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Abstract

Transition state searches are the basis for characterizing reaction mechanisms and acti-

vation energies, and are thus central to myriad chemical applications. Nevertheless, common

search algorithms are sensitive to molecular conformation and the conformational space of

even medium-sized reacting systems are too complex to explore with brute force. Here we

show that it is possible to train a classifier to learn the features of conformers that conduce

successful transition state searches, such that optimal conformers can be down-selected before

incurring the cost of a high-level transition state search. To this end, we have benchmarked the

use of a modern conformational generation algorithm with our reaction prediction methodol-

ogy, Yet Another Reaction Program (YARP), for reaction prediction tasks. We demonstrate

that neglecting conformer contributions leads to qualitatively incorrect activation energy es-

timations for a broad range of reactions, whereas a simple random forest classifier can be

used to reliably down-select low-barrier conformers. We also compare the relative advan-

tage of performing conformational sampling on reactant, product, and putative transition

state geometries. The robust performance of this relatively simple machine learning classifier

1



mitigates cost as a factor when implementing conformational sampling into contemporary

reaction prediction workflows.

1 Introduction

Computational transition state (TS) characterizations are a standard tool for differentiating be-

tween competing reaction mechanisms and predicting reaction kinetics, making these calculations

essential in manifold applications.1–7 Nevertheless, searching for the transition states of large sys-

tems and complex reactions is still a fragile process that is heavily dependent on user-expertise to

guide search algorithms toward low barrier crossings (e.g., by initializing the search geometry based

on an anticipated mechanism). For this reason, recent methods development efforts have been fo-

cused on automating the convergence of transition state searches, thus eliminating potential biases

from user interventions and democratizing the availability of these calculations.4,5,7,8 Among the

challenges to full automation, is that the characteristics of discovered transition states, including

the barrier height and identity of intermediates, can be profoundly affected by the conformational

details of the reaction configuration. Currently, there is no inexpensive means of automatically

in incorporating conformational sampling into transition state characterization workflows, which

limits its adoption in high-throughput and reaction discovery applications.

Over the past several decades many algorithms have been developed to localize the transition

states of chemical reactions. Among the most efficient are so-called doubled-ended search (DES)

algorithms that make use of reactant and product information to locate the TS. Two of the most

commonly used DES algorithms are the nudged elastic band (NEB) and string methods. NEB

methods pre-define the discrete points on the reaction path as images and optimize the images

towards the minimum energy pathway (MEP),9,10 while string methods, including the growing

string method (GSM)11,12 and the freezing string method (FSM),13 add new images after each
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optimization step. All of these methods are pseudo one-dimensional searches to locate TSs under

the geometric constraints of the reactants and products, which leads to a lower computational

cost and wider application range compared with single-ended searching (SES) methods. In this

sense, DES algorithms accelerate transition state localization by using the mutual information of

the starting (reactant) and ending points (products).

Despite the speed-up enabled by DES algorithms, the details of a discovered transition state

are strongly impacted by the conformation that is used to set up the transition state search. For

example, misaligned reactant and product structures can stymie TS convergence.12,14 Additionally,

even when a TS converges, the barrier height and whether the TS corresponds to the intended re-

action (i.e., saddle points in the potential energy surface that correspond to the putative reaction)

strongly depend on the reaction conformation.7 For a DES method, the possible conformational

space of input structures is defined by the direct product of the reactant conformational space and

the product conformational space. In this sense, M reactant conformers and N product conform-

ers will lead to M × N possible conformational inputs to a DES method. Notably, the cost of

sampling conformers for reasonably-sized molecules is small (approximately linear in the number

of dihedrals and with a small prefactor due to the semi-empirical nature of available potentials)

when compared with the computational cost of a transition state search at chemically-accurate

levels of theory.15,16 However, there is currently no means of down-selecting physically relevant

conformers prior to performing a DES, which makes it common practice to neglect conforma-

tional sampling,4,17–19 or to only perform partial sampling of one or more discovered TSs.16,20

The prospect of selecting optimal reaction conformers in advance is complicated by the fact that

the energetically favored reactant and/or product conformer may not be germane to finding the

lowest-energy barrier of the intended reaction (e.g., consider the relatively unfavorable cis diene

conformation that is necessary for a Diels-Alder reaction). Thus, the cost of conformational sam-

pling in a transition state characterization workflow comes from the fact that putative reaction
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conformers must be subjected to expensive TS searches to determine their relevance, and not from

the conformer generation step itself.

The rationale for the current work is that if an indicator function could be developed that ranked

conformers prior to performing a TS characterization, then the cost of incorporating conforma-

tional sampling into an automated DES work-flow would be decimated. This strategy is motivated

by the hypotheses that (i) although the conformational search space is formally M×N , the number

of reaction conformations leading to non-generate transition states is much smaller in practice, (ii)

neglecting conformational sampling leads to errors that are consistently many times kT and this

confounds quantitative kinetic work, and (iii) since human intuition can often facilitate choosing

a “good” conformer, the underlying fitness function is also amenable to being learned by a suffi-

ciently flexible machine learning approach. Here these hypotheses are interrogated by training the

proposed indicator function and testing its performance on four reaction prediction benchmarks.

These benchmarks are taken from several application areas and cover both simple and complex

organic reactions, including γ-ketohydroperoxide decomposition, Ireland–Claisen rearrangement,

competing Diels-Alder reactions of a large ketothioester, and tetrapeptide cyclization. For all of

these benchmarks, the trade-off between the completeness of conformational sampling and com-

putational cost represents a major challenge for achieving automated and efficient localization of

intended transition states. To perform these benchmarks, a modern conformational sampling al-

gorithm was combined with our reaction prediction methodology, Yet Another Reaction Program

(YARP),7 to generate training data for developing and testing the transferability of the indicator

function. The outcomes of these benchmarks demonstrate that conformational down-selection can

be effectively performed across several reaction domains, thus representing a practical means of

economically introducing conformational sampling into automated reaction prediction workflows.
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2 Methods

The reaction characterization performed in each benchmark consisted of three components: con-

former generation, conformer classification, and transition state characterization (Fig. 1). Each

component is described in the subsequent sections. In brief, conformational sampling of the re-

actant and product species were performed first, followed by the generation of conformationally

aligned reactant-product pairs. After this step, inexpensive geometry-based indicators for each

reactant-product alignment were calculated that served as input features for a random forest

(RF)21 classification model. Finally, the conformations were ranked by the RF model based on

their probability of yielding an intended reaction channel, then down-selected for transition state

characterization using YARP.
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Figure 1: Overview of the presented approach for incorporating conformational sampling into an
automated transition state search. (a) Conformational sampling is performed on the reactants
and/or products to yield M and N conformers, respectively. These conformers are then used to
generate conformationally aligned reactant-product geometries (N+M, total) that are candidates
for double-ended transition state searches. (b) The random forest classification model is employed
to rank reactant-product geometries based on inexpensive geometric features. An example of one
conformationally aligned reactant-product pair is shown. (c) Transition states are characterized
using growing string localization followed by Berny optimization and intrinsic reaction coordinate
(IRC) calculations. An example is shown of a reaction with two qualitatively different transition
states discovered from distinct reaction conformers.

5



2.1 Conformational Sampling of Reaction Geometries

The conformers of both the reactant and product influence a DES transition state search. Thus

the space of potential reaction conformers (i.e., the unique pairs of reactant and product con-

formers) is the product of these two conformational spaces. Nevertheless, many such pairs are

poorly conditioned for convergence since they may involve multiple dihedral rearrangements be-

tween reactants and products. Motivated by this, we recently developed an algorithm for gen-

erating conformationally-aligned reactant-product pairs, based on the conformer of either one or

the other.7 For instance, given a conformer of the reactant (product), this algorithm generates

a conformationally-aligned product (reactant) geometry by performing a gradient decent opti-

mization starting from the reactant (product) geometry but using a force-field potential and the

bonding matrix of the product (reactant). Given the demonstrated robustness of this algorithm in

earlier work, it is retained here for generating pairs of conformers after conformationally sampling

the reactants or products. With this approach, the number of potential reaction conformations

is reduced from M × N to M + N , where M and N are the number of conformers generated

separately for the reactants and products, respectively.

Despite the reduction from M · N to M + N , there are still scenarios where conformational

sampling is prohibitively costly with contemporary algorithms. For example, in an application

like network exploration, there may be one set of reactants but hundreds of potential products.

Likewise, many stereoisomers can result from the same set of reactants. In such cases, reactant-

side conformational sampling can be several orders of magnitude less expensive than product-side

sampling (M ≪ ΣiNi, where i refers to each product) due to the many candidate products. Ad-

ditionally, constrained conformational sampling can be performed on already converged transition

states (TSs) to potentially discover more stable conformations .8,16 Thus, conformational sampling

of the reactant, product, and discovered TSs are all potentially relevant for finding the lowest bar-
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rier corresponding to the intended reaction. Unless stated otherwise, reactant-side conformational

sampling is performed in the benchmarks reported here to keep the computational costs tractable,

but in two of the benchmarks the benefits of product-side sampling and TS conformational sam-

pling are also compared.

All conformational sampling was performed using the CREST methodology,16 which is a

metadynamics-based algorithm for sampling the dihedral degrees of freedom (iMTD-GC algo-

rithm) at the GFN2-xTB22 level of theory. The thresholds for root-mean-squared displacement

(RMSD) and energy used by CREST to determine distinct conformers were 0.125 Åand 0.05

kcal/mol, respectively. For multi-molecular reactants, conformers were discarded if they exhibited

a centroid-centroid intermolecular separation greater than twice the sum of the molecular radii.

After conformational sampling and reactant-product alignment, an RMSD minimized geometry

was generated by rotation and center-of-mass translation to align the product with the reactant.23

In our experience, RMSD minimization often helps, but it sometimes leads to geometries that fail

to localize transition states compared with the merely conformationally-aligned geometries. Here,

whichever geometry exhibited a higher rank based on the RF model (vide infra) was retained and

the other was discarded.

2.2 Ranking Reaction Conformations

Table 1: Indicators for selecting reactant-product alignments

Indicator Definition Threshold

RMSD Mass-weighted root mean square displacement. 1.8Å
Dismax Maximum displacement over all bonded heavy atom pairs. 4.8Å
DisHmax Maximum displacement over all bonded atom pairs involving at least one hydrogen. /
Crossmin Minimum separation between segments connecting bonded heavy atoms and persistent bonds. 0.03Å
CrossHmin Minimum separation between segments connecting bonded atoms involving hydrogen and persistent bonds. /
Pathmin Distance between the reactive heavy atom segments. 0.20Å

To rank reaction conformations, we developed a set of geometric features that would be in-
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expensive to calculate while also being sufficiently informative to train an accurate classifier. In

particular, we anticipated that physically-motivated features would enable us to train simpler ML

models, like random forests, that can be applied with better transferability and reduced training

data requirements than, say, a neural network.

In total six geometric features were developed (Table 1). First, the mass-weighted root mean

square displacement (RMSD) between the reactant and product geometries was computed to

represent the overall structural change. Second, the maximum separation over all pairs of bonded

atoms was defined to indicate the likelihood of fragment roaming. For this feature, a pair of atoms

qualifies as bonded if a bond exists in either the reactant or in the product, not necessarily both.

The separations of bonded pairs are calculated in both the reactant and product geometries and

the maximum over all of these separations comprises the feature. Since proton roaming is much

more common and facile than other fragments roaming (e.g. methyl and hydroxy), this feature

was calculated separately with respect to bonded atoms involving hydrogen (DisHmax) and bonded

atoms involving heavy atoms (Dismax). For instance, Dismax of the reaction conformation shown

in Figure 1b is the distance between oxygen atoms A and B in the product geometry (denoted

as D1 in Fig. 1b); whereas DisHmax is taken from the larger value of the distance between the

hydrogen atom, C, and the carbon atom, D, in the product geometry (denoted as D3) and the

distance between oxygen atom, A, and hydrogen atom, C, in the reactant geometry (denoted as

D4). To indicate the likelihood of a steric clash during the transition state search, the minimum

distance between segments connecting bonded atoms and segments connecting persistent bonds

(i.e. unchanged bonds in the reaction) was calculated. If any atoms were shared between these

two segments then the combination was omitted since it would trivially yield zero. Similar to the

previous case, Crossmin and CrossHmin were both calculated to distinguish between potential clashes

involving heavy atoms and those involving at least one hydrogen, respectively. An illustrative

example of this feature is shown in Figure 1b where the distance between D4 (i.e., the segment
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defining the eventual bond between hydrogen C and oxygen A) and the persistent bond between

atoms B and D is close to zero. All else being equal, this is unfavorable since it implies that

the atoms will have to bypass this chemical bond to complete the reaction. Finally, to indicate

the likelihood of a steric clash between the reacting atoms (i.e., atoms involved in a bond that is

broken or formed in a reaction), the minimum separations were calculated between the segments

connecting each pair of heavy atoms that form a new bond during the reaction. The minimum

separation over all such segments calculated in the reactant and product geometries comprises

the feature, Pathmin. Hydrogens were omitted from this feature, since we found that clashes for

protons are only weak indicators for a failure to localize a TS. For example, the distance D2 shown

in Figure. 1b represents the minimum separation between the segments D1 and D3 that correspond

to the bonds being formed during reaction. However, since bond segment D3 involves a hydrogen,

this separation is omitted from the calculation of Pathmin. For any reactions where Crossmin and

Pathmin could not be calculated because all reacting bonds involved hydrogen, an above average

value of 2.0 Å was used to indicate a low probability of a steric clash.

Before training or applying the RF model, reaction geometries were discarded if they exhibited

features in excess of any of the thresholds listed in Table 1. These threshold values were chosen to be

very conservative such that only very poorly conditioned geometries are excluded by these criteria

(e.g., less than 1% of structures are discarded in this fashion). Examples of poorly conditioned

geometries that fail these criteria are discussed in the supporting information (Fig. S1).

Two RF models were trained that we will refer to as the “conformation-rich” and “conformation-

poor” models. These models were trained on the same dataset, with the same indicators and hyper-

parameters, but they are distinguished by using true (intended) and false (unintended) class weight

ratios of 1:1.5 and 1.5:1, respectively, during training. The reweighting of the class labels increases

the penalty for false-positives and false-negatives in the conformation-rich and conformation-poor

models, respectively. The rationale for this is that the two types of errors become problematic for
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different reasons in these data regimes and that both regimes can be encountered during conforma-

tional sampling. In the conformation-rich scenario, the surplus of conformers makes false-positives

a concern. In contrast, being too conservative in excluding false negatives can lead to too few

conformers being sampled in the conformation-poor scenario. The model that was applied in each

case was determined by the ratio of the total number of reaction conformations generated from the

conformational sampling algorithm and the targeted number of conformations to be used for TS

characterization (Nconf). Here, we used the conformation-rich model when this ratio was greater

than three, otherwise the conformation-poor model was used. If the number of conformations

classified as ”intended” was greater than Nconf, all of these conformations were ranked by a scoring

function–here both the RF predicted intended probability and the GFN2-xTB energy were con-

sidered as options–and the highest Nconf conformations were selected; otherwise, all conformations

that were classified as ”intended” were retained for TS characterization. The training details and

the description of the reaction dataset can be found in the SI.

2.3 Characterizing transition states.

The performance of the reported classifier was measured by how well it predicted promising con-

formations for localizing intended transition states for reactions that were not used in training.

YARP was used to localize and characterize the transition states of the benchmarked reactions.

These calculations consisted of performing a double-ended transition state search using the grow-

ing string method (GSM)12,24 at the GFN2-xTB level of theory, followed by DFT-level Berny

optimizations to refine the TS, and IRC calculations to characterize whether the resulting TS

corresponded to the intended reaction. Several levels of DFT were used here, since some of the

benchmarks involved comparisons with previous studies. The corresponding functional and basis

set are reported where each benchmark system is discussed. Gaussian 16 was used as the reference

quantum chemistry engine for the DFT calculations associated with the Berny optimizations and
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IRC characterizations.25 The GSM calculations were performed by interfacing YARP with the

pyGSM package26 using most of the default convergence hyperparameters (e.g., climbing image

and the translation-rotation-internal coordinate system) with 9 nodes in the case of the relatively

simple organic reaction benchmark, and 11 nodes for all other cases. All GFN2-xTB calculations

were performed with the xTB program (version 6.2.3) maintained by the Grimme group.22 Uni-

versal Force Field (UFF) based geometry optimizations were performed with Open Babel (version

2.4.1).27 Atomic Simulation Environment (ASE)28 was called to apply the RMSD minimization.

All simulations were run on a 448 node commodity cluster composed of two AMD Rome CPUs (2.0

GHz), 128 effective cores, and 256 GB of memory per node. DFT calculations were performed with

32-core parallelization, while all other calculations were performed as bundled single-core jobs.

3 Results and discussion

3.1 Benchmark on simple organic reaction predictions

The first benchmark was chosen to establish the impact of conformational sampling on relatively

simple systems (e.g. less than 20 atoms).29 For this purpose we revisited 284 reactions from the

original YARP study that failed to converge or localized to unintended TSs when characterized

without conformational sampling. These reactions were generated by performing comprehensive

graph-based reaction enumeration (i.e., all possible break two bonds form two bonds reactions for

each reactant) on 20 reactants from the Zimmerman dataset and γ-ketohydroperoxide.7,30 Since

these reactions are generated using graphical rules rather than established reaction templates, it

is expected that many of them are intrinsically high-barrier or may not possess any intended TS

even were a comprehensive search of the potential energy surface possible. Among the 656 at-

tempted reactions, YARP without conformational sampling failed to converge at either the GSM,
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Figure 2: Overview of the performance of YARP with reaction conformational sampling on simple
organic reactions. (a) The intended rate of reaction prediction for the Zimmerman and KHP
datasets. (b) Distribution of RF intended probabilities using the conformation-poor model applied
to intended and unintended reaction conformations. (c) Five types reactions where intended TSs
were only discovered after conformational sampling. I: E1 and E2 elimination reactions, appear 45
times out of 101 reactions, II: small fragments exchange reaction, appear 15 times, III: addition and
insertion reactions, appear 12 times, IV: 3- and 4-membered ring closure reactions, appear 9 times,
V: inner rotation reactions, appear 5 times. (d) 9 reactions with the range of activation energies
distribution larger than 10 kcal/mol, the lowest and highest energy transition states geometries
are provided (grey: Carbon, red: Oxygen, yellow: Phosphorus, white: Hydrogen).

Berny optimization, or IRC calculation steps for 54 reactions and located unintended TSs for 230

reactions. Together, these 284 previously failed or unintended reactions were selected as a test

for whether conformational sampling would yield intended TSs. Additionally, 35 reactions from

the Zimmerman dataset that previously localized intended transition states were also included to

ensure that the addition of conformational sampling did not inhibit localization of previously es-

tablished TSs. Conformational sampling of all reactants was performed followed by down-selection

of up to eight reaction conformers (Nconf = 8). The reactions from the Zimmerman dataset and

KHP systems were characterized at the B3LYP/6-31G** level to be consistent with earlier work.

For 270 out of the 284 previously failed or unintended reactions, reactant conformational sam-

pling generated at least one conformation predicted by the RF model to yield an intended TS.
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For the remaining 14 reactions, no reaction conformation passed the indicator criteria, suggesting

that these are fundamentally unphysical reactions (Fig. S6). Among the 270 attempted reactions,

YARP located at least one TS and one intended TS for 257 and 101 reactions, respectively, corre-

sponding to a success and intended rate of 95.2% and 37.4%. Considering that 0% of this subset of

reactions converged to an intended transition state previously, this is a compelling demonstration

that many reaction channels, even for small systems, can easily be neglected without conforma-

tional sampling. Out of the 35 previously intended reactions, all exhibited conformations that

yielded intended transition states, demonstrating that the RF-based down-selection of conformers

has no discernible negative impact compared with the previous algorithm. Accounting for the

discovery of these intended TSs, the intended rate for the reactions in the Zimmerman dataset and

KHP decomposition network are increased from 57.9% and 54.8% to 73.4% and 70.2%, respectively,

compared with the earlier work (Fig. 2a).

To illustrate the performance of the RF classifier, the predicted intended probability for un-

intended and intended reaction conformations from this benchmark are provided Figure 2b. The

results for the conformation-poor RF model, which is biased against false-negatives, are presented.

The unintended conformers all come from the earlier study, whereas the intended conformers were

those generated from conformational sampling and confirmed by IRC calculations. The intended

conformers are all classified as such by the conformation-poor RF model (i.e., perfect recall) and

the mean classification of the unintended conformers is unintended. This separation is favorable

given the small number of features being used for the classification; nevertheless, a small num-

ber of unintended conformers still exhibit a high intended probability, which has motivated us to

always choose Nconf > 1 in all presented benchmarks. The corresponding RF predictions for the

conformation-rich RF model are presented in Fig. S4.

The 101 reactions that changed from unintended to intended were classified by mechanism

(Fig. 2c) to investigate why some of the reactions benefited from conformational sampling. By
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frequency, the five types of reactions are elimination (I, 45 out of 101 reactions), fragment exchanges

(II, 15/101), addition and insertion (III, 12/101), 3- and 4-membered cyclizations (IV, 9/101), and

inner rotations (V, 5/101), with the remainder composed of other mechanisms. I includes both E1

and E2 (i.e. unimolecular and bimolecular) eliminations; reaction II corresponds to the exchange

in the position of two fragments, each consisting of no more than one heavy atom (e.g. in Fig. 2c,

a methyl group and an hydrogen atom exchange); reaction V refers to a head-to-tail rotation of

an internal segment of a reactant. Reactions I and II often occur as competing reactions involving

the same bond breaks (i.e., they could easily discover an unintended TS that corresponds to

the alternative). Notably, all of these mechanisms involve a large rotation or translation of atoms

between their reactant and product geometries, such that conformational sampling is consequential

despite the relatively small system size. Additional comparisons of intended and unintended TS

geometries and for these classes of reactions are provided in Figure S5.

Conformational sampling also leads to the discovery of multiple TSs for many of the reactions

that exhibit distinct mechanisms and a broad range of activation energies (Fig. 2d). Out of 136

intended reactions (101 from previous unintended reactions and 35 from previous intended reac-

tions), 9 exhibit multiple intended TSs with activation energies spanning more than 10 kcal/mol.

These large differences in activation energies correspond to qualitatively different mechanisms in

several cases. Considering reaction R1, for example, the higher energy TS corresponds to the

involvement of a hydrogen-roaming intermediate compared with the lower activation energy path-

way that bypasses roaming. In another example, reaction R7, the TS corresponding to a concerted

reaction mechanism is much more stable than the TS corresponding to a sequential mechanism.

In summary, even for this benchmark of reactions on small molecules, applying conformational

sampling results in improved success rates, improved intended rates, and the discovery of lower

activation energy pathways.
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3.2 Ireland–Claisen rearrangement

The multi-step Ireland-Claisen rearrangement shown in Figure 3 was selected for the second bench-

mark, since it exhibits increased conformational complexity and has recently been characterized

using other automated transition state localization methods. Lee et al.31 proposed the illustrated

Ireland–Claisen rearrangement pathway consisting of 5 sequential rearrangements as discovered by

the Artificial Force-Induced Reaction (AFIR) method.32 Young et al. performed a follow-up study

using the autoDE method and a heuristic for sampling conformations to localize distinct transition

states.8 Here, conformational sampling was performed on all five reactants to generate reaction

conformers that were then ranked using the RF models to down-select up to 8 reaction conforma-

tions for each step (Nconf = 8). The transition state localization was performed at the B3LYP-

D3BJ/6–31G(d) level of theory and further evaluated at the B3LYP-D3BJ/6–311++G(2d,2p) level

of theory with the IEF-PCM(hexane) solvent model to be consistent with the earlier AFIR study.

Among the 40 total attempted reactions, all successfully localized a TS and 37 were confirmed to

be intended TSs after IRC characterization. In total only 465 DFT gradient calls were used (11.6

per reaction) to locate these TSs. These two statistics indicate the high quality of the reaction

conformations generated by RF ranking.

The three methods predict nearly identical single-point energies for the intermediates and

TSs (Fig. 3). The deviations among three methods are typically within 2 kcal/mol, indicating

similar reaction mechanisms are being described. Notably, YARP discovers a low energy reaction

conformation leading to a ∼ 3 kcal/mol reduction of TS1. Another large deviation of ∼ 5 kcal/mol

is observed for INT3 (i.e., not for a transition state but for an intermediate). A more stable

conformation is reported by autodE, whereas the energies reported by AFIR and YARP are similar.

This may be due to the distinct solvation model used by autodE in comparison with AFIR and

YARP, or differences in sampling the intermediate geometries. Nevertheless, the Ireland–Claisen
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rearrangement example demonstrates the transferability to more complex systems of the indicator

function for down-selecting reaction conformations and the reproduction of TS energies achieved

by contemporary approaches.

3.3 Intramolecular Diels-Alder reactions of a ketothioester
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Figure 4: Five competing Diels Alder (DA) reactions of ketothioester with activation energy lower
than 40 kcal/mol. a. 5 Diels Alder products with corresponding activation energies (∆E), free
energies of activation (∆G) and transition state structures. The bonds denoted as red refer to
bonds formed during the DA reaction. b. Product conformations identified by YARP in the most
favorable reaction 1 and 2. Corresponding free energies of activation are provided in the bottom.

For a third benchmark system we investigated competing Diels-Alder (DA) ring-closures for

the ketothioester shown in Figure 4. Although some cyclizations were present in the previous

benchmarks, this case presents additional isomeric complexity, with 18 possible DA ring-closures

yielding up to 304 possible stereoisomers. In the context of a double-ended TS search, the product

stereochemistry can be fixed by the user; but more generally, the relative likelihood of different

product stereochemistries is something that a reaction prediction workflow would need to predict.

With respect to conformational sampling, this poses an additional challenge since reactant-side
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conformational sampling neglects the conformational constraints that are unique to each stereoiso-

mer. However, performing product-side conformational sampling on all 304 distinct stereoisomers

is wasteful since many, though not all, of the products can be ruled out using heuristics. To inves-

tigate this asymmetry, conformational sampling was first performed on the ketothioester reactant

to generate 10 reaction conformations for each of the 18 possible Diels-Alder reactions. These

reaction conformations were ranked by the RF models, thus the resulting stereoisomers were se-

lected solely based on the likelihood that they would be connected by an intended transition state

rather than any chemical intuition. For a direct comparison with previous results, all TSs were

optimized and IRC calculations were performed at the B3LYP/6-31G level of theory (Fig. S3).

We also reperformed all single-point calculations at the more accurate B3LYP-D3BJ/def2-TZVP

level of theory (Fig. 4).

The reactant-side conformational search yielded at least one intended TS for all 18 attempted

DA ring-closures. Among them, 5 reactions exhibit activation energies less than 40 kcal/mol

(Fig. 4a). The two lowest activation barrier reactions, denoted as R1 and R2, are two reactions

reported previously by Yang et al.,20 in an automated reaction prediction study focusing on a

subset of reactive atoms of this ketothioester. In contrast, R3, R4 and R5 have not been previously

reported. These reactions display larger barriers but are still potentially kinetically relevant. It

is encouraging that YARP, with reactant-side conformational sampling, predicts the same lowest

barrier DA closures as in the earlier study despite not using a restricted subset of atoms.

The present experiment found intended pathways to 38 distinct stereroisomers out of the 304

possible that could result from the 18 DA reactions. In the cases of R1 and R2, intended TSs

were localized for four and three distinct enantiomers out of 32 and 16 possible, respectively. Six

of these correspond to those previously reported by Yang et al., R1C1 is new, and the earlier

study reported intended TSs for two enantiomers that were not attempted here. Despite this

large overlap in predicted enantiomers, several of the activation energies are overestimated using
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reactant-side conformational sampling (Fig. 4b). In particular, we interpret this result as arising

from the asymmetric conformational constraints of the reactant versus products in the case of

these ring closures. To clarify this, we reperformed the transition state searches for these seven

enantiomers using product-side conformational sampling. In all cases, the activation energies dis-

covered after product-side sampling are lower than those discovered from reactant-side sampling,

and the differences in the activation energies for distinct entantiomers largely vanishes. This is

a rather dramatic illustration of the inequivalence of reactant-side versus product-side conforma-

tional sampling. This asymmetry is present to varying degrees in any reaction, but it is acute

for cyclizations and reactions yielding stereoisomers. In contrast, for the previous benchmarks we

observed relatively little distinction between performing conformational sampling on the reactants

versus the products, then generating conformationally aligned structures.

3.4 Head-to-Tail cyclic tetrapeptide formation

For a final benchmark we selected the cyclic peptide formation of a series of large tetrapetides.

Peptide cyclization is challenging for TS searches because of the potentially large conformational

search space of both the linear chains (reactants) and relatively large rings (products). Ring

contractions are also relevant to these systems such that the conformational space of reactants and

products are associated with distinct rings. For this benchmark we selected a series of tetrapeptides

that have been experimentally studied in the context of lowering the activation energy for accessing

certain cyclic peptide products via tailored substitutions to the peptide backbone.33 In particular,

the SAAA tetrapeptide (Fig. 5a) undergoes a relatively high barrier cyclization via dehydration to

form a 12-membered ring. SAAA-aux (Fig. 5b) is hypothesized to undergo a facile ring-contraction

to the same 12-membered ring. Finally, SAAA-SAL (Fig. 5c) was previously predicted to undergo

cyclization to a 16-membered precursor that later undergoes more facile ring contraction to the

12-membered product; whereas the direct formation of the 12-membered product from SAAA-
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Figure 5: a-d: Four cyclic tetrapeptides formation reactions with reactant of a. D-seryl-D-alanyl-
L-alanyl-D-alanine (denoted as SAAA), b. 12-(hydroxymethyl)-3,6,9-trimethyl-1-thia-4,7,10,13-
tetraazacyclopentadecane-2,5,8,11-tetraone (Ethanethiol Auxiliary SAAA, denoted as SAAA-aux),
c-d. 2-formylphenyl D-seryl-D-alanyl-L-alanyl-D-alaninate (SAL ester auxiliary SAAA, denoted as
SAAA-SAL). The activation energies were computed at the M062X/6-311+G(d,p) level of theory
on the geometries of the most stable transition state (TS) sampled at B3LYP/6-31G level. The
SMD solvation model for acetic acid was applied. e-f: Examples of TS conformational sampling
starting from the lowest and highest transition states. The position of each star refers to the
activation energy of the initial TS. Constrained distances of all TSs are shown with unit Å. The
lowest and highest free energies of activation (∆G) of (a) SAAA, (b) SAAA-aux (c) and (d) SAAA-
SAL are 41.2/65.0; 32.5/49.5; 39.1/53.0; 26.1/53.7 (unit is kcal/mol, computed at B3LYP/6-31G
level, the highest energy TS in case a is 65 kcal/mol and is not shown in the figure)

SAL (Fig. 5d) was ruled out as being unfavorable. Some computational work has been done to

rationalize these transformations,33,34 but no DFT-level transition states have been calculated for

these large and conformationally challenging systems.

Conformational sampling was performed on three different cyclic tetrapeptide precursors (Fig.

5) to generate reaction conformers that were then ranked using the RF models to down-select

up to 20 reaction conformations for each reaction (Nconf = 20). YARP was first applied at the

B3LYP/6-31G level to locate and characterize intended TSs. The most stable intended TSs for
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each reaction were further characterized at the M062X/6-311+G(d,p) level of theory (geometries

taken from the B3LYP/6-31G results) with the SMD solvation model35 for acetic acid, to match

the level of earlier computational work.33

For all four reactions, the RF-ranked conformations converged to at least one intended TS

(Fig. 5a-d), which represents a first for all of these reactions. Based on the experimental data, it is

expected that the introduction of the ethanethiol (Fig. 5b) and SAL-ester (Fig. 5c) auxiliaries will

promote 12-membered cyclization in comparison with the SAAA cyclization (Fig. 5a). The lowest

barrier intended TS discovered for each reaction likewise confirms this trend. Interestingly, YARP

predicts that the direct cyclization of the SAAA-SAL species is more favorable than proceeding

through the 16-membered precursor that was previously invoked.33

Since these tetrapeptides are the largest systems investigated here, we decided to also use

them as a case study of the potential benefits of performing conformational sampling on already

localized TSs to search for a lower barrier crossing. In particular, several recent studies have

used this approach,8,16 but no direct comparison has been performed between TS conformational

sampling and reactant/product-side conformational sampling. Conformational sampling of TSs

is more difficult than that of reactants or products, because a TS is a saddle point and thus

conformational sampling can easily lead to an unintended reaction channel. To prevent this,

auxiliary restraints are used for TS sampling that try to maintain the bond lengths of atoms

involved in the imaginary frequency mode, but there is still no guarantee that the resulting TS

conformer will remain an intended channel, and thus it must be verified by further IRC calculations.

Constrained TS conformational sampling was applied to both the lowest and highest barrier

intended TSs obtained for the four tetrapeptide reactions. CREST was used to perform the TS

conformational sampling while restraining the active bond (i.e. bonds broken or formed in each

reaction) lengths to their distances in the corresponding intended TS (these distances are shown in

the inset of Fig.5e-h). The TS conformations generated in this way were then subjected to Berny
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optimization, IRC calculations, and the distribution of barrier heights for the intended TSs are

reported in Fig. 5e-h. TS conformational sampling on the lowest barrier intended TSs (stroked

star marker) had only a marginal benefit. For three of the cases, all of the discovered TSs are of

equal or higher barrier to the original intended TS. For SAAA, the majority of new TSs were also

of equal or higher barrier, but four lower barrier TSs exhibiting up to a 5kcal/mol reduction were

discovered. In contrast, performing TS sampling on the highest barrier intended TSs from the

original benchmark (filled star marker) yielded new lower barrier TSs in all cases. Yet critically,

none of these new TSs exhibit lower barriers than the lowest barrier TS discovered from the original

reactant-side conformational sampling search (i.e. the stroked star marker in Fig. 5e-h).

Our interpretation of this case study on TS conformational sampling is that it can lead to barrier

reduction in some cases, but it is strongly dependent on the TS used to seed the search and it is not

a substitute for reactant and/or product-side conformational sampling. Moreover, computational

cost and efficiency are important factors in deciding whether to use TS conformational sampling.

On average, 26 conformers were generated by CREST for each of the 8 TSs used to seed the TS

conformational search. This is more than Nconf used for reactant-side sampling. Additionally, the

intended rate of the generated TS conformers varies greatly between 100% and 3% (Fig. S2). For

these reasons, TS conformational sampling as currently implemented remains a costly procedure

of marginal benefit.

4 Conclusions and outlook

The maturation of conformational sampling algorithms has created new opportunities to incorpo-

rate conformational exploration into transition state searches. Nevertheless, the cost of performing

parallel TS searches starting from all possible reaction conformers remains prohibitive for most

applications. Here we have shown how this limitation can be side-stepped using a relatively simple
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random forest classifier to rank reaction conformations before performing costly TS searches. The

performance of this approach was investigated in four distinct benchmarks. First, we demonstrated

that intended TSs could be localized for over a hundred reactions (˜39% of those attempted) that

were previously discarded due to failed TS searches. Likewise, conformational sampling revealed

many competing barriers for these reactions that would have been otherwise missed. Second,

in head-to-head comparisons with other algorithms, we observed no loss in fidelity despite the

several-fold reduction in computational cost associated with the present approach. In particular,

conformational down-selection was able to reproduce all TSs of a complex multistep Ireland–Claisen

rearrangement, as well as (re)discover the lowest barrier stereoisomeric product published to date

(out of over three hundred possible) for competing DA ring closures of a model ketothioester. These

demonstrations establish the versatility of using ML classifiers to downselect promising reaction

conformers and thus mitigate the additional cost of incorporating conformational sampling into TS

localization workflows. Conversely, these benchmarks illustrate the hazards, including overlooked

reaction pathways and inaccurate barriers, of neglecting conformational sampling in TS searches.

There are still several avenues for improving the current approach. Conformer down-selection

reduces costs, but it is still Nconf times more costly than a single TS search. One possibility is

to use a low-level semi-empirical TS search on the down-selected configurations as a preliminary

step to further reduce the number of reaction conformers subjected to high-level characterization.

Likewise, many reaction conformers end up localizing redundant TSs, which it may be possible to

anticipate in advance with a more sophisticated ranking procedure. There are also opportunities

for developing an optimal conformer sampling policy. For example, in the third and fourth bench-

marks we deliberately highlighted scenarios where there is asymmetry between reactant-side versus

product-side versus TS conformational sampling. We concluded that TS conformational sampling

alone is insufficient in all cases, but the importance of each is highly contextual and näıve inclusion

of all cases can dramatically increase sampling costs. Finally, relatively simple RF models were
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utilized here due to our desire for transferabililty and the scarcity of intended TS data for train-

ing. In the presented benchmarks, these models were able to profitably rank conformers, but they

nevertheless still exhibit low confidence in classifying many conformations. As more reaction data

becomes available, we envision more sophisticated models potentially displacing the RF models

while keeping the overall workflow relatively unchanged. Similarly, the classification models were

only trained to predict the likelihood that a reaction conformation would converge to an intended

reaction and did not utilize or consider the reaction activation energy. Future models might also

select conformations based on their relative likelihood of yielding a low barrier TS. Finally, we

have focused on conformer selection for double-ended TS searches due to their much lower com-

putational costs. Such down-selection is also compatible with single-ended models, although the

featurization presented here would have to be modified.
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