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Abstract
Computational pipelines have become a crucial part of modern drug discovery campaigns. Setting up and
maintaining such pipelines, however, can be challenging and time-consuming— especially for novice scien-
tists in this domain. TeachOpenCADD is a platform that aims to teach domain-specific skills and to provide
pipeline templates as starting points for research projects. We offer Python-based solutions for common
tasks in cheminformatics and structural bioinformatics in the form of Jupyter notebooks and based on
open source resources only. Including the 12 newly released additions, TeachOpenCADD now contains 22
notebooks that each cover both theoretical background as well as hands-on programming. To promote
reproducible and reusable research, we apply software best practices to our notebooks such as testing
with an automated continuous integration and adhering to a more idiomatic Python style. The new Tea-
chOpenCADD website is available at https://projects.volkamerlab.org/teachopencadd and all code is deposited
on GitHub.
Introduction
Computational methods play an integral role in the design-make-test-analyze (DMTA) cycle that drives real-
world drug design projects [1]. To address questions raised during this cycle, a single method does not
suffice to deliver an answer; instead, a pipeline combining different methods can produce complementary
and useful insights. Setting up such complex pipelines, however, can be difficult and time-consuming for
many reasons: the scientist may not have had the training necessary to tackle these tasks [2], tools and their
usage are constantly evolving (or deprecating), and feeding the output from one tool into another is often
not straightforward. On top of these considerations, sustainable pipelines need to be findable, accessible,
interoperable, and reusable (FAIR principles [3]) — not only today but in many years from now — to drive
reproducible research.

In 2019, we launched the teaching platform TeachOpenCADD [4] onGitHub to help face these challenges
(https://github.com/volkamerlab/teachopencadd). TeachOpenCADD teaches by example how to build pipelines
with open source resources used in the fields of cheminformatics and structural bioinformatics to answer
central questions in computer-aided drug design (CADD). The code is written in Python, a popular program-
ming language in many fields including computational life sciences. With these ready-to-use pipelines, we
target students and teachers who need trainingmaterial to CADD-related topics, as well as researchers who
need a template or an inspiration to tackle their research questions. Usage can range from applying the
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whole pipeline on another molecular system to extracting selected pieces from the pipeline to be included
in another context. The theoretical and practical aspects of each topic are covered in an interactive Jupyter
notebook [5]. This setup makes it easy for users from different fields to understand the computational con-
cepts and to get started with hands-on Python programming. We call these Jupyter notebooks talktorials
(talk + tutorial) because their format is suited for presentations as well.

The initial stack of talktorials T001–T010 covers common CADD tasks involving webserver queries, chem-
informatics, and structural bioinformatics [4]. We show how to fetch chemical and structural data from the
ChEMBL [6] and PDB [7, 8] online databases and how to encode, filter, cluster, and screen such datasets
to find novel drug candidates and off-targets [4] (Figure 1, T001–T010). The TeachOpenCADD platform en-
joys wide usage in the community, as exemplified by frequently posted GitHub issues, about 13, 000 article
views [9], over 250 GitHub repository stars and about 90 repository forks (as of 2021-10-14) [10] as well
as teaching feedback [11]. The cheminformatics-focused talktorials are inspired by a variety of online re-
sources, which we recommend for further reading; e.g. the virtual screening tutorials in context of the
Teach-Discover-Treat initiative [12], and several blogs such as Practical Cheminformatics [13], the RDKit blog
[14], Is life worth living? [15], and Cheminformania [16]. Another prominent example for a cheminformatics
code collection is the Chemistry Development Kit (CDK) [17].

Over the last two years, the TeachOpenCADDGitHub repository underwentmany additions and changes:
we now have more than doubled our content and extended the application of software best practices rig-
orously. Twelve new Python talktorials in addition to the previous ten are available (Figure 1). The talk-
torials cover data retrieval via webserver queries from major structural, chemical and pharmacological
databases including the PDB [7, 8], ChEMBL [6], PubChem [18], and KLIFS [19] databases. Important struc-
tural modeling tasks include protein pocket detection and comparison, protein-ligand docking and interac-
tion analysis, as well asmolecular dynamics simulations using tools such as ProteinsPlus [20, 21], Smina [22],
PLIP [23], and OpenMM [24]. Throughout all talktorials, the 3D information is interactively visualized with
NGLView [25, 26]. Finally, besides the previous examples for cheminformatics tasks such as molecular fil-
tering, clustering, and similarity search using RDKit functionalities [27], we introduce deep learning (DL) for
activity prediction and show how to train a model using the deep learning library Keras [28].

The full collection of talktorials is easily accessible on the new TeachOpenCADD website (https://projects.
volkamerlab.org/teachopencadd). We comply with software best practices regarding the code style as well as
maintenance and facilitate installation with a dedicated conda package [29]. In the following, we will discuss
each of these additions in more detail.
New talktorials
The new stack of talktorials showcases data acquisition from additional CADD-relevant databases, adds
many examples for structure-based tasks, and extends the cheminformatics side with straightforward DL
applications (see Figure 1, T011–T022). Our example use case is the EGFR kinase [30] but the talktorials
are easily adaptable to other targets as long as sufficient data is available. Besides the domain-specific
resources described below, we rely in all talktorials on established Python packages for data science and
data visualization such as NumPy [31], pandas [32], scikit-learn [33], matplotlib [34], and seaborn [35].
Webservices queries
Over the last decades, the scientific community has produced an incredible amount of data and analysis
software, and adapted modern technologies to make these resources easily available via online webser-
vices [36]. However, it might not always be obvious to the beginner how to use a web application program-
ming interface (API) to access such data and how to integrate them into larger pipelines. TeachOpenCADD
dedicates several talktorials to the usage of different webservers relevant for the life sciences.

In the first TeachOpenCADD release from 2019, we already showed how to query the ChEMBL [6] and
PDB [7, 8] databases. From the ChEMBL webservice, compounds and bioactivities are fetched for the EGFR
kinase using the ChEMBL webresource client [37] (T001). This dataset is used in many downstream talkto-
rials for common cheminformatics tasks using primarily RDKit [27]. From the PDB webservice, we fetch a
set of EGFR kinase structures based on criteria such as "ligand-bound structures from X-ray experiments
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Figure 1. Overview of all TeachOpenCADD topics from the 2019 and 2021 releases covering webserver queries (blue) andtasks from both cheminformatics (green) and structural bioinformatics (orange). New talktorials from the 2021 releaseare highlighted in yellow.

with a resolution below 3.0 Å" using the biotite [38] and PyPDB [39] (T008) packages. The structures in this
dataset are aligned invoking OpenCADD’s superposition module [40] and used to create a shared ligand-
based pharmacophore model (T009). In T010, the PDB is queried to fetch all imatinib-bound structures and
assess their pocket similarities — using the root-mean-square deviation (RMSD) of pocket residues — to
study differences between the on-target ABL1 and its off-targets. In the 2021 release, we now have added
three more notebooks covering the usage of online API webservices (Figure 2).

T011: Querying online API webservices. We give a broad introduction on how to programmatically
use online webservices from Python with a focus on REST services and web scraping. The usage of several
libraries is demonstrated; e.g. we use requests [41] to retrieve content from UniProt [42], bravado [43] to
generate a Python client for any API — exemplified for the KLIFS database and its RESTful API [19, 44] —,
and Beautiful Soup [45] to scrape (parse) HTML content from the web. Next, this newly gained knowledge
is applied to interact with the KLIFS [19] and PubChem [18] databases.

T012: Data acquisition from KLIFS. KLIFS [19] is a kinase database gathering information about exper-
imental kinase structures and interacting inhibitors. The talktorial shows how to quickly fetch data from
KLIFS given a query kinase or ligand. For example, we spot frequent key interactions in EGFR based on
KLIFS interaction fingerprints and we assess kinome-wide bioactivity values for gefitinib. These queries are
demonstrated by using the KLIFS OpenAPI [44] directly with bravado [43], or by using the KLIFS-dedicated
wrapper OpenCADD-KLIFS implemented in the Python package OpenCADD [40].

T013: Data acquisition from PubChem. PubChem [18] is a database holding chemical information for
over 100million compounds. We demonstrate how to fetch data from PubChem’s PUG-REST API [46], given
the name or SMILES [47] of a query ligand. For example, we show how to fetch molecular properties for
a ligand of interest by name (aspirin) and how to query PubChem for the most similar compounds given a
query SMILES (gefitinib).

A summary of the information that can be acquired automatically for a target of interest using these
web services is exemplified in Figure 3 for the EGFR kinase, using talktorials T001, T008, T012, and T013.
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Figure 2. New talktorials on querying webservices. T011 gives a broad introduction on programmatic access to webser-vices from Python, T012 and T013 demonstrate how to query the KLIFS [19] and PubChem [18] databases for kinase andcompound data, respectively.
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Figure 3. Data and information that can be automatically gathered for the EGFR kinase using the different web querytalktorials as of September 2021, created based on ChEMBL v.27 [6] (T001), PDB [8] (T008), PubChem [18] (T013), andKLIFS [19] (T012). Input: yellow box, output: grey boxes, plots, and molecule visualizations (using NGLView [25] andRDKit [27]).

Pocket detection, ligand-protein docking and interactions
During a drug discovery campaign, frequent questions from a medicinal chemist to a cheminformatician
are: What should I test next? Can you suggest a diverse set of small molecules likely to bind to this protein?
Which parts of the lead compound should I start modifying with what kind of functional groups to increase
the binding affinity? Answering these kinds of questions involves multiple scientific observations, and thus,
multiple computational steps. Potentially fruitful steps are individually addressed in talktorials T014–T017.
Finally, in T018, all steps are combined in an automated pipeline that — starting with a protein structure
and a lead or hit compound — proposes several similar ligands with optimized estimated affinities and
interactions based on the docked protein-ligand structures.

T014: Binding site detection. First, we need to know where ligands may bind to a protein of interest.
Sometimes the binding site is known from experimental protein-ligand structures. If only experimental apo
structures are available, putative binding sites can be predicted with computational methods. We demon-
strate how to use the REST API of the ProteinsPlus webserver [20, 21] to detect the main pocket of an EGFR
structure using the DoGSiteScorer [48] pocket detection algorithm. To validate our results, the predicted
pocket is compared with the KLIFS-defined kinase pocket, which encompasses 85 residues in contact with
ligands in over 2000 kinase-ligand structures [49].

T015: Protein-ligand docking. Next, we introduce molecular docking to predict the binding mode of a
ligand to its protein target by explaining several sampling algorithms and scoring functions, as well as com-
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menting on limitations and interpretation of docking result. The theoretical background is then applied
in a re-docking experiment aiming to reproduce the binding mode observed in a published X-ray struc-
ture of EGFR. Protein and ligand are prepared using Pybel [50], the ligand is docked into the protein using
Smina [22], and finally, the docking poses can be visually inspected using NGLView [25]. We refer to Jupy-
terDock [51] for further reading on different docking protocols run from Jupyter notebooks.

T016: Protein-ligand interactions. Understandingwhich forces and interactions drivemolecular recog-
nition is important for drug design [52]. In this talktorial, we give an introduction to relevant protein-ligand
interactions and their programmatic detection using the protein-ligand interaction profiler PLIP [23]. To
this end, all interactions in an EGFR-ligand complex fetched from the PDB are detected and visualized in 3D
using NGLView.

T017: Advanced NGLView usage. Since the molecular visualization package NGLView is invoked in
many talktorials, we give a dedicated overview of its usage and show some advanced cases on how to
customize residue coloring, and how to create interactive interfaceswith IPyWidgets [53]. In addition, access
to the JavaScript layer NGL [26, 54] is exemplified to performoperations that are not exposed in the interface
of the Python wrapper NGLView.

T018: Automated pipeline for lead optimization. All previous talktorials are composed of stand-alone
tasks that can be completed independently. Proposing ligand modifications that will improve interaction
patternswith target proteins in a complete end-to-end process, however, necessitates orchestration of code
and concepts implemented in the previously discussed talktorials T014–T017. A docking pipeline is con-
structed in T018 that is comprised of both a step-by-step demonstration and a fully automated procedure.
Given a query protein and a hit or lead compound, similar ligands fetched from PubChem are suggested
based on generated docking poses, which show optimized affinity estimates and interaction profiles.
Molecular dynamics
Experimentally resolved structures offer immense insights for drug design but can only provide a static
snapshot of the full conformational space that represents the flexible nature of biological systems. Molecu-
lar dynamics (MD) simulations approximate such flexibility in silico with a trajectory of atom positions over
a series of time steps (frames). These trajectories thereby reveal a more detailed — albeit still incomplete
— picture of drug-target recognition and binding by providing access to protein-ligand interaction patterns
over time [55–57]. These insights can for example help in lead discovery to examine the stability and valid-
ity of a predicted ligand docking pose, and in lead optimization phases to estimate the effect of a chemical
modification on binding affinity.

T019: MD simulations. In this talktorial, we explain the key concepts behind MD simulations and pro-
vide the code to run a short MD simulation of EGFR in complex with a ligand on a local machine or on
Google Colab [58, 59], which allows for GPU-accelerated simulations. The protein and ligand are thereby
separately prepared with pdbfixer [60] and RDKit [27], and subsequently combined using MDTraj [61] and
openff-toolkit [62]. The simulation is run with OpenMM [24], a high-performance toolkit for molecular sim-
ulation including language bindings for Python. The talktorial produces a 100 ps trajectory if run on Google
Colab. On a local machine, only 20 fs are generated by default to keep computational efforts reasonable.
However, the simulation time can be increased by the user in case a local GPU is available. We refer to the
work by Arantes et al. [63] for further reading on different MD protocols run with OpenMM using Jupyter
notebooks on Google Colab.

T020: Analyzing MD simulations. We analyze and visualize the results of the trajectory generated
with the previous talktorial using the Python packages MDAnalysis [64, 65] and NGLView. First, the pro-
tein is structurally aligned across all trajectory frames, followed by calculating the root-mean-square devi-
ation (RMSD) for different system components; i.e. protein, backbone, and ligand. Then, we take a closer
look at a selected interaction between ligand and protein atoms, showcasing the contribution of distance
and angle to the hydrogen bond strengths.
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Figure 4. New talktorials on common tasks in structural bioinformatics to assess interaction patterns. T014 detects thebinding site in an EGFR kinase structure and compares the prediction to the binding site defined by KLIFS [19]. T015performs a re-docking for an EGFR-ligand complex with Smina [22]. T016 detects protein-ligand interactions in an EGFR-ligand complex structure with PLIP [23]. T017 introduces basic and advanced usages of the molecular visualization toolNGLView [25], which is used throughout most of TeachOpenCADD’s talktorials. Finally, T018 outlines a fully automatedlead optimization pipeline: Based on an input structure, the pocket is detected and a set of compounds similar to aselected ligand are fetched from PubChem [18]. These compounds are docked into the selected binding site. The mostpromising compounds w.r.t. docking scores and interaction profiles are proposed as optimized compounds.

T020 · Analyzing MD simulationsT019 · MD simulations

Figure 5. New talktorials on common tasks in structural bioinformatics to simulate dynamics. T019 demonstrates howto set up and run a molecular dynamics (MD) simulation on Google Colab [58, 59] with OpenMM [24]. T020 analyzesthe resulting MD trajectory with a focus on the root-mean-square deviation (RMSD) between trajectory frames and thedynamics of protein-ligand interactions using MDAnalysis [64, 65].

Deep learning
Machine learning and more specifically deep learning have gained in popularity over the last few decades
thanks to powerful computational resources such as GPUs, the research in the algorithms, and the growing
amount of data [66]. Applications to CADD are diverse, ranging from molecular property prediction [67] to
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de novo molecular design [68]. Here, the focus is the featurization of molecular entities (T021) and ligand-
based screening (T022).

T021: One-hot encoding. In CADD, machine learning algorithms require as input a numerical represen-
tation of small molecules. Besides molecular fingerprints (see T004), a popular featurization is the SMILES
notation [47]. However, these representations are composed of strings and therefore cannot simply be
input to an algorithm. One-hot encoding provides such a solution and the details are explained in this
talktorial.

T022: Ligand-based screening: neural networks. We introduce the basics of neural networks and
build a simple two-layer neural network. A model is trained on a subset of ChEMBL data to predict the
pIC50 values of compounds against EGFR using MACCS [69] fingerprints as input. This talktorial is meant as
groundwork for the understanding of neural networks. More complex architectures such as convolutional
and recurrent neural networks will be explored in future notebooks. Such models may use the one-hot
encoding of SMILES as input [70].

T022 · Ligand-based screening: Neural networksT021 · One-hot encoding

Dictionary

C:       N:       1: Activity
prediction

SMILES

CC1CNC1

One-hot

Figure 6. New talktorials on molecular encoding and deep learning. T021 exhibits the steps to numerically encode asmall molecule from its SMILES representation. T022 lays the groundwork for deep learning and focuses on a simplefeed-forward neural network for activity prediction using molecular fingerprints.

Best practices
In this enhanced version of TeachOpenCADD, we provide reliable and reproducible pipelines, periodically
checked via automated testing mechanisms, and a streamlined and easy-to-understand code style across
all talktorials. Everyone benefits from this work: the maintainers of the project, the contributors (to easily
participate), as well as users (to learn setting up FAIR-compliant pipelines).

Testing. Reproducibility is ensured by testing if the notebooks can run without errors and whether
the output of specific operations can be reproduced. For this purpose, we use the tools pytest [71] and
nbval [72].

Continuous integration. We are testing the talktorials regularly for Linux, OSX, and Windows and dif-
ferent Python versions on GitHub Actions [73]. This ensures identical behavior across different operating
systems and Python versions and also spots issues like conflicting dependency updates or changing out-
puts.

Repository structure. The repository structure is based on the cookiecutter-cms template [74], which
provides a Python-focused project scaffold with pre-configured settings for packaging, continuous integra-
tion, Sphinx-based documentation [75], and much more. We have adapted the template to our notebook-
focused needs.

Code style. We aim to adhere to the PEP8 [76] style guide for Python code, which defines how to write
idiomatic Python (Pythonic) code. Such rules are important so that newdevelopers—or in our case talktorial
users — can quickly read and understand the code. Furthermore, we use black-nb [77, 78] to format the
Python notebooks compliant with PEP8.

Dependency updates. Since we published the first ten talktorials in 2019, webservices and tools have
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changed or easier solutions have become available. This led to many updates in the existing notebooks,
of which two are highlighted here. First, we are now using a combination of biotite [38] and PyPDB [39]
to select structures and fetch structure files from the PDB to offer the same functionalities after the major
update of the PDB webservices API [79]. Second, in the initial release, PyMol [80] was used for molecular
visualization in 3Dand structural alignment. To facilitate and expandoperations in 3D,wenow implemented
a combination of NGLView [25] to visualize molecules in 3D and OpenCADD [40] to align structures in 3D.
TeachOpenCADD usage
There are many ways to use the talktorials. If users simply want to go through the material, they can use
the read-only version on our newly launched website at https://projects.volkamerlab.org/teachopencadd. If
users would rather like to execute and modify the notebooks, two options are available. First, the Jupyter
notebooks can be executed online thanks to the Binder integrations [81]. Second, the Jupyter notebooks
can be executed locally using the new conda package.

New website. Firing up Jupyter notebooks can entail unexpected complications if one wants to sim-
ply read through a talktorial or wants to look something up quickly. To make the access easy and fast,
we launched a new TeachOpenCADD website (https://projects.volkamerlab.org/teachopencadd). The website
statically renders the talktorials for immediate online reading using sphinx-nb [82] and provides detailed
documentation for local usage, contributions, and external resources. This access option is recommended
if the user plans on reading the material only.

New Binder support. The Binder project offers a place to share computing environments [83] via a
single link. The environment setup of TeachOpenCADD can take a couple of minutes but does not require
any kind of action on the user’s end. This access option is recommended if the user plans on executing the
material but does not need to save the changes.

New conda package. To make the local installation of TeachOpenCADD as easy as possible, we offer
a conda package that ships all Jupyter notebooks with all necessary dependencies. The installation instruc-
tions are lined out in the TeachOpenCADD documentation [84]. This access option is recommended if the
user plans on adapting the material for individual use cases.
Conclusion
The increasing amount of data and the focus on data-driven methods call for reproducible and reliable
pipelines for computer-aided drug design (CADD). Knowing how to access and use these resources pro-
grammatically, however, requires domain-specific training and inspiration. The TeachOpenCADD platform
showcases webserver-based data acquisition and common tasks in the fields of cheminformatics and struc-
tural bioinformatics. The theoretical and programmatic aspects of each topic are outlined side-by-side in
Jupyter notebooks (talktorials) using open source resources only. To foster FAIR research, we apply software
best practices such as testing, continuous integration, and idiomatic coding throughout the whole project.
The talktorials are accessible via our website, Binder, and conda package to accommodate different use
cases such as reading, executing, and modifying, respectively. We believe that TeachOpenCADD is not only
a rich resource for CADD pipelines and teachingmaterial on computational concepts and programming but
as well a good example of how to set up websites, automated testing, and packaging for notebook-centric
repositories. TeachOpenCADD is a living resource; problems can be voiced via GitHub issues and contribu-
tions can be made in the form of pull requests on GitHub. TeachOpenCADD is meant to grow; everyone
is welcome to add new topics. Whenever you explore a new topic for your work, we invite you to fill our
talktorial template [85] with what one learns along the way and to submit it to TeachOpenCADD.
Code and data availability

• TeachOpenCADD website: https://projects.volkamerlab.org/teachopencadd/
• TeachOpenCADD GitHub repository: https://github.com/volkamerlab/teachopencadd
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