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Abstract 

With the continuous growth of extrusion bioprinting techniques, ink formulations based on 

rheology modifiers are becoming increasingly popular, as they enable 3D printing of non-

printable biologically-favored materials. However, benchmarking and characterization of 

such systems are inherently complicated due to the variety of rheology modifiers and 

differences in mechanisms of inducing printability. This study tries to explain induced 

printability in formulations by incorporating machine learning algorithms that describe the 

underlying basis for decision-making in classifying a printable formulation. For this purpose, 

a library of rheological data and printability scores for 180 different formulations of 

hyaluronic acid solutions with varying molecular weights and concentrations and three 

rheology modifiers were produced. A feature screening methodology was applied to collect 

and separate the impactful features, which consisted of physically interpretable and easily 

measurable properties of formulations. In the final step, all relevant features influencing the 

model’s output were analyzed by advanced yet explainable statistical methods. The outcome 

provides a guideline for designing new formulations based on data-driven correlations from 

multiple systems.  



 

1. Introduction 

By introducing additive manufacturing (AM) technologies, particularly 3-dimensional (3D) 

bioprinting, to the field of tissue engineering (TE), a significant expansion in the scope and 

applicability of TE approaches was achieved.[1] The advancement of 3D bioprinting 

significantly depends on development in three critical frontiers, technological innovations,[2] 

the discovery of new functional biomaterials,[3] and deepening our understanding of 

regenerative biology.[4] While addressing all the requirements for a successful regenerative 

approach might seem out of reach for the moment, significant resources have been 

dedicated to approximating this process. In this respect, engineering biomaterial inks and 

bioinks includes a relatively large portion of research in the field, exclusively exploring the 

enabling possibilities through introducing new synthetic and natural biomaterials and 

formulations.[3] 

Apart from meeting the strict biological requirements, the materials used in the 3D 

bioprinting approach, or in general terms, the 3D printing of soft biomaterials, need to fulfill 

some physical and mechanical criteria. The main class of materials used as the ink for this 

purpose includes hydrogels or polymer solutions. Traditionally, the natural biocompatible 

hydrogel inks failed to meet the 3D printing prerequisites, categorized primarily by lack of 

printability.[3] The phrase printability refers to the capability of the ink material in allowing 

the 3D printing process to form the designed structure with acceptable shape fidelity, 

mechanical stability, and structural integrity.[5] Despite the extent of these measures, the 

printability of a hydrogel ink or polymer solution is greatly influenced by its chemistry and 

mechanical properties.[3] 

Due to the biological requirements, many attempts were made to enable or enhance the 

printability of promising known bioactive hydrogels and polymer solutions that formerly 

lacked physical and mechanical needs. These mainly included chemical modifications or 

blendings with a secondary material that could induce printability. The latter, generally 

referred to as formulations, is becoming increasingly popular for two main reasons. Firstly, 

several highly efficient additives are already available that meet the biological requirements 

and can significantly enhance the printability of the base hydrogel or polymer solution. 

Secondly, and more importantly, the low cost and the straightforward know-how of creating 



new formulations constitute a significant advantage over developing sophisticated 

chemistries to induce comparable functionalities. Although this ease of processing does not 

replace the offerings of a sophisticated and application-tailored chemical modification, the 

literature shows an increasing trend in applying formulations in different domains related to 

the 3D printing of biomaterials. 

Successful engineering of a new formulation for 3D printing needs a profound understanding 

of the material properties on micro and macro scales. However, in an interdisciplinary field 

of research such as biofabrication, there are tendencies in approximating the materials’ 

related requirements, mostly towards more established biological measures. In this context, 

the performance of an additive is mainly weighted by the corresponding biological response 

rather than quantification and analysis of the material’s properties. Nevertheless, the 

available literature shows increasing awareness and willingness of research groups to design 

the formulations based on traditional and state-of-the-art physical characterization 

methods.[3] These mainly included the rheological characterizations of inks and finding the 

correlations between the printing conditions and printability of the inks. 

Analysis of such systems usually requires a degree of simplification, as increasing the number 

of parameters and variables could quickly deteriorate the interpretability of the readout by 

the conventional methods. A promising tool to overcome this limitation might be the data 

analysis techniques employing Machine Learning (ML) principles.[6] ML methods include 

statistical and mathematical tools which can reveal and exploit the relationships in data and 

deliver complex models to describe the system. Despite the visions and hopes for applying 

ML tools in the scope of 3D bioprinting,[7-9] there are a few reports on applying ML 

techniques to analyze correlations in 3D bioprinting of hydrogel inks,[10-13] which mainly 

focused on providing a metric on the predictability of the printability of the system, based on 

a few materials-  and 3D printing process-related parameters. 

A common approach in applied ML techniques is to provide metrics and models that enable 

a system’s predictability based on some hidden correlations. By increasing the complexities 

of the models and their predictability power, the combinations and correlations of variables 

become more obscure, and interpretation of the process of making a particular decision by 

the model becomes inherently complicated. This problem gave rise to interpretable models 

mostly recognized as explainable artificial intelligence (AI), which provide a technically 



equivalent but possibly more understandable approach than black-box models for data 

analysis and predictions.[14-16] 

An interesting question in the context of 3D bioprinting is if the explainable AI could reveal 

and interpret the physical relationships in a practical problem such as inducing printability in 

a formulation. This question formed the rationale behind the current study, that whether it 

is possible to predict the printability of a formulation created by a rheology additive so that 

the process of making a decision by the model is understandable and interpretable by a user 

familiar with rheology and 3D printing. It should be noted that this study aims to provide 

insight into the complex correlations and relationships of different material-related 

properties that result in the creation of a printable formulation rather than providing a set of 

metrics for assessing the printability of different compositions. For this purpose, an 

extensive library of different formulations based on hyaluronic acid (HA) polymer solutions 

and three different rheology modifiers with distinct microstructural interactions were 

prepared. Different characteristics of these formulations were identified and labeled as the 

features; measurable properties shared between all the experimental conditions. 

Rheological data were the primary source of information. However, some combinations of 

printing conditions that were directly influenced by the material’s properties were 

considered. After developing a predictive ML model with high precision, the main focus was 

to explain how the knowledge from the modeled data could interpret a particular model’s 

decision towards the classification of a formulation. 

2. Results and discussions 

2.1. Production of data with minimized bias 

Figure 1 shows an overview of the multiple steps taken in this study to identify and explain 

the contributing factors in enabling printability by adding rheology modifiers into a not-

printable polymer solution. In the first stage, three different rheology modifiers with 

significantly different physical properties were selected to alter the rheology and printability 

of plain HA solutions. In addition to the interactions between HA molecules and the additives, 

each rheology modifier had unique interaction mechanisms to alter the viscoelasticity of final 

formulation: colloidal and granular interactions of Carbopol microgels, formation of a 

secondary network by electrostatic interactions between Laponite nanodiscs, and 

entanglement and network formation of one-dimensional self-assembled Fmoc-FF fibrils. 



Several essential factors could potentially influence the extent of modification, notably the 

polymer-additive ratio and interactions, and the viscoelasticity of the initial polymer solution. 

This is apart from the fact that each additive, depending on the effectiveness of the reinforcing 

mechanism, might show a specific pattern in altering rheological properties. For example, 

colloidal-based additives could prominently induce yield behavior, while a secondary network 

formation might stabilize the frequency response over a broader range of frequencies. 

Showing such dependencies of the rheological behavior on the type of the additive might 

result in a strong bias throughout the analysis, potentially decreasing the precision and 

reliability of the outcome. For this purpose, the information regarding the type and content 

of the rheology modifiers in each formulation were anonymized. In this way, the outcome of 

rheology experiments only contained information on the viscoelasticity of the tested samples, 

which were linked with the printing performance of the same formulation in a later stage. 

 

Figure 1. A demonstration of the multi-steps taken in this study to explain the printability. 

The flow of this study is depicted from left to right of the figure. First, the formulations 

based on different additives and starting HA solutions were prepared. At the second step, 

rheological characterizations and printing experiments were performed. The quantification 

step involved the extraction of different rheological features and quantitative analysis of the 

printability of formulations. In the next step, datasets based on a combination of all acquired 

features and printability scores were fabricated. By using the generated datasets, a random 

forest ML algorithm was trained. In the final step, a post-analysis of the obtained model 

revealed the correlations between data and the influence on making a decision by the 

model. 

 



The multi-step rheological testing protocol was designed to acquire information on 

viscoelasticity and flow properties of samples holistically. The viscoelastic properties of 

formulations were directly extracted from the frequency and amplitude sweeps, including 

the values of storage modulus, damping factor, and the observed crossovers. A previous 

study on collagen derivatives showed that the elasticity of viscoelastic hydrogel ink during 

deformation could significantly influence the prediction of printability.[13] The 3-Interval 

Thixotropy and Oscillatory Tests (3ITT and 3IOT) returned the time dependant percentage of 

recovered viscosity (in 3ITT) and storage modulus (in 3IOT) of the formulations after a 

significant shear deformation. These two methods could serve as alternatives to more 

sophisticated creep and stress relaxation studies, as they can provide a rough approximation 

of the recovery of microstructural interactions of the material after deformation. This is 

especially important in a process like extrusion 3D printing, as the hydrogel ink experiences a 

significant amount of deformation during extrusion, and the ability to retain the shape 

afterward could be correlated with its recoverability. The apparent yield behavior of 

formulations was identified by whether a peak in the viscosity-shear stress plot was 

observed, and if so, the corresponding value was recorded. Similarly, estimation of 

printability of collagen-based bioinks showed significant dependency on the value of yield 

stress.[13] However, since the screening tests (data not shown) showed difficulties in 

acquiring yield stress in a hybrid system containing different proportions of additives, it was 

instead decided to capture the occurrence of a peak in viscosity during the sweep and record 

the corresponding value. From the physical point of view, this peak and its value 

corresponds to the buildup of resistance against the flow on a macroscopic scale. In the last 

step, the viscosity of formulations subjected to increasing shear rates was fitted by the 

Carreau-Yasuda model, and the values of zero-shear viscosity and the consistency index of 

the model were extracted. In particular, the consistency index (λ) was chosen to provide an 

empirical estimate of the shear rate at which a transition from Newtonian to power-law 

behavior was evident (λ-1). 

The testing protocol was aimed to maximize the obtained information with minimum 

complexities. Especially, creep-related tests were avoided since the preliminary experiments 

(data not included) for optimization of protocol showed the sensitivity of creep tests 

towards not-printable formulations, potentially resulting in a bias in the analysis. Moreover, 

sophisticated methods such as generation of the relaxation spectra and studying the 



advanced rheological features of the samples were avoided since these methods generally 

depend on sophisticated post-processing steps by a knowledgeable user. 

The printing experiments were conducted by considering that no HA solution was printable 

by itself. Even at high molecular weights and high concentrations, HA solutions could not 

retain the shape after extrusion, and the shape fidelity due to the spreading of the extrudate 

was quickly diminished. Moreover, the printing experiments were performed considering 

the volumetric flow of each formulation during printing. A recent study by Fisch et al.[17] 

demonstrated the sensitivity and susceptibility of pneumatic driven extrusion systems to 

over-or under-extrusion if the volumetric flow and the cartesian translation feedrate are 

mismatched. For this reason, each formulation was printed at a unique combination of 

applied pressure and feedrate; the latter was derived automatically based on the extruded 

mass of the formulation prior to printing for a given time. Two features of the printing 

process, the ability to form a filament and the proportionality of the volumetric flow to 

printing pressure, were recorded as the characteristics of the printing process per 

formulation. 

 

Figure 2. A schematic and experimental representation of the metric used in this study to 

quantify printability. Top-left) a 2-layer grid design with varying fiber spacing was used to 

assess the printability of the formulations. The fiber spacing was increased by increments of 

inner nozzle diameter (Di). Bottom-left) an image of an actual sample printed according to 

the grid design. Top-right) The resolved area of design is used for benchmarking printability. 



Bottom-right) The segmented image of a printed formulation is used to calculate the 

percentage of resolved area. 

 

The designed path for the printability assessment included a 2-layered rectangular mesh 

with a directional increase in fiber spacing based on increments of the inner diameter of the 

nozzle (Di) (Figure 2). The printing pattern with changing 2-dimensional (2D) spacing allowed 

rigorous benchmarking of the printability of formulations. The 3D assessments of printability 

were deliberately avoided since criteria such as general 3D shape fidelity and fiber sagging 

supposably demand a certain extent of viscoelasticity, which could interfere with the 

objectives of this study in the unbiased evaluation of induced printability by rheology 

additives. Based on our preliminary screening experiments, a weighting approach to 

penalizing the easy to resolve areas was employed (Supporting Information, Figure S1). The 

weighted quantified areas of each print were normalized to the designed pore area to 

produce the printability index of each formulation. In general, the induced printability in 

different formulations was not significant, as only about 14% of the formulations could 

resolve more than 33% of the designed area. We speculate that several factors contributed 

to such behavior. Among them, the concentration restrictions (maximum concentration of 

additives was 2.5 wt./v% in a 1:1 additive:polymer ratio) imposed by the experimental 

design and the wide range of physical properties of initial polymer solutions (resulted by 

variation of concentration and molecular weight) would play the critical role. 

The printing parameters could significantly influence printability.[18] This influence is more 

evident in resolving geometrical features for which an abrupt change in the printing process, 

such as a change in direction, is expected.[17] In addition, other factors such as extrusion rate 

and substrate interactions potentially influence the spreading and fidelity of extruded 

filaments. As described earlier, the printing speed adjustment based on the volumetric flow 

was employed to eliminate the factor of over-and under-extrusion, while the same substrate 

was used to print all the formulations. However, to avoid complexities caused by pressure-

dependent extrusion delay, no changes in printing speed at turning points were 

implemented. This phenomenon resulted in the underscoring of weakly printable 

formulations, as revealed by the review of the raw quantitative analysis of individual printing 

experiments (data not included). However, in an equally conditioned set of experiments, this 



could be considered a result of the lack of meeting the viscoelasticity requirements for 

extrusion printing. 

After acquiring the rheological and printing data, the generation of the dataset for further 

analysis was performed by considering two feature types. Concretely, some aspects of the 

raw data from rheological experiments were used as the primary features. These included, 

but were not limited to, the storage modulus and damping factor in amplitude and 

frequency sweeps, the crossover points, the filament-forming ability, or the results of 

regression analysis for recovery and flow experiments. In order to include the additive 

nature of the rheology modifiers in the analysis, the majority of the extracted primary 

features of formulations were individually divided by the corresponding values of the 

respective HA solutions of different concentrations and molecular weights. In this way, 

instead of an absolute value of a given data point for a formulation, the proportion of 

change to the respective HA solution will be analyzed. The details of the complete list of 

features are provided in Supporting Information (Table S2). 

The second type included the combinatory features. The combinatory features were 

generated based on combining some aspects of the data collected during experiments. A 

few examples of such features include the proportionality of the volumetric flow to printing 

pressure, the ratio between damping factors at the two extremes of frequency sweeps, or 

the ratio between the storage modulus of high and low ends of the sweep regions.  

As a principle, all the primary and combinatory features were selected based on physically 

explainable factors rather than abstract quantities. This would guarantee that this study’s 

outcome is physically interpretable and can shed light on the complexities of printability 

induced by the addition of rheology modifiers. 

2.2. Selection of relevant features influencing printability 

The data from rheological and printability experiments of all the formulations were prepared 

and consolidated into a single structured data frame. An intuitive nomenclature system to 

identify the different features of the data was devised. The complete list of nomenclature 

used to address different elements in the dataset is provided in Supporting Information 

(Table S2). To increase the legibility of the manuscript, Scheme 1 provides the guideline for 

interpretation of the coded nomenclatures. 



 

Scheme 1. Reference for the nomenclature used to address different features in this study. 

 

If evaluated by an experienced user familiar with rheology and extrusion printing, some 

correlations, patterns, and trends in data might be recognized. Analytically, this was 

demonstrated by performing Spearman’s correlation analysis on the raw data (Supporting 

Information, Figure S2). In practice, rheological data obtained from printable formulations 

might show some patterns in different aspects. For example, as revealed by the correlation 

analysis, a monotonic correlation between the values of damping factor and elastic modulus 

is expected, as increased elasticity of the formulation usually corresponds to a decreased 

loss of energy during deformation, or a slow initiation of recovery in a formulation subjected 

to 3ITT tests is followed by a slow continuation. Considering these trends, a refinement and 

selection of features are necessary. This refinement could potentially increase the model’s 

usefulness and interpretability by including only relevant information, while the possibility of 

overfitting during the training would be minimized. This process results in collections of 

features that directly and significantly influence the printability of the formulation, and at 

the same time, they can be explained by the physics of the problem. 

2.2.1. All relevant features to explain printability 

Implementing the statistically robust algorithm of Boruta feature selection[19] refined the 

features to those that significantly contributed to printability prediction with a high F-score 

of the RF model. Boruta algorithm identifies the importance of the features for constructing 



the ML model based on the performance of a randomized version of the features through 

many iterations. Eventually, the statistically impactful features are selected from the top 

0.5% of the binomial distribution of the iterations. This procedure resulted that, among the 

initial 65 features, only 15 were identified as having a significant influence on the 

predictability of the RF model. To explore and understand the existing correlations between 

these essential features, the Spearman rank-order correlation matrix and the linkage based 

on hierarchical cluster analysis of Spearman’s correlations are demonstrated in Figure 3. This 

analysis shows three main clusters of features (as demonstrated by different colors of the 

dendrogram) with distinct linkage distances from each other. 

To physically interpret the results, these three clusters included features which: 1) describe 

the degree of plasticity of the flow (orange leaves in Figure 3), 2) describe the ease of 

inducing flow and its homogeneity (green leaves in Figure 3), and 3) describe the 

viscoelasticity of the formulation prior to and after the flow (red leaves in Figure 3). 

The first cluster included the ratio between storage modulus at the flow point and the limit 

of the linear viscoelastic range, and the proportionality index of the flow during printing. The 

former describes the plasticity of the formulation prior to the flow, while the latter is a 

measure of how the formulation’s flow can be maintained during the extrusion through a 

fine nozzle. Although obtained from two different methods, the information from these two 

features complements each other, shown by their correlation. 

The second cluster also combines the information gathered from rheological experiments 

and printing, correlating the quality of the flow, indexed as the ability to form filament after 

extrusion, with the flow characteristics of the formulations determined by the Carreau-

Yasuda model. The analysis showed that the yield viscosity is closely correlated with whether 

or not a filament would be formed during the extrusion, both to a lower extent, with the 

transition from  Newtonian to non-Newtonian flow during shear deformation. The latter is 

quantified by the consistency index Lambda in the Carreau-Yasuda model. 



 

Figure 3. The Spearman rank-order correlation matrix and the linkage according to 

hierarchical cluster analysis of Spearman’s correlations shown by the dendrogram. Numbers 

on the left identified three clusters. Value of 1 or -1 in the correlation matrix denotes high 

correlations, and the direction of association depends on the sign of the correlation 

coefficient. 

 

The third cluster represents more complex correlations between the viscoelastic properties 

of the formulations. On the one hand, the closely linked damping factors at moderate shear 

strains (14.8 and 21.7%) are, with a considerable linkage distance, correlated with the values 

of the damping factors at high shear strains (46.6, 68.5, and 100%). This indicates that while 

the extent of the viscous portion of deformation plays a significant role in predicting 

printability, the flow pattern by itself is also of great importance. On the other hand, five 

different aspects of the viscoelasticity of the formulations are correlated with each other, 

including the energy required to induce the flow of formulation with consideration of the 

elasticity of the starting HA solution (ratio between storage modulus at low strain and flow 

point multiplied by the storage modulus of corresponding HA at 0.1% strain), the extent of 

stability of the interactions by changing the frequency of deformation, the required strain to 



induce the flow, the extent of linear viscoelasticity, and the rate of recovery of interactions 

after the flow of the formulations. 

Although the hierarchical clustering analysis reveals the correlations between different 

features, it does not provide information on how these features interact and contribute to 

predicting the printability of the formulations. As mentioned earlier, it should be noted that 

the purpose of this study is not to provide a metric for the prediction of printability based on 

specific thresholds of the features; rather, the subject of the forthcoming discussions is to 

understand the contributions and interaction of features, which induced printability. 

2.3 Explanation of induced printability 

Despite identifying the important features that contributed to printability prediction, the 

extent of the contributions is unknown. This is a typical characteristic of models generated 

with most ML methods, as interpreting the predictive model’s output is a tedious task, 

especially by increasing the complexities in non-linear models. Several measures and 

methods have been developed in recent years to enhance the interpretability of the ML 

outcome. The details and review of such methods are out of the scope of this study. 

However, in the context of this study, it is crucial to understand how interpreting the 

decision-making process of the ML model could result in understanding the contribution of 

different factors in inducing the printability in a polymer solution ink. 

The ML model identifies printable formulations in a pool of many observations based on the 

prior knowledge of correlations and interactions gained during training. Apart from metrics 

to describe the accuracy of such a model, the conditions that resulted in recognizing the 

printable formulations with high accuracy are the key subjects in explaining how a new 

formulation with a given set of attributes would be classified. Analogically, the rationale 

behind making a particular prediction of a model is comparable with tunning some principal 

and dependant physical properties of the base polymer solution by adding additives that 

would enhance or worsen printability from an experimental point of view. In this scope, 

prior knowledge of the full extent of the modification is not necessarily available, although 

some understandings about simple correlations were obtained through training.  

Shapley additive explanations (SHAP) is a powerful tool for interpreting the prediction by ML 

models.[16] SHAP has a solid theoretical foundation in game theory and can provide 

contrastive explanations and analyze the model’s output locally and globally. The extent of 



the contribution of different features in the prediction of printability of formulations is 

demonstrated in Figure 4A. The average SHAP value quantifies the impact of each feature on 

the model output by interpreting the average expected contribution of the feature after all 

the possible combinations of other features are considered.  

The SHAP feature importance plot shows that the most important features in the global 

scale for printability prediction included the yield viscosity, ratio of the storage modulus at 

flow point to that of the limit of the viscoelastic range, and the consistency index in the 

Carreau-Yasuda model. This is an interesting finding since it shows that the combination of 

resistance to flow, the plasticity of the formulation prior to flow, and the transition state 

from Newtonian to non-Newtonian flow critically determine the model’s output. Although 

the impact of the other features on the model’s output is significantly less than the main 

three features, their contributions to the model’s accuracy can not be disregarded since the 

SHAP analysis was performed on all the relevant features selected by the Boruta algorithm. 

The average SHAP value provides information about the contribution of the features on a 

global scale. However, on a local scale, evaluation of individual observations and the 

corresponding SHAP value demonstrates how each feature contributed to predicting a 

printable formulation experimentally (Figure 4B). Careful analysis of Figure 4B demonstrates 

that different features contributed in different directions to enabling printability. For 

instance, a high yield viscosity of the formulation resulted in a higher printability score, while 

a low ratio between the storage modulus at the flow point and that of the limit of 

viscoelastic range resulted in a printable formulation. On the contrary, moderate to high 

values of the consistency index in the Carreau-Yasuda model correspond to printable 

formulations, translating to transition to a shear thinning behavior at moderate to low shear 

rate values. Additionally, formulations with a lower flow proportionality index were 

statistically more susceptible to be identified as printable, meaning that either a lesser 

extrudate mass at constant pressure or a larger force to extrude the same mass of the ink 

determines a printable formulation. This feature directly corresponds to the microstructural 

interactions of the formulation; the stronger the interaction, the better resistance to 

deformation and better printability. 

The formulations that resulted in filament formation during printing had a higher probability 

of being recognized as printable; especially, the formation of broken and fragmented 



filaments did not positively contribute to printability prediction. A higher ratio between the 

damping factor at low and high frequencies of deformation contributed more to the 

printability of the formulation. From the physical point of view, this meant that lesser 

variation of the damping factor in the frequency range results in a higher chance of 

printability. In other words, more stability of the interactions at the moderate to the low 

portion of the frequency spectrum results in better printability. Similarly, a higher ratio of 

storage modulus at the flow point to the one at 0.1% strain (proportional to the starting HA’s 

storage modulus) resulted in a higher probability of printability, meaning that the higher 

elasticity of starting HA solution could contribute to more printability of the formulation. The 

higher flow strain also resulted in higher printability of the formulations, and similarly, 

formulations with a moderate to high level of the limit of linear viscoelastic range showed 

more printability.  

 

Figure 4. SHAP values of different features show their contributions to the model output in 

two scales. A) on a global scale, the mean SHAP value represents the feature’s average 

impact on the predictions made by the model. B) on a local scale, the rank-ordered features 

explain the margin output of the model, which is the change in printability of formulations.  

The plot also shows the range of influence over the dataset. The color shows how the 

change in the value of a feature affects the change in the prediction of printability. 

 

In contrast to the monotonic behavior of the features mentioned so far, the impact of the 

ratio between the viscous and elastic characteristics of the formulations on the printability 

strongly depended on the state of the deformation. The formulations with viscous dominant 

behavior at high shear strain (68.5 and 100%) showed more printability, meaning they 



already started to flow at such strain values. On the other hand, the dominant elastic 

behavior at lower shear strains (14.8 and 21.7%) contributed positively to printability, while 

a mixed impact of the value of damping factor at 46.6% strain on printability was observed. 

In other words, the dominancy of elastic behavior at low strain values and prominent viscous 

behavior at high strain values contributed to the formulations’ printability. 

The information obtained from the SHAP values for each observation reveals many 

dependencies of printability on individual factors. Nevertheless, a significant amount of 

mutual contributions of different factors could occur in a multi-variable system. Figure 5 

shows some notable dependencies observed between all the combinations of the features. 

Every dot in plots of Figure 5 corresponds to one observation, and a SHAP value above zero 

meant a positive contribution of the feature in that observation towards being classified as a 

printable formulation. In contrast, a value below zero corresponded to a negative influence 

on the outcome of the observation. 

The combination of increasing the elasticity of starting HA solution and decreasing the 

plasticity of formulation prior flow led to a positive impact on the model’s prediction, if the 

flow’s proportionality index during printing was low (Figure 5A). Additionally, the flow’s 

proportionality index positively impacted the predictability when extruding the formulation 

formed a filament at relatively high pressures (Figure 5B). The damping factor at the high 

end of the amplitude sweep profile of the formulations started to significantly impact the 

model’s output when it was larger than 1 (a viscous behavior of the formulation) and the 

plasticity prior to the flow was small (Figure 5C). From a physical point of view, this could be 

interpreted as a printable formulation had probably started to flow with minimized force at 

lower strain values. However, the formulation with a low damping factor at low strain values 

positively impacted the model’s predictability, meaning that a high degree of elasticity prior 

to flow critically impacts the prediction of printability of the formulation (Figure 5D). 

The analysis showed that the observations, in which higher stability in microstructural 

interactions was combined with a higher elasticity imposed by the starting HA’s solution, had 

a more positive impact on the model’s predictability towards identifying printability (Figure 

5E). Ultimately, the observations in which the degree of plasticity prior to flow was low 

significantly impacted the model’s predictability, while they mostly showed high values of 

yield viscosity (Figure 5F). 



These were a few examples of the many combinations of different properties that could 

enhance or worsen the model’s predictability power. The key aspect in explaining the 

printability induced in a formulation is to consider the many contributing factors which could 

individually play a minor or major role in imposing the desired effect. Figure 5G-I show three 

different example observations in which the mutual contributions of different features 

respectively resulted in a minor negative, significantly positive, and significantly negative 

offset in the final prediction of the model (f(x)) compared with a random guess (E(f(x)), the 

baseline value of the model). 

 

 

Figure 5. SHAP dependence plots of some notable combinations of features to show how the 

estimation of printability varies by feature value. These include the combinations of A) HA-

dependent plasticity of formulation prior flow and the flow proportionality index, B) flow 

proportionality index and filament formation ability, C) damping factor at high strain, and 

the plasticity of formulation prior to the flow, D) damping factor at low ends of the strain 

sweep, E) stability of frequency response and the HA-dependent plasticity of formulation 

prior to flow, and F) plasticity of formulation prior to the flow and yield viscosity. Waterfall 



plots showing the explanations for individual predictions where positive (red) and 

negative(blue) contributions of each feature offset the model output (dashed vertical lines) 

by a G) minor negative, H) significantly positive, and I) significantly negative value from a 

random guess by the model (the baseline value of the model, E(f(x)). Grey numbers indicate 

the actual value of the features per observation. 

 

Printability of a formulation is a result of the complex interactions between different 

features of additives and the base ink, together with the requirements of the process. The 

formulations investigated in this study involved a range of characteristic behaviors and 

included three rheology additives with essentially different governing physics. From a 

general point of view, the mechanisms driving the reinforcement and variation of 

viscoelasticity in these formulations could vary. Additionally, some factors such as chemistry 

and affinity of the additives and base polymer solutions could significantly change the 

mechanisms of interactions. These fundamental aspects were not considered in this study, 

since as demonstrated, the multitude of influencing factors could easily complicate the 

process of engineering a formulation ink. Nevertheless, some rules of thumb or general 

guidelines could be identified, especially if we consider that the features investigated in this 

study were the observed effects caused by the material-dependent properties. 

We speculate that these inherent complexities resulted that the few available studies on the 

application of ML in the 3D (bio)printing domain focused on either investigating a group of 

inks with similar characteristics or a set of process parameters with minimum alterations in 

ink properties.[10-13] The rationale behind limiting the factors is very reasonable, considering 

the interpretability of the outcome and the required resources. However, it should be noted 

that the results of such studies, including the current one, should be interpreted cautiously, 

as introducing new elements to the system might form new correlations and contributions, 

which could potentially influence the outcome. The current study’s findings are almost in the 

same direction as the previous literature. However, a curious reader is courageously 

welcomed to challenge and explore the different dimensions of similar systems, as the 

results of these studies might not replace an expert’s knowledge of the data in a particular 

problem. 

 



3. Conclusions 

The current study attempted to investigate and analyze the complex process of inducing 

printability in a non-printable polymer solution by adding rheology modifiers. By applying a 

classification machine learning algorithm, it was possible to build a model to predict the 

printability of formulations based on three different rheology modifiers in a matrix of HA 

with varying concentrations and molecular weights. Instead of providing a metric, this 

study’s focus was to establish a correlation between different rheological aspects of the 

formulation and their flow behavior with the observed trends in printability. Advanced data 

analysis tools were employed to unveil the correlations between the essential properties of 

formulations. 

In summary, the obtained model predicts that from a statistical point of view, a formulation 

becomes printable when it starts to show a high yield viscosity and a low degree of plasticity 

prior to flow, while the transition from Newtonian to non-Newtonian behavior of the flow 

occurs at relatively low shear rates. The formulation tends to flow at higher pressures during 

printing, and extruding through a small nozzle forms a filament rather than a droplet. The 

formulation based on polymer solutions with higher elasticity tends to be more printable, 

and a higher degree of stability of microstructural interaction over a range of frequencies is 

favored. While generally, a more extended range of linear viscoelasticity is desired, the 

damping factor of the formulations at low and high strain values should follow a pattern, as 

a formulation with more elasticity at the lower range and high viscous nature at the higher 

range is more desired. The kinetics of the recovery seems to have no directional influence on 

the prediction of printability, and a case-specific study approach could be of more 

usefulness. 

Rather than providing a metric for printability, the objective of this study was to establish 

correlations between the multitude of different viscoelastic and printing properties of 

formulations. While not intended to construct conclusive metrics to predict printability, this 

study attempted to draw a more generic map for designing new formulations based on data-

driven correlations from inherently different systems. 

  



4. Experimental section 

Materials 

Hyaluronic acid sodium salt with three different molecular weights was purchased from 

Carbosynth (Mw 0.6-1.0 MDa, 1.0-2.0 MDa, and 2.0-2.5 MDa; Biosynth Carbosynth, Compton, 

UK). Carbopol 980 NF was purchased from Lubrizol (Lubrizol Pharmaceuticals, OH, USA). 

Laponite XLG was purchased from BYK Additives (BYK-Chemie GmbH, Germany). N-

fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) was purchased from Bachem (Bachem, 

Switzerland). Dimethylsulfoxide (DMSO) was purchased from Sigma-Aldrich (Sigma-Aldrich, 

USA). Sodium hydroxide was purchased from Merck (Merck KGaA, Germany). 

Formulations 

HA-Carbopol (HAC), HA-Lapointe XLG (HAL), and HA-Fmoc-FF (HAF) formulations were 

prepared with different concentrations and starting HA molecular weights by thoroughly 

mixing the required amounts of HA and the respective additive’s stock solutions, as listed in 

Table 1. All the formulations were incubated at 4 °C for 24h after mixing. One hour of 

equilibrium time at room temperature was administered before each measurement. 

For HAC formulations, the stock solution of Carbopole at 30 mg.mL-1 was prepared in MilliQ 

water, and the pH of the solution was neutralized with dropwise addition of 10N sodium 

hydroxide solution. The 100mg.mL-1 stock solution of Fmoc-FF in anhydrous DMSO was used 

to prepare HAF formulations. The Fmoc-FF stock solutions were prepared freshly. To prepare 

HAL formulations, 55 mg.mL-1 stock solutions of Laponite-XLG in MilliQ water were prepared. 

Stock solutions of HA with different concentrations and molecular weights in MilliQ water 

were prepared by vigorous shaking at 250 rpm at 40 °C overnight, using New Brunswick Innova 

40 incubator shaker (Eppendorf, Germany). 

 

Table 1. Different formulations based on additives used in this study 

Formulation HA: Additive Total concentration (mg.mL-

1) 

HA Mw (MDa) 

HAC 10:10…10:01 15 
0.6-1.0 

1.0-2.0 



2.0-2.5 

30 

0.6-1.0 

1.0-2.0 

2.0-2.5 

HAL 10:10…10:01 

15 

0.6-1.0 

1.0-2.0 

2.0-2.5 

30 

0.6-1.0 

1.0-2.0 

2.0-2.5 

45 
1.0-2.0 

2.0-2.5 

50 0.6-1.0 

HAF 10:10…10:01 5 

0.6-1.0 

1.0-2.0 

2.0-2.5 

 

Rheology 

An Anton Paar MCR702 rheometer with a 25 mm parallel plate geometry at 500 µm gap was 

used to analyze the formulations. A general protocol for rheological measurements was 

designed and followed for each experiment. The protocol included the following steps: 1) 

homogenizing the sample by constant rotation at 1.0 s-1 for 60 s 2) frequency sweep between 

0.1-100 rad.s-1 at 0.1% strain 3) amplitude sweep at 10 rad.s-1 in logarithmic scale between 

0.01-500% strain 4) 3-Interval Thixotropy Test (3ITT) at 1.0, 100, and 1.0 s-1 shear rates. The 

recovery viscosity was calculated as the percentage of the rest viscosity at 5, 10, and 30 

seconds 5)  3-Interval Oscillatory Test (3IOT) at 10 rad.s-1 with 0.5, 50, and 0.5% strain. The 

recovery storage modulus was calculated as the percentage of the rest storage modulus at 5, 

10, and 30 seconds. 6) shear stress sweep in rotation in linear scale from 1.0 to 100 Pa with 

0.5 Pa increments 7) transient shear steps with shear rates in logarithmic scale from 0.1 to 100 

s-1, using a dynamic data acquisition method. The viscosity at each discrete shear rate value 

was monitored every 100 ms, and the corresponding viscosity value was reported if a 0.5% 



tolerance threshold over 10 observed values was met. A viscosity vs. shear rate curve was 

generated using the acquired data, followed by fitting with the Carreau-Yasuda model. 

A rest period between each measurement step was implemented to recover the sample after 

deformation. Samples were gently loaded from standard 5 mL syringes on the lower plate 

without any needles attached for each experiment. 

In order to benchmark the change in rheological properties induced by the additives, the 

equivalent HA solution of each formulation with the relevant concentration and molecular 

weight was tested with the same general protocol.  

Printability assessment 

The induced printability of each formulation was quantified based on the ability to resolve a 

2D mesh patterns with varying intra-fiber distances (Figure 2). Printing was performed using 

RegenHU Discovery bioprinter (RegenHU, Switzerland). The hydrogels were loaded in 3 mL 

Luer lock syringe barrels (Nordson EFD, USA), equipped with a blunt G22 general-purpose 

dispensing tip (Nordson EFD, USA). For each formulation, the minimum air pressure of the 

pneumatic dispensing unit, which resulted in constant flow, was used. The path-plans and the 

printing speed for each formulation were created using an in-house developed VisualBasic 

program created in VisualStudio (Microsoft, USA). The printing speed for each sample was 

automatically calculated based on the extruded mass during 20 seconds of extrusion with the 

set pressure. The images of 3 printed grids were acquired 3 minutes after printing and were 

further quantified using Fiji.[20] The printability index was calculated as the ratio between the 

resolved and expected area of the grid, weighed by the difficulty index of resolving a specific 

mesh area (Supporting Information, Figure S1). Larger grid areas of the designed path plan 

were penalized by a lower weight. A ratio above 0.33 was considered printable. 

Machine learning algorithm 

Data generation 

Rheological data and printing conditions related to each formulation were processed 

according to the template provided in Supporting Information (Table S1). To avoid skewness 

of dataset due to possible measurement errors at high and low ends of the frequency and 

strain sweeps, a clipped range of data was used by limiting the angular frequency and 

oscillatory strain values between 1.0-10 rad.sec-1 and 0.1-100%, respectively. The generated 



tabulated data were consolidated into a randomly distributed dataset with 65 features per 

formulation using a MATLAB script (MathWorks, USA). 

ML model and selection and evaluation of relevant features 

A classification ML model based on Random Forest (RF) algorithm was implemented in Python 

using the scikit-learn package.[21] The RF classifier is an ensemble non-parametric model based 

on many decision trees. In order to build an ML model including the features with the relevant 

and statistically meaningful contributions, a Python implementation of the Boruta all-relevant 

feature selection method[19] was used (BorutaPy). Iterative randomization steps were 

employed to compensate for the imbalance in the dataset (positive sample population ~14%). 

Initially, a subset of the dataset with a balance of 75:25 between the not-Printable: Printable 

classes was randomly chosen from the original dataset. An RF classifier was trained with the 

subset, and if the F-score (Equation 1) of the trained model on the test portion of the subset 

was above 0.80, a Boruta feature screening was subsequently applied. This process was 

iterated 10000 times, and the most-occurring relevant features were selected from the 

accumulated responses of the Boruta feature screening algorithm. The F-score was calculated 

by the following equation: 

F − score = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+12(𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹)

    (Equation 1) 

where TP, FP, and FN are the classifier’s true-positive, false-positive, and false-negative 

predictions, respectively.  

Shapley values were used as the principal way of describing features’ contributions in the 

implemented ML model. For this purpose, Shapley Additive Explanations (SHAP) were 

employed to explain features’ correlations, interactions, and contributions in predictions.[22] 

SHAP values were obtained and accumulated through a 20-fold cross-validation of the trained 

ML model on random splits of the dataset. 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the authors. 
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Template for collection of features from rheology experiments 

The rheological data from the testing protocol were collected according to Table S1. The data 

obtained from rheological experiments were further processed in later steps to generate features. 

Table S1. List of rheological data used for further processing and generation of features 

Test type Measured quantities The range used for further processing 

Frequency sweep Storage modulus (G) Angular frequency: 1.0-10 rad/s 

Damping factor (DF) Angular frequency: 1.0-10 rad/s 

Amplitude sweep Storage modulus (G) Oscillatory strain: 0.1-100% 

Damping factor (DF) Oscillatory strain: 0.1-100% 

3-Interval Thixotropy 

Test (3ITT) 

Recovery of viscosity during the 3rd 

interval 

Time: 5, 10, and 30 seconds 

3-Interval Oscillatory 

Test (TIOT) 

Recovery of storage modulus during 

the 3rd interval 

Time: 5, 10, and 30 seconds 

Shear stress sweep Viscosity Rotational shear stress: 1-100 Pa 

Transient shear steps Viscosity Shear rate steps: 0.1-100 s-1 

 

 

List of features used for training the ML model 

Table S2 lists all the features which were used to train the ML model in this study. The description of 

each coded feature is provided for a better understanding of each feature. 

Table S2. List of full features and their corresponding descriptions 

Feature Description Proportioned1 

logical_FS_CO If a crossover in frequency sweep was observed NA 

FS_DF_6 Damping factor at 1.0 rad/s angular frequency Yes 

FS_DF_5 Damping factor at 1.58 rad/s angular frequency Yes 

FS_DF_4 Damping factor at 2.51 rad/s angular frequency Yes 

FS_DF_3 Damping factor at 3.98 rad/s angular frequency Yes 

FS_DF_2 Damping factor at 6.31 rad/s angular frequency Yes 

FS_DF_1 Damping factor at 10.0 rad/s angular frequency Yes 

ratio_FS_DF@1.0/FS_DF@10 
Proportioned ratio between Damping factor at 1.0 

rad/s to DF at 10.0 rad/s 
NA 

logical_SS_CO If a crossover in Amplitude sweep was observed NA 



SS_G_1 Storage modulus at 0.1% strain Yes 

SS_G_2 Storage modulus at 0.148% strain Yes 

SS_G_3 Storage modulus at 0.217% strain Yes 

SS_G_4 Storage modulus at 0.318% strain Yes 

SS_G_5 Storage modulus at 0.467% strain Yes 

SS_G_6 Storage modulus at 0.685% strain Yes 

SS_G_7 Storage modulus at 1.0% strain Yes 

SS_G_8 Storage modulus at 1.48% strain Yes 

SS_G_9 Storage modulus at 2.17% strain Yes 

SS_G_10 Storage modulus at 3.18% strain Yes 

SS_G_11 Storage modulus at 4.67% strain Yes 

SS_G_12 Storage modulus at 6.85% strain Yes 

SS_G_13 Storage modulus at 10.0% strain Yes 

SS_G_14 Storage modulus at 14.8% strain Yes 

SS_G_15 Storage modulus at 21.7% strain Yes 

SS_G_16 Storage modulus at 31.8% strain Yes 

SS_G_17 Storage modulus at 46.6% strain Yes 

SS_G_18 Storage modulus at 68.5% strain Yes 

SS_G_19 Storage modulus at 100.0% strain Yes 

SS_DF_1 Damping factor at 0.1% strain Yes 

SS_DF_2 Damping factor at 0.148% strain Yes 

SS_DF_3 Damping factor at 0.217% strain Yes 

SS_DF_4 Damping factor at 0.318% strain Yes 

SS_DF_5 Damping factor at 0.467% strain Yes 

SS_DF_6 Damping factor at 0.685% strain Yes 

SS_DF_7 Damping factor at 1.0% strain Yes 

SS_DF_8 Damping factor at 1.48% strain Yes 

SS_DF_9 Damping factor at 2.17% strain Yes 

SS_DF_10 Damping factor at 3.18% strain Yes 

SS_DF_11 Damping factor at 4.67% strain Yes 

SS_DF_12 Damping factor at 6.85% strain Yes 

SS_DF_13 Damping factor at 10.0% strain Yes 

SS_DF_14 Damping factor at 14.8% strain Yes 

SS_DF_15 Damping factor at 21.7% strain Yes 

SS_DF_16 Damping factor at 31.8% strain Yes 

SS_DF_17 Damping factor at 46.6% strain Yes 

SS_DF_18 Damping factor at 68.5% strain Yes 



SS_DF_19 Damping factor at 100.0% strain Yes 

SS_LVER_strain Strain at the limit of linear viscoelastic range No 

SS_LVER_G Sorage modulus at the limit of viscoelastic range Yes 

SS_CO_strain Crossover strain in Amplitude sweep No 

ratio_SS_CO_strain/SS_LVER_strain 
Ratio between crossover strain and the strain at the 

limit of viscoelastic 
NA 

ratio_SS_CO_G/SS_G@0.1 
Ratio between storage modulus at crossover and 

proportioned storage modulus at 0.1% strain 
NA 

ratio_SS_CO_G/SS_LVER_G 

Proportioned ratio between storage modulus at 

crossover and storage modulus at the limit of the 

viscoelastic range 

NA 

logical_FC_yield 
If a peak viscosity in the stress sweep test was 

observed 
NA 

FC_yield_Eta Peak viscosity in the stress sweep test No 

FC_CY_Eta0 Zero-shear viscosity from Carreau-Yasuda model Yes 

FC_CY_Lambda Consistency index (λ) from Carreau-Yasuda model No 

3ITT_Re_5s Recovery of viscosity in 3ITT after 5s Yes 

3ITT_Re_10s Recovery of viscosity in 3ITT after 10s Yes 

3ITT_Re_30s Recovery of viscosity in 3ITT after 30s Yes 

3IOT_Re_5s Recovery of storage modulus in 3IOT after 5s Yes 

3IOT_Re_10s Recovery of storage modulus in 3IOT after 10s Yes 

3IOT_Re_30s Recovery of storage modulus in 3IOT after 30s Yes 

Print_Flow 
Proportionality index of extruded volume to the 

applied pressure 
No 

logical_Print_Filament 
If a filament was formed during extrusion (no 

filament, broken filament, yes) 
No 

1 Proportioned ratio was calculated by dividing the respected value by that of the corresponding HA solution 

with the same molecular weight and concentration 

  



 

Figure S1. The weights utilized to penalize the easy to resolve areas of the grid. The numbers next to 

or inside each grid show the multiplication factor. 

 

  



 


