
December 8, 2021

TeachOpenCADD 2021: Open Source and
FAIR Python Pipelines to Assist in
Structural Bioinformatics and
Cheminformatics Research
Dominique Sydow1, †, Jaime Rodríguez-Guerra1, †, Talia B. Kimber1, David Schaller1, Corey J. Taylor1, Yonghui
Chen1, Mareike Leja1, Sakshi Misra1, Michele Wichmann1, Armin Ariamajd1, Andrea Volkamer1

1In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité – Universitätsmedizin Berlin,corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin,Germany
*For correspondence:
andrea.volkamer@charite.de (AV)
†These authors contributed equally to this work

Abstract
Computational pipelines have become a crucial part of modern drug discovery campaigns. Setting up and
maintaining such pipelines, however, can be challenging and time-consuming— especially for novice scien-
tists in this domain. TeachOpenCADD is a platform that aims to teach domain-specific skills and to provide
pipeline templates as starting points for research projects. We offer Python-based solutions for common
tasks in cheminformatics and structural bioinformatics in the form of Jupyter notebooks and based on
open source resources only. Including the 12 newly released additions, TeachOpenCADD now contains 22
notebooks that each cover both theoretical background as well as hands-on programming. To promote
reproducible and reusable research, we apply software best practices to our notebooks such as testing
with an automated continuous integration and adhering to a more idiomatic Python style. The new Tea-
chOpenCADD website is available at https://projects.volkamerlab.org/teachopencadd and all code is deposited
on GitHub.
Introduction
Computational methods play an integral role in the design-make-test-analyze (DMTA) cycle that drives real-
world drug design projects [1]. To address questions raised during this cycle, a single method does not
suffice to deliver an answer; instead, a pipeline combining different methods can produce complementary
and useful insights. Setting up such complex pipelines, however, can be difficult and time-consuming for
many reasons: the scientist may not have had the training necessary to tackle these tasks [2], tools and their
usage are constantly evolving (or deprecating), and feeding the output from one tool into another is often
not straightforward. On top of these considerations, sustainable pipelines need to be findable, accessible,
interoperable, and reusable (FAIR principles [3]) — not only today but in many years from now — to drive
reproducible research.

In 2019, we launched the teaching platform TeachOpenCADD [4] onGitHub to help face these challenges
(https://github.com/volkamerlab/teachopencadd). TeachOpenCADD teaches by example how to build pipelines
with open source resources used in the fields of cheminformatics and structural bioinformatics to answer
central questions in computer-aided drug design (CADD). The code is written in Python, a popular program-
ming language in many fields including computational life sciences. With these ready-to-use pipelines, we
target students and teachers who need trainingmaterial to CADD-related topics, as well as researchers who
need a template or an inspiration to tackle their research questions. Usage can range from applying the

1 of 13

andrea.volkamer@charite.de
https://projects.volkamerlab.org/teachopencadd
https://github.com/volkamerlab/teachopencadd

December 8, 2021

whole pipeline on another molecular system to extracting selected pieces from the pipeline to be included
in another context. The theoretical and practical aspects of each topic are covered in an interactive Jupyter
notebook [5]. This setup makes it easy for users from different fields to understand the computational con-
cepts and to get started with hands-on Python programming. We call these Jupyter notebooks talktorials
(talk + tutorial) because their format is suited for presentations as well.

The initial stack of talktorials T001–T010 covers common CADD tasks involving webserver queries, chem-
informatics, and structural bioinformatics [4]. We show how to fetch chemical and structural data from the
ChEMBL [6] and PDB [7, 8] online databases and how to encode, filter, cluster, and screen such datasets
to find novel drug candidates and off-targets [4] (Figure 1, T001–T010). The TeachOpenCADD platform en-
joys wide usage in the community, as exemplified by frequently posted GitHub issues, about 13, 000 article
views [9], over 250 GitHub repository stars and about 90 repository forks (as of 2021-10-14) [10] as well
as teaching feedback [11]. The cheminformatics-focused talktorials are inspired by a variety of online re-
sources, which we recommend for further reading; e.g. the virtual screening tutorials in context of the
Teach-Discover-Treat initiative [12], and several blogs such as Practical Cheminformatics [13], the RDKit blog
[14], Is life worth living? [15], and Cheminformania [16]. Another prominent example for a cheminformatics
code collection is the Chemistry Development Kit (CDK) [17].

Over the last two years, the TeachOpenCADDGitHub repository underwentmany additions and changes:
we now have more than doubled our content and extended the application of software best practices rig-
orously. Twelve new Python talktorials in addition to the previous ten are available (Figure 1). The talk-
torials cover data retrieval via webserver queries from major structural, chemical and pharmacological
databases including the PDB [7, 8], ChEMBL [6], PubChem [18], and KLIFS [19] databases. Important struc-
tural modeling tasks include protein pocket detection and comparison, protein-ligand docking and interac-
tion analysis, as well asmolecular dynamics simulations using tools such as ProteinsPlus [20, 21], Smina [22],
PLIP [23], and OpenMM [24]. Throughout all talktorials, the 3D information is interactively visualized with
NGLView [25, 26]. Finally, besides the previous examples for cheminformatics tasks such as molecular fil-
tering, clustering, and similarity search using RDKit functionalities [27], we introduce deep learning (DL) for
activity prediction and show how to train a model using the deep learning library Keras [28].

The full collection of talktorials is easily accessible on the new TeachOpenCADD website (https://projects.
volkamerlab.org/teachopencadd). We comply with software best practices regarding the code style as well as
maintenance and facilitate installation with a dedicated conda package [29]. In the following, we will discuss
each of these additions in more detail.
New talktorials
The new stack of talktorials showcases data acquisition from additional CADD-relevant databases, adds
many examples for structure-based tasks, and extends the cheminformatics side with straightforward DL
applications (see Figure 1, T011–T022). Our example use case is the EGFR kinase [30] but the talktorials
are easily adaptable to other targets as long as sufficient data is available. Besides the domain-specific
resources described below, we rely in all talktorials on established Python packages for data science and
data visualization such as NumPy [31], pandas [32], scikit-learn [33], matplotlib [34], and seaborn [35].
Webservices queries
Over the last decades, the scientific community has produced an incredible amount of data and analysis
software, and adapted modern technologies to make these resources easily available via online webser-
vices [36]. However, it might not always be obvious to the beginner how to use a web application program-
ming interface (API) to access such data and how to integrate them into larger pipelines. TeachOpenCADD
dedicates several talktorials to the usage of different webservers relevant for the life sciences.

In the first TeachOpenCADD release from 2019, we already showed how to query the ChEMBL [6] and
PDB [7, 8] databases. From the ChEMBL webservice, compounds and bioactivities are fetched for the EGFR
kinase using the ChEMBL webresource client [37] (T001). This dataset is used in many downstream talkto-
rials for common cheminformatics tasks using primarily RDKit [27]. From the PDB webservice, we fetch a
set of EGFR kinase structures based on criteria such as "ligand-bound structures from X-ray experiments

2 of 13

https://projects.volkamerlab.org/teachopencadd
https://projects.volkamerlab.org/teachopencadd

December 8, 2021

T018 Automated
pipeline for lead
optimization

Query target (EGFR)

T003 Molecular filtering:
Unwanted substruct.

T008 Query PDB T009 Ligand-based
ensemble
pharmacophores

T010 Binding site
comparison

Query ligand (Imatinib)

T002 Molecular
filtering: ADME criteria

T001 Query ChEMBL

T005 Ligand clustering

T006 Maximum
common substructures

T004 Ligand-based
screening: Compound
similarity

T007 Ligand-based
screening: Machine
learning

T011 Query online API
webservices

T012 Query KLIFS

T022 Ligand-based
screening:
Neural
Networks

T013 Query PubChem

T017 NGLViewT014 Binding site
detection

T015 Protein-ligand
docking

T016 Protein-ligand
inter-
actionsT021 One-hot encoding

T019 Molecular
dynamics simulations

T020 Molecular
dynamics analysis

New talktorials!

Figure 1. Overview of all TeachOpenCADD topics from the 2019 and 2021 releases covering webserver queries (blue) andtasks from both cheminformatics (green) and structural bioinformatics (orange). New talktorials from the 2021 releaseare highlighted in yellow.

with a resolution below 3.0 Å" using the biotite [38] and PyPDB [39] (T008) packages. The structures in this
dataset are aligned invoking OpenCADD’s superposition module [40] and used to create a shared ligand-
based pharmacophore model (T009). In T010, the PDB is queried to fetch all imatinib-bound structures and
assess their pocket similarities — using the root-mean-square deviation (RMSD) of pocket residues — to
study differences between the on-target ABL1 and its off-targets. In the 2021 release, we now have added
three more notebooks covering the usage of online API webservices (Figure 2).

T011: Querying online API webservices. We give a broad introduction on how to programmatically
use online webservices from Python with a focus on REST services and web scraping. The usage of several
libraries is demonstrated; e.g. we use requests [41] to retrieve content from UniProt [42], bravado [43] to
generate a Python client for any API — exemplified for the KLIFS database and its RESTful API [19, 44] —,
and Beautiful Soup [45] to scrape (parse) HTML content from the web. Next, this newly gained knowledge
is applied to interact with the KLIFS [19] and PubChem [18] databases.

T012: Data acquisition from KLIFS. KLIFS [19] is a kinase database gathering information about exper-
imental kinase structures and interacting inhibitors. The talktorial shows how to quickly fetch data from
KLIFS given a query kinase or ligand. For example, we spot frequent key interactions in EGFR based on
KLIFS interaction fingerprints and we assess kinome-wide bioactivity values for gefitinib. These queries are
demonstrated by using the KLIFS OpenAPI [44] directly with bravado [43], or by using the KLIFS-dedicated
wrapper OpenCADD-KLIFS implemented in the Python package OpenCADD [40].

T013: Data acquisition from PubChem. PubChem [18] is a database holding chemical information for
over 100million compounds. We demonstrate how to fetch data from PubChem’s PUG-REST API [46], given
the name or SMILES [47] of a query ligand. For example, we show how to fetch molecular properties for
a ligand of interest by name (aspirin) and how to query PubChem for the most similar compounds given a
query SMILES (gefitinib).

A summary of the information that can be acquired automatically for a target of interest using these
web services is exemplified in Figure 3 for the EGFR kinase, using talktorials T001, T008, T012, and T013.

3 of 13

December 8, 2021

T011 · Querying online API
webservices

T012 · Data acquisition from
KLIFS

T013 · Data acquisition from
PubChem

Structures Ligands

Bioactivity
values

Query kinase

Interaction
Fingerprints

Similar
compounds

Query compound

Molecular
properties

Webserver queries

Programmatic interfaces

Document parsing

bravado Beautiful
Souprequests

Figure 2. New talktorials on querying webservices. T011 gives a broad introduction on programmatic access to webser-vices from Python, T012 and T013 demonstrate how to query the KLIFS [19] and PubChem [18] databases for kinase andcompound data, respectively.

EGFR
Uniprot ID: P00533

ChEMBL target ID:
CHEMBL203

T001

8,463 IC50 values

227 structures

T008

110 filtered structures:
X-ray res. < 3A, ...

4
 h

ig
h

-r
es

.
co

m
p

le
xe

s
al

ig
n

ed
5U

G
9,

 5
H

G
8,

5U

G
8,

 5
U

G
C

T013T012

KLIFS structure ID:
406

Averaged
interaction fingerprint

Activity distribution

446
entries

PubChem CID:
123631

10
 s

im
ila

r
co

m
p

ou
n

d
s

prop.
MW:
446.9

Query & first 5 comp.

Gefitinib

Figure 3. Data and information that can be automatically gathered for the EGFR kinase using the different web querytalktorials as of September 2021, created based on ChEMBL v.27 [6] (T001), PDB [8] (T008), PubChem [18] (T013), andKLIFS [19] (T012). Input: yellow box, output: grey boxes, plots, and molecule visualizations (using NGLView [25] andRDKit [27]).

Pocket detection, ligand-protein docking and interactions
During a drug discovery campaign, frequent questions from a medicinal chemist to a cheminformatician
are: What should I test next? Can you suggest a diverse set of small molecules likely to bind to this protein?
Which parts of the lead compound should I start modifying with what kind of functional groups to increase
the binding affinity? Answering these kinds of questions involves multiple scientific observations, and thus,
multiple computational steps. Potentially fruitful steps are individually addressed in talktorials T014–T017.
Finally, in T018, all steps are combined in an automated pipeline that — starting with a protein structure
and a lead or hit compound — proposes several similar ligands with optimized estimated affinities and
interactions based on the docked protein-ligand structures.

T014: Binding site detection. First, we need to know where ligands may bind to a protein of interest.
Sometimes the binding site is known from experimental protein-ligand structures. If only experimental apo
structures are available, putative binding sites can be predicted with computational methods. We demon-
strate how to use the REST API of the ProteinsPlus webserver [20, 21] to detect the main pocket of an EGFR
structure using the DoGSiteScorer [48] pocket detection algorithm. To validate our results, the predicted
pocket is compared with the KLIFS-defined kinase pocket, which encompasses 85 residues in contact with
ligands in over 2000 kinase-ligand structures [49].

T015: Protein-ligand docking. Next, we introduce molecular docking to predict the binding mode of a
ligand to its protein target by explaining several sampling algorithms and scoring functions, as well as com-

4 of 13

December 8, 2021

menting on limitations and interpretation of docking result. The theoretical background is then applied
in a re-docking experiment aiming to reproduce the binding mode observed in a published X-ray struc-
ture of EGFR. Protein and ligand are prepared using Pybel [50], the ligand is docked into the protein using
Smina [22], and finally, the docking poses can be visually inspected using NGLView [25]. We refer to Jupy-
terDock [51] for further reading on different docking protocols run from Jupyter notebooks.

T016: Protein-ligand interactions. Understandingwhich forces and interactions drivemolecular recog-
nition is important for drug design [52]. In this talktorial, we give an introduction to relevant protein-ligand
interactions and their programmatic detection using the protein-ligand interaction profiler PLIP [23]. To
this end, all interactions in an EGFR-ligand complex fetched from the PDB are detected and visualized in 3D
using NGLView.

T017: Advanced NGLView usage. Since the molecular visualization package NGLView is invoked in
many talktorials, we give a dedicated overview of its usage and show some advanced cases on how to
customize residue coloring, and how to create interactive interfaceswith IPyWidgets [53]. In addition, access
to the JavaScript layer NGL [26, 54] is exemplified to performoperations that are not exposed in the interface
of the Python wrapper NGLView.

T018: Automated pipeline for lead optimization. All previous talktorials are composed of stand-alone
tasks that can be completed independently. Proposing ligand modifications that will improve interaction
patternswith target proteins in a complete end-to-end process, however, necessitates orchestration of code
and concepts implemented in the previously discussed talktorials T014–T017. A docking pipeline is con-
structed in T018 that is comprised of both a step-by-step demonstration and a fully automated procedure.
Given a query protein and a hit or lead compound, similar ligands fetched from PubChem are suggested
based on generated docking poses, which show optimized affinity estimates and interaction profiles.
Molecular dynamics
Experimentally resolved structures offer immense insights for drug design but can only provide a static
snapshot of the full conformational space that represents the flexible nature of biological systems. Molecu-
lar dynamics (MD) simulations approximate such flexibility in silico with a trajectory of atom positions over
a series of time steps (frames). These trajectories thereby reveal a more detailed — albeit still incomplete
— picture of drug-target recognition and binding by providing access to protein-ligand interaction patterns
over time [55–57]. These insights can for example help in lead discovery to examine the stability and valid-
ity of a predicted ligand docking pose, and in lead optimization phases to estimate the effect of a chemical
modification on binding affinity.

T019: MD simulations. In this talktorial, we explain the key concepts behind MD simulations and pro-
vide the code to run a short MD simulation of EGFR in complex with a ligand on a local machine or on
Google Colab [58, 59], which allows for GPU-accelerated simulations. The protein and ligand are thereby
separately prepared with pdbfixer [60] and RDKit [27], and subsequently combined using MDTraj [61] and
openff-toolkit [62]. The simulation is run with OpenMM [24], a high-performance toolkit for molecular sim-
ulation including language bindings for Python. The talktorial produces a 100 ps trajectory if run on Google
Colab. On a local machine, only 20 fs are generated by default to keep computational efforts reasonable.
However, the simulation time can be increased by the user in case a local GPU is available. We refer to the
work by Arantes et al. [63] for further reading on different MD protocols run with OpenMM using Jupyter
notebooks on Google Colab.

T020: Analyzing MD simulations. We analyze and visualize the results of the trajectory generated
with the previous talktorial using the Python packages MDAnalysis [64, 65] and NGLView. First, the pro-
tein is structurally aligned across all trajectory frames, followed by calculating the root-mean-square devi-
ation (RMSD) for different system components; i.e. protein, backbone, and ligand. Then, we take a closer
look at a selected interaction between ligand and protein atoms, showcasing the contribution of distance
and angle to the hydrogen bond strengths.

5 of 13

December 8, 2021

T014 · Binding site detection T015 · Protein-ligand docking T016 · Protein-ligand interactions

T017 · Advanced NGLView usage

T018 · Automated pipeline for lead optimization

Protein
structure

Input
compound

Binding site detection
(ProteinsPlus)

Compounds from
similarity search

(PubChem)

Protein-
ligand

docking
(Smina)

Optimized
lead(s)

Input Pipeline Output

Interaction detection
(PLIP)

Ligand properties

Docking score

Figure 4. New talktorials on common tasks in structural bioinformatics to assess interaction patterns. T014 detects thebinding site in an EGFR kinase structure and compares the prediction to the binding site defined by KLIFS [19]. T015performs a re-docking for an EGFR-ligand complex with Smina [22]. T016 detects protein-ligand interactions in an EGFR-ligand complex structure with PLIP [23]. T017 introduces basic and advanced usages of the molecular visualization toolNGLView [25], which is used throughout most of TeachOpenCADD’s talktorials. Finally, T018 outlines a fully automatedlead optimization pipeline: Based on an input structure, the pocket is detected and a set of compounds similar to aselected ligand are fetched from PubChem [18]. These compounds are docked into the selected binding site. The mostpromising compounds w.r.t. docking scores and interaction profiles are proposed as optimized compounds.

T020 · Analyzing MD simulationsT019 · MD simulations

Figure 5. New talktorials on common tasks in structural bioinformatics to simulate dynamics. T019 demonstrates howto set up and run a molecular dynamics (MD) simulation on Google Colab [58, 59] with OpenMM [24]. T020 analyzesthe resulting MD trajectory with a focus on the root-mean-square deviation (RMSD) between trajectory frames and thedynamics of protein-ligand interactions using MDAnalysis [64, 65].

Deep learning
Machine learning and more specifically deep learning have gained in popularity over the last few decades
thanks to powerful computational resources such as GPUs, the research in the algorithms, and the growing
amount of data [66]. Applications to CADD are diverse, ranging from molecular property prediction [67] to

6 of 13

December 8, 2021

de novo molecular design [68]. Here, the focus is the featurization of molecular entities (T021) and ligand-
based screening (T022).

T021: One-hot encoding. In CADD, machine learning algorithms require as input a numerical represen-
tation of small molecules. Besides molecular fingerprints (see T004), a popular featurization is the SMILES
notation [47]. However, these representations are composed of strings and therefore cannot simply be
input to an algorithm. One-hot encoding provides such a solution and the details are explained in this
talktorial.

T022: Ligand-based screening: neural networks. We introduce the basics of neural networks and
build a simple two-layer neural network. A model is trained on a subset of ChEMBL data to predict the
pIC50 values of compounds against EGFR using MACCS [69] fingerprints as input. This talktorial is meant as
groundwork for the understanding of neural networks. More complex architectures such as convolutional
and recurrent neural networks will be explored in future notebooks. Such models may use the one-hot
encoding of SMILES as input [70].

T022 · Ligand-based screening: Neural networksT021 · One-hot encoding

Dictionary

C: N: 1: Activity
prediction

SMILES

CC1CNC1

One-hot

Figure 6. New talktorials on molecular encoding and deep learning. T021 exhibits the steps to numerically encode asmall molecule from its SMILES representation. T022 lays the groundwork for deep learning and focuses on a simplefeed-forward neural network for activity prediction using molecular fingerprints.

Best practices
In this enhanced version of TeachOpenCADD, we provide reliable and reproducible pipelines, periodically
checked via automated testing mechanisms, and a streamlined and easy-to-understand code style across
all talktorials. Everyone benefits from this work: the maintainers of the project, the contributors (to easily
participate), as well as users (to learn setting up FAIR-compliant pipelines).

Testing. Reproducibility is ensured by testing if the notebooks can run without errors and whether
the output of specific operations can be reproduced. For this purpose, we use the tools pytest [71] and
nbval [72].

Continuous integration. We are testing the talktorials regularly for Linux, OSX, and Windows and dif-
ferent Python versions on GitHub Actions [73]. This ensures identical behavior across different operating
systems and Python versions and also spots issues like conflicting dependency updates or changing out-
puts.

Repository structure. The repository structure is based on the cookiecutter-cms template [74], which
provides a Python-focused project scaffold with pre-configured settings for packaging, continuous integra-
tion, Sphinx-based documentation [75], and much more. We have adapted the template to our notebook-
focused needs.

Code style. We aim to adhere to the PEP8 [76] style guide for Python code, which defines how to write
idiomatic Python (Pythonic) code. Such rules are important so that newdevelopers—or in our case talktorial
users — can quickly read and understand the code. Furthermore, we use black-nb [77, 78] to format the
Python notebooks compliant with PEP8.

Dependency updates. Since we published the first ten talktorials in 2019, webservices and tools have

7 of 13

December 8, 2021

changed or easier solutions have become available. This led to many updates in the existing notebooks,
of which two are highlighted here. First, we are now using a combination of biotite [38] and PyPDB [39]
to select structures and fetch structure files from the PDB to offer the same functionalities after the major
update of the PDB webservices API [79]. Second, in the initial release, PyMol [80] was used for molecular
visualization in 3Dand structural alignment. To facilitate and expandoperations in 3D,wenow implemented
a combination of NGLView [25] to visualize molecules in 3D and OpenCADD [40] to align structures in 3D.
TeachOpenCADD usage
There are many ways to use the talktorials. If users simply want to go through the material, they can use
the read-only version on our newly launched website at https://projects.volkamerlab.org/teachopencadd. If
users would rather like to execute and modify the notebooks, two options are available. First, the Jupyter
notebooks can be executed online thanks to the Binder integrations [81]. Second, the Jupyter notebooks
can be executed locally using the new conda package.

New website. Firing up Jupyter notebooks can entail unexpected complications if one wants to sim-
ply read through a talktorial or wants to look something up quickly. To make the access easy and fast,
we launched a new TeachOpenCADD website (https://projects.volkamerlab.org/teachopencadd). The website
statically renders the talktorials for immediate online reading using sphinx-nb [82] and provides detailed
documentation for local usage, contributions, and external resources. This access option is recommended
if the user plans on reading the material only.

New Binder support. The Binder project offers a place to share computing environments [83] via a
single link. The environment setup of TeachOpenCADD can take a couple of minutes but does not require
any kind of action on the user’s end. This access option is recommended if the user plans on executing the
material but does not need to save the changes.

New conda package. To make the local installation of TeachOpenCADD as easy as possible, we offer
a conda package that ships all Jupyter notebooks with all necessary dependencies. The installation instruc-
tions are lined out in the TeachOpenCADD documentation [84]. This access option is recommended if the
user plans on adapting the material for individual use cases.
Conclusion
The increasing amount of data and the focus on data-driven methods call for reproducible and reliable
pipelines for computer-aided drug design (CADD). Knowing how to access and use these resources pro-
grammatically, however, requires domain-specific training and inspiration. The TeachOpenCADD platform
showcases webserver-based data acquisition and common tasks in the fields of cheminformatics and struc-
tural bioinformatics. The theoretical and programmatic aspects of each topic are outlined side-by-side in
Jupyter notebooks (talktorials) using open source resources only. To foster FAIR research, we apply software
best practices such as testing, continuous integration, and idiomatic coding throughout the whole project.
The talktorials are accessible via our website, Binder, and conda package to accommodate different use
cases such as reading, executing, and modifying, respectively. We believe that TeachOpenCADD is not only
a rich resource for CADD pipelines and teachingmaterial on computational concepts and programming but
as well a good example of how to set up websites, automated testing, and packaging for notebook-centric
repositories. TeachOpenCADD is a living resource; problems can be voiced via GitHub issues and contribu-
tions can be made in the form of pull requests on GitHub. TeachOpenCADD is meant to grow; everyone
is welcome to add new topics. Whenever you explore a new topic for your work, we invite you to fill our
talktorial template [85] with what one learns along the way and to submit it to TeachOpenCADD.
Code and data availability

• TeachOpenCADD website: https://projects.volkamerlab.org/teachopencadd/
• TeachOpenCADD GitHub repository: https://github.com/volkamerlab/teachopencadd

8 of 13

https://projects.volkamerlab.org/teachopencadd
https://projects.volkamerlab.org/teachopencadd
https://projects.volkamerlab.org/teachopencadd/
https://github.com/volkamerlab/teachopencadd

December 8, 2021

Funding
Note that the TeachOpenCADD project has been a group effort and has received no explicit funding, while
the positions of individual authors were supported by diverse funding agencies. The Volkamer Lab received
funding from the Bundesministerium für Bildung und Forschung (AV: grant number 031A262C), Deutsche
Forschungsgemeinschaft (DS: grant VO 2353/1-1), the Stiftung Charité in the context of the Einstein BIH
Visiting Fellow Project (TBK, JRG and CT), Bayer in the context of the MIAME project (DaS), and the China
Scholarship Council Project (YC: grant number 201906210079).
Author Contributions
Conceptualization: DS, JRG, AV; Data Curation, Formal Analysis, Investigation, Software, Validation and Visu-
alization: DS, JRG, TBK, DaS, CT, YC, ML, SM, MW, AA, AV; Funding Acquisition: AV; Methodology and Mainte-
nance: DS, JRG, TBK, DaS, AV; Project Administration: DS, JRG, AV; Resources: AV; Supervision: DS, JRG, DaS,
TBK, AV; Writing-Original Draft: DS, TK, DaS, JRG, AV; Writing - Review and Editing: DS, JRG, TBK, DaS, CT, YC,
ML, SM, MW, AA, AV.
Disclosures
None.
Acknowledgements
The authors thank Piedro Gerletti (T019), Ahmed Atta (T022), Melanie Vogel (T018), Abishek Laxmanan Ravi
Shankar (T014), Maria Trofimova (T015), and Jeffrey R. Wagner (T019) for the initial drafts of or contributions
to the above-mentioned talktorials.

The authors are grateful to the PyPDB and biotite maintainers for their work on updating their packages
according to the new RCSB PDB API (special thanks to Patrick Kunzmann), and Albert Kooistra for helping
with questions regarding the KLIFS database. The authors thank Hai Nguyen for dedicated and helpful
NGLView support. The authors are thankful for a fruitful hackathon at the RDKit UGM in 2019, where we
started to tackle a few TeachOpenCADD enhancements: structural superimposition and visualization with-
out PyMol with Richard Gowers and testing Jupyter notebooks with Floriane Montanari. Finally, the authors
thank Pat Walters and Hai Nguyen for endorsing the TeachOpenCADD platform on their websites, and we
thank Greg Landrum for giving TeachOpenCADD a spot at the RDKit UGMs 2019, 2020, and 2021!
References[1] Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA, Fisher J, Jansen JM, Duca JS, Rush TS,Zentgraf M, Hill JE, Krutoholow E, Kohler M, Blaney J, Funatsu K, Luebkemann C, Schneider G. Rethinking drug designin the artificial intelligence era. Nat Rev Drug Discovery. 2020; 19(5):353–364. doi: 10.1038/s41573-019-0050-3.
[2] Ringer McDonald A. Teaching Programming across the Chemistry Curriculum: A Revolution or a Revival? In:Teaching Programming across the Chemistry CurriculumAmerican Chemical Society; 2021. p. 1–11. doi: 10.1021/bk-2021-1387.ch001.
[3] Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva SantosLB, Bourne PE, Bouwman J, Brookes AJ, Clark T, CrosasM, Dillo I, DumonO, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data. 2016;3(1):160018. doi: 10.1038/sdata.2016.18.
[4] SydowD, Morger A, Driller M, Volkamer A. TeachOpenCADD: A Teaching Platform For Computer-Aided Drug DesignUsing Open Source Packages And Data. J Cheminform. 2019; 11(1):29. doi: 10.1186/s13321-019-0351-x.
[5] Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick J, Grout J, Corlay S, IvanovP, Avila D, Abdalla S, Willing C, development team J. Jupyter Notebooks - a publishing format for reproduciblecomputational workflows. In: Loizides F, Scmidt B, editors. Positioning and Power in Academic Publishing: Players,

Agents and Agendas IOS Press; 2016. p. 87–90. doi: 10.3233/978-1-61499-649-1-87.

9 of 13

https://dx.doi.org/10.1038/s41573-019-0050-3
https://dx.doi.org/10.1021/bk-2021-1387.ch001
https://dx.doi.org/10.1021/bk-2021-1387.ch001
https://dx.doi.org/10.1038/sdata.2016.18
https://dx.doi.org/10.1186/s13321-019-0351-x
https://dx.doi.org/10.3233/978-1-61499-649-1-87

December 8, 2021

[6] Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños M, Mosquera J, Mutowo P, Nowotka M,Gordillo-Marañón M, Hunter F, Junco L, Mugumbate G, Rodriguez-Lopez M, Atkinson F, Bosc N, Radoux C, Segura-Cabrera A, Hersey A, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Research. 2018;47(D1):D930–D940. doi: 10.1093/nar/gky1075.
[7] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank.Nucleic Acids Research. 2000; 28(1):235–242. doi: 10.1093/nar/28.1.235.
[8] Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Christie CH, Dalenberg K, Di Costanzo L, Duarte JM,Dutta S, Feng Z, Ganesan S, Goodsell DS, Ghosh S, Green RK, Guranović V, Guzenko D, Hudson BP, Lawson C, et al.RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic andapplied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energysciences. Nucleic Acids Research. 2020; 49(D1):D437–D451. doi: 10.1093/nar/gkaa1038.
[9] Journal of Cheminformatics, TeachOpenCADD paper’s access and citations. https://jcheminf.biomedcentral.com/

articles/10.1186/s13321-019-0351-x/metrics, [Online; accessed 2021-10-05].
[10] GitHub, TeachOpenCADD’s GitHub stars. https://github.com/volkamerlab/teachopencadd/stargazers, [Online; ac-cessed 2021-10-05].
[11] Sydow D, Rodríguez-Guerra J, Volkamer A. Teaching Computer-Aided Drug Design Using TeachOpenCADD. In:Teaching Programming across the Chemistry Curriculum American Chemical Society; 2021. p. 135–158. doi:10.1021/bk-2021-1387.ch010.
[12] Riniker S, Landrum G, Montanari F, Villalba S, Maier J, Jansen J, Walters W, Shelat A. Virtual-screening workflowtutorials and prospective results from the Teach-Discover-Treat competition 2014 against malaria [version 2; peerreview: 3 approved]. F1000Research. 2018; 6(1136). doi: 10.12688/f1000research.11905.2.
[13] PatrickWalters, Practical Cheminformatics. https://patwalters.github.io/practicalcheminformatics/, [Online; accessed2021-10-12].
[14] Gregory Landrum, RDKit blog. https://greglandrum.github.io/rdkit-blog/, [Online; accessed 2021-10-12].
[15] iwatobipen, Is life worth living? https://iwatobipen.wordpress.com/, [Online; accessed 2021-10-12].
[16] Esben Jannik Bjerrum, Cheminformania. https://www.cheminformania.com/, [Online; accessed 2021-10-12].
[17] Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N, Kuhn S, Pluskal T, Rojas-Chertó M, SpjuthO, Torrance G, Evelo CT, Guha R, Steinbeck C. The Chemistry Development Kit (CDK) v2.0: atom typing, depiction,molecular formulas, and substructure searching. Journal of Cheminformatics. 2017; 9(1):33. doi: 10.1186/s13321-017-0220-4.
[18] Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, BoltonEE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research. 2020; 49(D1):D1388–D1395. doi: 10.1093/nar/gkaa971.
[19] Kanev GK, de Graaf C, Westerman BA, de Esch IJP, Kooistra AJ. KLIFS: an overhaul after the first 5 years of supportingkinase research. Nucleic Acids Research. 2020; 49(D1):D562–D569. doi: 10.1093/nar/gkaa895.
[20] Fährrolfes R, Bietz S, Flachsenberg F, Meyder A, Nittinger E, Otto T, Volkamer A, Rarey M. ProteinsPlus: aweb portal for structure analysis of macromolecules. Nucleic Acids Research. 2017; 45(W1):W337–W343. doi:10.1093/nar/gkx333.
[21] Computational Molecular Design Group headed byMatthias Rarey, ProteinsPlus. https://proteins.plus/, [Online;accessed 2021-10-15].
[22] Koes DR, Baumgartner MP, Camacho CJ. Lessons Learned in Empirical Scoring with smina from the CSAR2011 Benchmarking Exercise. Journal of Chemical Information and Modeling. 2013; 53(8):1893–1904. doi:10.1021/ci300604z.
[23] Salentin S, Schreiber S, Haupt VJ, AdasmeMF, SchroederM. PLIP: fully automated protein–ligand interaction profiler.Nucleic Acids Research. 2015; 43(W1):W443–W447. doi: 10.1093/nar/gkv315.
[24] Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang LP, Simmonett AC, Harrigan MP,Stern CD, Wiewiora RP, Brooks BR, Pande VS. OpenMM 7: Rapid development of high performance algorithms formolecular dynamics. PLOS Computational Biology. 2017; 13(7):1–17. doi: 10.1371/journal.pcbi.1005659.

10 of 13

https://dx.doi.org/10.1093/nar/gky1075
https://dx.doi.org/10.1093/nar/28.1.235
https://dx.doi.org/10.1093/nar/gkaa1038
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0351-x/metrics
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0351-x/metrics
https://github.com/volkamerlab/teachopencadd/stargazers
https://dx.doi.org/10.1021/bk-2021-1387.ch010
https://dx.doi.org/10.1021/bk-2021-1387.ch010
https://dx.doi.org/10.12688/f1000research.11905.2
https://patwalters.github.io/practicalcheminformatics/
https://greglandrum.github.io/rdkit-blog/
https://iwatobipen.wordpress.com/
https://www.cheminformania.com/
https://dx.doi.org/10.1186/s13321-017-0220-4
https://dx.doi.org/10.1186/s13321-017-0220-4
https://dx.doi.org/10.1093/nar/gkaa971
https://dx.doi.org/10.1093/nar/gkaa895
https://dx.doi.org/10.1093/nar/gkx333
https://dx.doi.org/10.1093/nar/gkx333
https://proteins.plus/
https://dx.doi.org/10.1021/ci300604z
https://dx.doi.org/10.1021/ci300604z
https://dx.doi.org/10.1093/nar/gkv315
https://dx.doi.org/10.1371/journal.pcbi.1005659

December 8, 2021

[25] Nguyen H, Case DA, Rose AS. NGLView - Interactive Molecular Graphics For Jupyter Notebooks. Bioinformatics.2017; 34(7):1241–1242. doi: 10.1093/bioinformatics/btx789.
[26] Rose AS, Hildebrand PW. NGL Viewer: a web application for molecular visualization. Nucleic Acids Research. 2015;43(W1):W576–W579. doi: 10.1093/nar/gkv402.
[27] RDKit, RDKit: Open-Source Cheminformatics. http://www.rdkit.org, [Online; accessed 2021-10-05].
[28] Chollet F, et al., Keras. https://keras.io, [Online; accessed 2021-10-26].
[29] conda-forge community, The conda-forge Project: Community-based Software Distribution Built on the condaPackage Format and Ecosystem. doi: 10.5281/zenodo.4774216.
[30] Herbst RS. Review of epidermal growth factor receptor biology. International Journal of Radiation Oncol-ogy*Biology*Physics. 2004; 59(2, Supplement):S21–S26. doi: 10.1016/j.ijrobp.2003.11.041.
[31] Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ,Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P,et al. Array programming with NumPy. Nature. 2020 Sep; 585(7825):357–362. doi: 10.1038/s41586-020-2649-2.
[32] The pandas development team, pandas-dev/pandas: Pandas. doi: 10.5281/zenodo.3509134.
[33] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel P M a Prettenhofer, Weiss R, DubourgV, Vanderplas A J a Passos, Cournapeau D, Brucher M, Perrot E M a Duchesnay. Scikit-learn: Machine Learning inPython. Journal of Machine Learning Research. 2011; 12:2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html.
[34] Hunter JD. Matplotlib: A 2D graphics environment. Computing in Science & Engineering. 2007; 9(3):90–95. doi:10.1109/MCSE.2007.55.
[35] Waskom ML. seaborn: statistical data visualization. Journal of Open Source Software. 2021; 6(60):3021. doi:10.21105/joss.03021.
[36] Ireland SM, Martin ACR. GraphQL for the Delivery of Bioinformatics Web APIs and Application to ZincBind. Bioin-formatics Advances. 2021; doi: 10.1093/bioadv/vbab023.
[37] Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, Bellis L, Overington JP. Chembl Web Ser-vices: Streamlining Access To Drug Discovery Data And Utilities. Nucleic Acids Research. 2015; 43:W612–W620. doi:10.1093/nar/gkv352.
[38] Kunzmann P, Hamacher K. Biotite: a unifying open source computational biology framework in Python. BMCBioinformatics. 2018; 19(1):346. doi: 10.1186/s12859-018-2367-z.
[39] Gilpin W. PyPDB: A Python API For The Protein Data Bank. Bioinformatics. 2015 9; 32:159–60. doi: 10.1093/bioin-formatics/btv543.
[40] Volkamer Lab, OpenCADD: Python package for structural cheminformatics. https://opencadd.readthedocs.io/en/

latest/, [Online; accessed 2021-10-05].
[41] requests, requests. https://docs.python-requests.org/, [Online; accessed 2021-10-05].
[42] Consortium TU. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research. 2020; 49(D1):D480–D489. doi: 10.1093/nar/gkaa1100.
[43] bravado, bravado. https://github.com/Yelp/bravado, [Online; accessed 2021-10-05].
[44] KLIFS, KLIFS OpenAPI. https://klifs.net/swagger/, [Online; accessed 2021-10-05].
[45] Beautiful Soup, Beautiful Soup Documentation. https://www.crummy.com/software/BeautifulSoup/bs4/doc/, [On-line; accessed 2021-10-05].
[46] Kim S, Thiessen PA, Cheng T, Yu B, Bolton EE. An update on PUG-REST: RESTful interface for programmatic accessto PubChem. Nucleic Acids Research. 2018; 46(W1). doi: 10.1093/nar/gky294.
[47] Weininger D. SMILES, A Chemical Language And Information System. 1. Introduction ToMethodology And EncodingRules. Journal of Chemical Information and Modeling. 1988; 28(1):31–36. doi: 10.1021/ci00057a005.
[48] Volkamer A, Kuhn D, Grombacher T, Rippmann F, Rarey M. Combining Global and Local Measures for Structure-Based Druggability Predictions. Journal of Chemical Information and Modeling. 2012; 52(2):360–372. doi:10.1021/ci200454v.

11 of 13

https://dx.doi.org/10.1093/bioinformatics/btx789
https://dx.doi.org/10.1093/nar/gkv402
http://www.rdkit.org
https://keras.io
https://dx.doi.org/10.5281/zenodo.4774216
https://dx.doi.org/10.1016/j.ijrobp.2003.11.041
https://dx.doi.org/10.1038/s41586-020-2649-2
https://dx.doi.org/10.5281/zenodo.3509134
http://jmlr.org/papers/v12/pedregosa11a.html
https://dx.doi.org/10.1109/MCSE.2007.55
https://dx.doi.org/10.1109/MCSE.2007.55
https://dx.doi.org/10.21105/joss.03021
https://dx.doi.org/10.21105/joss.03021
https://dx.doi.org/10.1093/bioadv/vbab023
https://dx.doi.org/10.1093/nar/gkv352
https://dx.doi.org/10.1093/nar/gkv352
https://dx.doi.org/10.1186/s12859-018-2367-z
https://dx.doi.org/10.1093/bioinformatics/btv543
https://dx.doi.org/10.1093/bioinformatics/btv543
https://opencadd.readthedocs.io/en/latest/
https://opencadd.readthedocs.io/en/latest/
https://docs.python-requests.org/
https://dx.doi.org/10.1093/nar/gkaa1100
https://github.com/Yelp/bravado
https://klifs.net/swagger/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://dx.doi.org/10.1093/nar/gky294
https://dx.doi.org/10.1021/ci00057a005
https://dx.doi.org/10.1021/ci200454v
https://dx.doi.org/10.1021/ci200454v

December 8, 2021

[49] van Linden OPJ, Kooistra AJ, Leurs R, de Esch IJP, de Graaf C. KLIFS: A Knowledge-Based Structural DatabaseTo Navigate Kinase–Ligand Interaction Space. Journal of Medicinal Chemistry. 2014; 57(2):249–277. doi:10.1021/jm400378w.
[50] O’Boyle NM, BanckM, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox.Journal of Cheminformatics. 2011; 3(1):33. doi: 10.1186/1758-2946-3-33.
[51] Moreno AJR, Jupyter_Dock: v0.2.5. doi: 10.5281/zenodo.5514956.
[52] Klebe G. Protein–Ligand Interactions as the Basis for Drug Action. In: Drug Design: Methodology, Concepts, andMode-of-Action Springer Berlin Heidelberg; 2013. p. 61–88. doi: 10.1007/978-3-642-17907-5_4.
[53] IPyWidgets, IPyWidgets Documentation. https://ipywidgets.readthedocs.io/en/latest/, [Online; accessed 2021-10-05].
[54] Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlić A, Rose PW. NGL viewer: web-basedmolecular graphics for largecomplexes. Bioinformatics. 2018; 34(21):3755–3758. doi: 10.1093/bioinformatics/bty419.
[55] Mortier J, Rakers C, Bermudez M, Murgueitio MS, Riniker S, Wolber G. The impact of molecular dynamics on drugdesign: applications for the characterization of ligand–macromolecule complexes. Drug Discovery Today. 2015;20(6):686–702. doi: https://doi.org/10.1016/j.drudis.2015.01.003.
[56] De Vivo M, Masetti M, Bottegoni G, Cavalli A. Role of Molecular Dynamics and Related Methods in Drug Discovery.Journal of Medicinal Chemistry. 2016; 59(9):4035–4061. doi: 10.1021/acs.jmedchem.5b01684.
[57] Salmaso V, Moro S. Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein RecognitionProcess: An Overview. Frontiers in Pharmacology. 2018; 9:923. doi: 10.3389/fphar.2018.00923.
[58] Google Research, Google Colab. https://colab.research.google.com/, [Online; accessed 2021-03-17].
[59] Rodríguez-Guerra J, condacolab. https://github.com/conda-incubator/condacolab.
[60] pdbfixer, pdbfixer. https://github.com/openmm/pdbfixer, [Online; accessed 2021-10-06].
[61] McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX, Schwantes CR, Wang LP, Lane TJ,Pande VS. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophysical Journal.2015; 109(8):1528 – 1532. doi: 10.1016/j.bpj.2015.08.015.
[62] Wagner J, Mobley DL, ThompsonM, Chodera J, Bannan C, Rizzi A, trevorgokey, Dotson D, Rodríguez-Guerra J, Camila,Behara P, Bayly C, Mitchell JA, JoshHorton, Lim NM, Lim V, Sasmal S, Wang L, Dalke A, SimonBoothroyd, et al.openforcefield/openff-toolkit: 0.10.0 Improvements for force field fitting; 2021, doi: 10.5281/zenodo.5153946.
[63] Arantes PR, Polêto MD, Pedebos C, Ligabue-Braun R. Making it Rain: Cloud-Based Molecular Simulations for Every-one. Journal of Chemical Information and Modeling. 0; 0(0):null. doi: 10.1021/acs.jcim.1c00998.
[64] Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: A toolkit for the analysis of molecular dynam-ics simulations. J Comput Chem. 2011; 32(10):2319–2327. doi: 10.1002/JCC.21787.
[65] Richard J Gowers, Max Linke, Jonathan Barnoud, Tyler J E Reddy, Manuel N Melo, Sean L Seyler, Jan Domański,David L Dotson, Sébastien Buchoux, Ian M Kenney, Oliver Beckstein. MDAnalysis: A Python Package for the RapidAnalysis of Molecular Dynamics Simulations. In: Sebastian Benthall, Scott Rostrup, editors. Proceedings of the 15th

Python in Science Conference; 2016. p. 98 – 105. doi: 10.25080/Majora-629e541a-00e.
[66] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. http://www.deeplearningbook.org.
[67] Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, Leswing K, Pande V. MoleculeNet: a benchmarkfor molecular machine learning. Chem Sci. 2018; 9:513–530. doi: 10.1039/C7SC02664A.
[68] Brown N, Fiscato M, Segler MHS, Vaucher AC. GuacaMol: Benchmarking Models for de Novo Molecular Design.Journal of Chemical Information and Modeling. 2019; 59(3):1096–1108. doi: 10.1021/acs.jcim.8b00839.
[69] Accelrys Inc , San Diego, CA, USA, MACCS Structural Keys.
[70] Kimber TB, Engelke S, Tetko IV, Bruno E, Godin G. Synergy effect between convolutional neural networks andthe multiplicity of SMILES for improvement of molecular prediction. arXiv preprint arXiv:181204439. 2018; https:

//arxiv.org/abs/1812.04439.
[71] pytest, pytest. https://docs.pytest.org/, [Online; accessed 2021-10-06].

12 of 13

https://dx.doi.org/10.1021/jm400378w
https://dx.doi.org/10.1021/jm400378w
https://dx.doi.org/10.1186/1758-2946-3-33
https://dx.doi.org/10.5281/zenodo.5514956
https://dx.doi.org/10.1007/978-3-642-17907-5_4
https://ipywidgets.readthedocs.io/en/latest/
https://dx.doi.org/10.1093/bioinformatics/bty419
https://dx.doi.org/https://doi.org/10.1016/j.drudis.2015.01.003
https://dx.doi.org/10.1021/acs.jmedchem.5b01684
https://dx.doi.org/10.3389/fphar.2018.00923
https://colab.research.google.com/
https://github.com/conda-incubator/condacolab
https://github.com/openmm/pdbfixer
https://dx.doi.org/10.1016/j.bpj.2015.08.015
https://dx.doi.org/10.5281/zenodo.5153946
https://dx.doi.org/10.1021/acs.jcim.1c00998
https://dx.doi.org/10.1002/JCC.21787
https://dx.doi.org/10.25080/Majora-629e541a-00e
http://www.deeplearningbook.org
https://dx.doi.org/10.1039/C7SC02664A
https://dx.doi.org/10.1021/acs.jcim.8b00839
https://arxiv.org/abs/1812.04439
https://arxiv.org/abs/1812.04439
https://docs.pytest.org/

December 8, 2021

[72] nbval, nbval. https://nbval.readthedocs.io/en/latest/, [Online; accessed 2021-10-06].
[73] GitHub, GitHub Actions. https://docs.github.com/en/actions, [Online; accessed 2021-10-06].
[74] MolSSI, cookiecutter-cms. https://github.com/MolSSI/cookiecutter-cms, [Online; accessed 2021-10-06].
[75] sphinx, sphinx - Python Documentation Generator. https://www.sphinx-doc.org/, [Online; accessed 2021-10-06].
[76] Python Software Foundation, Python Enhancement Proposal 8. https://www.python.org/dev/peps/pep-0008/, [On-line; accessed 2021-10-06].
[77] Python Software Foundation, Black: The Uncompromising Python Code Formatter. https://github.com/psf/black,[Online; accessed 2021-10-06].
[78] Black-nb, Black-nb: The Uncompromising Code Formatter, for Jupyter Notebooks. https://github.com/tomcatling/

black-nb, [Online; accessed 2021-10-06].
[79] PDB R, Legacy Fetch API Web Service. https://data.rcsb.org/migration-guide.html#legacy-fetch-api, [Online; accessed2021-10-26].
[80] Schrödinger L, The PyMOL Molecular Graphics System, Version 1.8. https://pymol.org/.
[81] Binder, TeachOpenCADD on Binder. https://mybinder.org/v2/gh/volkamerlab/TeachOpenCADD/master, [Online;accessed 2021-10-06].
[82] Sphinx-nb, Sphinx-nb: Jupyter Notebook Tools for Sphinx. https://nbsphinx.readthedocs.io/, [Online; accessed 2021-10-06].
[83] Binder, Binder. https://mybinder.org/, [Online; accessed 2021-10-06].
[84] TeachOpenCADD, TeachOpenCADD installation instructions. https://projects.volkamerlab.org/teachopencadd/

installing.html, [Online; accessed 2021-10-06].
[85] Volkamer Lab, TeachOpenCADD Talktorial Template. https://github.com/volkamerlab/teachopencadd/blob/master/

teachopencadd/talktorials/T000_template/talktorial.ipynb, [Online; accessed 2021-03-11].

13 of 13

https://nbval.readthedocs.io/en/latest/
https://docs.github.com/en/actions
https://github.com/MolSSI/cookiecutter-cms
https://www.sphinx-doc.org/
https://www.python.org/dev/peps/pep-0008/
https://github.com/psf/black
https://github.com/tomcatling/black-nb
https://github.com/tomcatling/black-nb
https://data.rcsb.org/migration-guide.html#legacy-fetch-api
https://pymol.org/
https://mybinder.org/v2/gh/volkamerlab/TeachOpenCADD/master
https://nbsphinx.readthedocs.io/
https://mybinder.org/
https://projects.volkamerlab.org/teachopencadd/installing.html
https://projects.volkamerlab.org/teachopencadd/installing.html
https://github.com/volkamerlab/teachopencadd/blob/master/teachopencadd/talktorials/T000_template/talktorial.ipynb
https://github.com/volkamerlab/teachopencadd/blob/master/teachopencadd/talktorials/T000_template/talktorial.ipynb

	Abstract
	Introduction
	New talktorials
	Webservices queries
	Pocket detection, ligand-protein docking and interactions
	Molecular dynamics
	Deep learning

	Best practices
	TeachOpenCADD usage
	Conclusion
	Code and data availability
	Funding
	Author Contributions
	Disclosures
	Acknowledgements

