amount 

of time to solve the reaction equation by inspection but using the new cofactor method the results was 

determined with ease. 

 

Conclusion 

 

Based on the need to quickly determine the stoichiometric coefficients of reaction equations, the 

proven, but slow, method of using a system of linear equations was expanded upon. The resulting 

procedure of setting up an augmented matrix and then determining minors results in an efficient and 

convenient method that can handle even large reaction equations with ease. 

 



 

12 

 

 

Acknowledgements 

 

I would like to thank Ryan Ball of CAMICO SA for generously supplying samples of chromite from 

their Johannesburg stockpile at no cost as well as providing valuable and experienced insight into the 

workings of the chromium industry in South Africa. 

 

References 

 

Lavoisier, A. Traité élémentaire de chimie. Paris, France: Cuchet, 1789. 

 

IUPAC. Compendium of Chemical Terminology, 2nd ed.. Compiled by A. D. McNaught and A. 

Wilkinson. Blackwell Scientific Publications, Oxford, 1997. 

 

Brown, T. LeMay H. Bursten, B. Murphy, C. Woodward, P. Stoltzfus, M. Chemistry: The Central 

Science, 13th Ed. Pearson, 2015 

 

Toth, Z. Balancing chemical equations by inspection. Journal Chemical Education, 74 (11), 1363. 

1997. 

 

Gabriel, C. Onwuka, G. Balancing of Chemical Equations Using Matrix Algebra. Journal of Natural 

Sciences Research. 2015 

 

Schwab, B. Working with electron microprobe data from a high pressure experiment – Calculating 

mineral formulas, unit cell content and geothermomerty.  Humboldt State University, 2019. 

  



 

13 

 

Appendix A 

Mineral Structure of Chromite 

 

For the example above a sample of South African chromite concentrate was analysed at a SANAS 

accredited laboratory and found to have a  composition of metal oxides by weight percent as seen in 

column two of table 1. The method as described by (Schwab, 2019) was then used to calculate the 

mineral structure. 

 

 Oxides 

Present 
% w/w 

Cations 

in Oxide 

Anions 

in Oxide 

Molar 

Mass 

Mol 

Proportion 

Oxygen 

Proportion 

Number 

of 

Anions 

Number 

of 

Cations 

Al2O3 13.94 2 3 101.961 0.137 0.410 0.831 0.554 

Fe2O3 3.00 2 3 159.687 0.019 0.056 0.114 0.076 

Cr2O3 51.10 2 3 151.990 0.336 1.009 2.044 1.363 

FeO 19.57 1 1 71.846 0.272 0.272 0.552 0.552 

CaO 0.40 1 1 56.077 0.007 0.007 0.014 0.014 

MgO 8.84 1 1 40.311 0.219 0.219 0.444 0.444 

 ∑ 96.85      ∑ 1.974 4.000  

 
        

    Oxygen Atoms in Structure 4  

       2.026  
 

 

Chromite is found as a spinel conforming to the general formula of AB2O4, where A2+ and B3+ denote 

the cations that occupy the tetrahedral and octahedral sites respectively (Weller, 2014). Typical 

chromite has the formula FeCr2O4  but the Fe2+ and Cr3+ cations are frequently replaced by other ions 

such as Mg2+ and Al3+ which can be clearly seen from the percentage compositions above. From the 

data it was calculated that the approximate structure of this specific sample of concentrate is

( )( )0.44 0.55 1.36 0.55 0.08 42
Mg Fe Cr Al Fe O . A molecular formula was found: 

 

( )( )0.44 0.55 1.36 0.55 0.08 42

0.44 0.44 0.55 0.55 1.36 2.04 0.55 0.83 0.08 0.11

44 44 55 55 136 204 55 83 8 11

44 63 136 55 397

Mg Fe Cr Al Fe O

Mg O Fe O Cr O Al O Fe O

Mg O Fe O Cr O Al O Fe O

Mg Fe Cr Al O



=    

=    

=

 

 

This formula can now be used in the reduction reaction.  
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Additional examples of matrices of minors 

 

Assuming different starting matrices A and the corresponding augmented matrices B: 

 

2x2 square matrix: 

11 12 21

21 22 11

12 11 11 22 12 21

0 1 0

1       0 0  

0 1 0

a a a

B a a M a

a a a a a a

−   
   

= → =
   
   −   

 

 

Applications: Simple synthesis reactions: a b o pA B A B+ →  e.g. 
2 2 22 2H O H O+ → . 

 

2x3 non-square matrix: 

11 12 13 23 21

21 22 23 13 11

12 23 13 22 11 23 13 21 11 22 12 21

0

      0  

0 1 0

a a a a a

B a a a M a a

a a a a a a a a a a a a

−   
   

= → = −
   
   − − −   

 

 

Applications: Addition reactions a b c o p qA B C A B C+ →   e.g. 
2 4 2 2 4 2C H Br C H Br+ →  

 

 

3x4 non-square matrix: 

 

11 12 13 14

21 22 23 24

31 32 33 34

0 0 0 1

                      

a a a a

a a a a
B

a a a a

 
 
 =
 
 
 



 

( )

( )

( )

( )

22 33 23 32 21 33 23 31 21 32 22 31

12 33 13 32 11 33 13 31 11 32 12 31

12 23 13 22 11 23 13 21 11 22 12 21

12 23 34 24 33 11 23 34 24 33

13 22 34 24 32 13 21 34

14 21 33 23 31

0

0

0

a a a a a a a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a a a
M

a a a a a a a a a a

a a a a a a a a a

a a a a a

− − −

− − −

− − −
=

− − − −

− + −

−

( )

( )

( )

( )

( )

( )

( )

( )

11 22 34 24 32 11 23 33 23 32

24 31 12 21 34 24 31 12 21 33 23 31

14 21 33 23 31 14 21 32 22 31 13 21 32 22 31

 
a a a a a a a a a a

a a a a a a a a a a a

a a a a a a a a a a a a a a a

 
 
 
 
 

− − − − 
 

+ − + − +
 
 − − − 

 

 

Applications: Reduction of metal oxides a b c o pM O R M R C+ → +   e.g. 
2 3 3 2 3Fe O C Fe CO+ → +  

 

At this point we will switch over to using real and hypothetical reaction equations with numerical 

coefficients since the size of the matrices using only variable like the ones above, quickly span multiple 

pages. However, note that the last row of the minor of B still only contains elements from the original 

matrix A. 
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Hypothetical reaction: 

 

( )2 3 1 2 12 12 10 2 4 92
wA B C xDE F yA B C DE F zA B+ → +   

 

 

2 0 12 4 0 0 0

3 0 12 9 0 0 0

1 0 10 0 0 0 1

      120 24 12 24 0 0 00 1 2 0 0 1 0

0 2 4 0 0 0 0

0 1 2 0 1 0 0

0 0 0 1 0 0 0

B E

− − 
 

− −
 
 −
 

= → =− 
 −
 

− 
 
 

 

 

Therefore ,we have ( )2 3 1 2 12 12 10 2 4 92
10 2 2A B C DE F A B C DE F A B+ → +  

 

Combustion of octane: 

 

8 18 2 2 2wC H xO yCO zH O+ → +  

 

 

8 0 1 0

18 0 0 2
      4 50 32 36

0 2 2 1

0 0 0 1

B E

− 
 

−
 = → =
 − −
 
 

  

 

Therefore ,we have 
8 18 2 2 22 25 16 18C H O CO H O+ → +  

 

Redox reaction involving potassium ferrocyanide: 

 

( ) ( )1 2 3 4 5 6 74 4 2 4 4 2 4 4 28 93 26 3
K Fe CN KMnO H SO KHSO e SO MnSO HNO CO H Ox x x x x F x x x x+ + → + + + + +  

 

 

4 1 0 1 0 0 0 0 0

1 0 0 0 2 0 0 0 0

6 0 0 0 0 0 0 1 0

6 0 0 0 0 0 1 0 0

    10 122 299 162 5 122 60 60 1880 1 0 0 0 1 0 0 0

0 4 4 4 12 4 3 2 1

0 0 2 1 0 0 1 0 2

0 0 1 1 1 3 1 0 0 0

0 0 0 0 0 0 0 0 1

B E

− 
 

−
 
 −
 

− 
 = → =−
 

− − − − − − 
 − − −
 

− − − 
 
 

 

 

( )

( )

4 4 2 46

4 2 4 4 3 2 23

10 122 299

162 5 122 60 60 188F M O

K Fe CN KMnO H SO

KHSO e SO nSO HNO CO H

+ +



+ + + + +

 


