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Abstract: The discovery of new catalytically active materi-
als is one of the holy grails of computational chemistry as it
has the potential to accelerate the adoption of renewable en-
ergy sources and reduce the energy consumption of chemical
industry. Indeed, heterogeneous catalysts are essential for the
production of synthetic fuels and many commodity chemicals.
Consequently, novel catalysts with higher activity and selectiv-
ity, increased sustainability and longevity, or improved prospects
for rejuvenation and cyclability are needed for a diverse range of
processes. Unfortunately, computational catalyst discovery is a
daunting task, among other reasons because it is often unclear
whether a proposed material is stable or synthesizable. This
perspective proposes a new approach to this challenge, namely
the use of generative grammars. We outline how grammars can
guide the search for stable catalysts in a large chemical space
and sketch out several research directions that would make this
technology applicable to real materials.

Heterogeneous catalysis is an essential technology for en-
abling sustainable economic development.1,2 On one hand,
chemical processes like ammonia-synthesis require massive
amounts of energy and are thus substantial greenhouse gas
emitters. On the other hand, the long term storage of re-
newable energy in synthetic fuels is itself a catalytic process.
In both cases, new and improved catalysts would therefore
yield large benefits towards reducing global net carbon emis-
sions. While new catalysts have historically often been found
by serendipity or empirical insight, theoretical understand-
ing has played an increasingly significant role over the last
decades. Indeed, not least the fundamental theoretical un-
derstanding of catalyst functionality based on scaling rela-
tions (limited as it may practically be) has led to the emer-
gence of an entire field of computational screening based
catalyst discovery.3–5

Such a computational catalyst screening requires first to
define a library of candidates (i.e. a chemical space, see
Fig. 1). This space is typically constructed according to
some simple rules (e.g. the set of ordered metals or solid so-
lution alloys in a fixed lattice) or taken from some predefined
experimental or computational database (e.g. the Materials
Project6). Once this space is defined, the screening itself
consists of computationally estimating the catalytic activ-
ity of all candidates (or representative samples) contained
therein.

Using a predefined database to span the chemical space
has the advantage that all candidates fulfill certain require-
ments (implicitly) set upon construction of the database.
For instance, they correspond to known, stable structures

Figure 1. Cartoon depiction of different screening spaces. Ran-
dom search (white) covers a wide range of candidates but includes
many unphysical structures. A simple rule (green) defines a very
restrictive space. Experimental or computational databases can
be highly diverse but are also biased and incomplete, potentially
missing entire classes of interesting materials. A formal grammar
could in principle cover a large screening space without including
unphysical candidates. Note that the proportions are arbitrary.
In particular, the space of random structures is much larger than
depicted and mostly consists of nonsensical structures.

if the database is constructed from experimental data. On
the flipside, this means that there is a strong selection bias
and the screening will not be able to discover new, unex-
pected materials. A rule-based definition of the library is
in principle less biased, as it allows enumerating all possible
structures within its constraints, not just known systems.
Most catalyst screening studies typically use very simple
rules, however, so that these screenings can be equally re-
strictive. Alternatively, one could imagine a third strategy,
namely the completely random sampling of atomic arrange-
ments. While this approach would definitely be unbiased
and unconstrained, it would also lead to mostly unphysical
structures, making the screening extremely inefficient.

The above paragraph reveals some crucial desiderata for
a catalyst screening library, namely that it should be un-
biased, extensive and exclusively contain valid samples. As
we shall see, what this means in practice depends some-
what on the context. Nevertheless, these (partly competing)
goals should always be taken into account when designing
a screening study. It is the purpose of this perspective to
argue that a good way to balance these requirements could
be to define the chemical space of interest via formal gram-
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Figure 2. A grammatical derivation of the title of this article.

mars. In the following we briefly give a general introduction
into this concept before discussing how it can be useful for
catalyst discovery.
Formal grammars: Formal grammars were originally de-
veloped in the field of theoretical linguistics, where they de-
scribe how syntactically valid sentences can be formed from
a language’s words.7,8 An example of this is shown in Fig. 2.
Here, the title of this article is formed by creating a sentence
of the form ’noun phrase’+’preposition’+’compound noun’
(abbreviated as NP, Pre and CN, respectively). Subse-
quently, NP and CN are further specified: The former con-
sists of an adjective (Adj) and a plural noun (PlN), while
the latter consists of two singular nouns (SiN). Finally, these
placeholders are replaced by actual english words so that
Pre becomes in, Adj becomes heterogeneous, etc.

The power of formal grammars does not just lie in the
analysis of given sentences, however. Instead a grammar
can be used to generate all syntactically valid sentences in a
language. To see how this works, we must first understand
what the components of such a grammar are. To this end,
a simple toy grammar is introduced in Fig. 3, based on the
sets N , Σ and P . The first of these collects all so-called non-
terminal symbols, which are placeholders for certain types of
words or phrases (i.e. Adj or SiN, in the example above).
Here, we also include the starting symbol S, which marks the
start of every new sentence derivation. The second set con-
tains all terminal symbols, which are the actual words of the
language (i.e. heterogeneous or school). Finally, the set P
contains the production rules of the grammar. Each produc-
tion rule is a prescription of how the non-terminal symbols
of a language can be replaced or modified. For example, one
rule specifies that the non-terminal symbol Adj can be re-
placed by one of the terminal symbols heterogeneous, young
and promising.

As exemplified in Fig. 2, sentences can be generated from
this grammar by applying the production rules (depicted
as branched arrows) in a sequential manner. Starting from
the non-terminal symbol S, only a single production rule is
available (S → NPPre CN). The final sentence is reached
when no non-terminal symbols are left and therefore no more
production rules can be applied. Importantly, this sentence
is only one of many that can be generated by the gram-
mar in Fig. 3. In Table 1, some other examples are shown,
along with random sentences constructed by combining ar-
bitrary words from the dictionary Σ. These sentences also
serve to illustrate the distinction between syntax and seman-
tics: The grammar generates sentences that are syntactically
valid. This does not mean that these sentences are neces-
sarily meaningful (i.e. semantically valid). We are however
much more likely to generate a meaningful sentence with the
grammar than with the random generator, which produces

Figure 3. Components of a formal grammar. The set N contains
non-terminal symbols (i.e. placeholders for certain types of words
or phrases). The set Σ contains terminal symbols (i.e. the words
of the language). The set P contains production rules, which
define how non-terminal symbols can be modified and replaced.

Table 1. Example sentences generated with the grammar in Fig. 3
and by randomly combining five words from the corresponding dic-
tionary. The grammar leads to syntactically valid sentences but not
necessarily semantically valid (i.e. meaningful) ones. The random
generation meanwhile produces complete gibberish.

grammar

heterogeneous catalysts in grammar school
young violinists in band camp

promising signals in news room
heterogeneous signals in school band

young catalysts in grammar news

random

grammar catalysts school news in
young in promising signals camp
catalyst signals camp news young

camp signals news school band
violinists camp in heterogeneous camp

complete gibberish in most cases.
Catalyst grammars: While this may seem far removed
from heterogeneous catalysis, string-based representations
and concomitant grammars have actually already found wide
application in the not so distant field of organic chemistry,
e.g. in the form of SMILES strings or the more recent SELF-
IES grammar.9,10 The dictionaries of these chemical lan-
guages consists of atoms and bonds that are combined to
form strings representing molecules. Importantly, the corre-
sponding syntax imposes physical and chemical constraints
into what kinds of molecules can be formed. For instance,
the SELFIES grammar is constructed such that all gener-
ated strings by definition fulfill the valence rules of organic
chemistry.10

Despite their undisputed importance in organic chemistry,
strings and grammars are much less developed for the inor-
ganic and condensed-phase systems of interest in heteroge-
neous catalysis, however. Arguably, this results from the
much higher complexity and variability of the correspond-
ing extended materials. Before entering a more differenti-
ated discussion onto this matter, let us first further moti-
vate why striving for such grammars could be a worthwhile
endeavor.
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Figure 4. Definition of a simple grammar for ionic compositions.
The production rules ensure that only charge balanced composi-
tions with at most four elements can be generated.

To this end, we consider the simple toy problem of find-
ing stable ionic material compositions out of the 28 main
group elements in periods 2-5 and groups 1-17 (i.e. from
Lithium to Iodine). For simplicity, we assume that each ele-
ment only occurs in oxidation states that lead to the closest
noble gas configuration (e.g. Li+1, Mg+2, Cl−1, etc.). To
screen potential catalysts from these elements we could con-
sider as a simple rule only those binaries of the type AB with
balanced charges (e.g. Na+1Cl−1, Mg+2O−2, Ga+3As−3,
etc). Unfortunately, this leads to a disappointingly low to-
tal of 55 possible materials and shows that vaster spaces need
to be spanned to possibly identify new promising materials
in the screening. This can be achieved by expanding our
search space up to quaternary compositions and considering
all combinatorial possibilities, which leads to a much larger
library of over 600,000 candidates. However, these mostly
correspond to unlikely (electronically unbalanced) composi-
tions such as Na+O−2

3 or Al+3Ga+3In+3F−1.
To obtain a set of candidates that is less restrictive than

the simple binaries and more physically plausible than the
random combination of elements, we now define a gram-
mar that allows the systematic composition of strings that
correspond to quaternary compositions with balanced oxi-
dation states (see Fig. 4 for a simplified version of the gram-
mar). The production rules of this grammar ensure that
non-terminal symbols can only be replaced by the corre-
sponding elements or combinations of other non-terminal
symbols which conserve the oxidation state (e.g. a halogen
can be replaced by combining an alkali metal and a chalko-
gen). Furthermore, the grammar by construction only gen-
erates compositions with up to four elements. In this way,
we end up with a significant screening space of ca. 1,500 sys-
tems that exclusively consist of chemically reasonable mate-
rials like Ca+2Sr+2Ge−4 or Li+3 P−3.

A quantitative comparison of these approaches shows that
about 30% of the grammatically generated compositions can
be found on the Materials Project (MP) database,6 whereas

the same is true for only 1% of the random compositions
(see Fig. 5). Moreover, for those structures found in the
MP database, the mean energies above the convex hull (in-
dicating thermodynamic (meta-)stability)11 are 45 and 210
meV/atom for the most stable structure corresponding to
each grammatical and random composition, respectively.

The ’known’ structures proposed by the grammar are
therefore significantly more likely to be (meta-)stable, com-
pared to the ones found through random search. Overall,
the grammar thus produces many systems that are known
to be stable, but about 70% of the generated systems are un-
known. In this sense it nicely balances between the overly
restrictive ‘simple-rule’ approach and the chemically unrea-
sonable random approach.

It might be argued that the benefit of using the gram-
mar in the above example could also be achieved by simply
enumerating all possible compositions and filtering charge-
balanced ones out after the fact. Indeed, this was the strat-
egy used by Davies et al. in their paper ’Computational
Screening of All Stoichiometric Inorganic Materials’.12,13

However, any such brute-force approach will eventually run
into a combinatorical wall, with the number of quarternary
compounds in that paper already exceeding 1012. This num-
ber would further explode if the multitude of possible crys-
tal structures for each composition were taken into account.
Meanwhile, using a generative grammar ensures that only
more interesting compositions are produced in the first place.

Additional physical understanding may or may not be in-
cluded flexibly as additional production rules, this way fur-
ther tailoring the generated chemical search space. In this
respect, the use of a grammar in computational screening
also blurs the boundary between mere discovery and pur-
poseful design. While (exhaustive) searching in any enumer-
ated space is a discovery process, production rules in gram-
mars offer the prospect to introduce partial understanding
of design rules (in the present example the understanding
that balanced oxidation states favor stability). This partial
understanding is likely not sufficient for a targeted atom-
by-atom design. However, formulated as production rules
within a grammar is allows to focus the search space to those
materials that are consistent with the present understanding
and unbiased regarding the rest.

While this illustrates the potential advantage of working
with a catalyst grammar, the presented example is obviously
only of a toy nature. Clearly, the elemental composition is
an overly simplistic representation of a real catalyst. In the
rest of this perspective, we therefore want to discuss some
of the challenges and requirements for the development of a
more general grammar of heterogeneous catalysts.
String representations: Since formal grammars are inti-
mately connected with strings and languages, one way for-
ward would be to develop more useful string-based repre-
sentation of catalyst materials. The difficulty therein is
that (unlike the elemental composition) the three dimen-
sional arrangement of atoms in a solid does not naturally
map onto a one-dimensional string. While this is also true
for organic molecules, the SMILES language uses powerful,
domain-specific abstractions like chemical bonds, implicit
hydrogen atoms and atom-typing to achieve this mapping.9

Defining such abstractions is strongly simplified by the small
number of elements that are relevant in organic chemistry.
Even with these advantages, non-local features like rings still
cause problems with SMILES, e.g. for machine-learning ap-
plications.10 Unfortunately, such features are ubiquitous in
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Figure 5. Percentage of compositions found in the Materials
Project database vs. size of chemical space for three types of ionic
composition databases, generated by considering only simple bi-
naries, using a grammatical construction and randomly combining
elements, respectively (see text).

solids, due to the presence of highly coordinated atoms (e.g.
transition metals).

A powerful catalyst string representation must therefore
be able to handle non-locality and an enormous variety of
elemental compositions. A recently proposed approach to
overcome these challenges is to use a coordinate-free rep-
resentation based on crystallographic Wyckoff positions.14

By avoiding the definition of bonds between atoms alto-
gether, this is potentially a viable route towards powerful
string representations of catalysts. In the field of Zeolites
and Metal-Organic Frameworks, the classification of network
topologies offers similar advantages.15,16 If a generally useful
representation could be defined along these lines, this would
give access to the wealth of techniques developed in natu-
ral language processing, both in terms of grammatical infer-
ence and machine learning (e.g. recurrent neural networks
and transformers). Indeed, this type of interdisciplinary ap-
proach has recently led to significant advances in organic
synthesis planning.17,18

Graph representations: An alternative route towards a
catalyst grammar would be to use graphs instead of strings
to represent the catalysts. Graphs have a long tradition for
representing chemical structures in terms of atoms and their
connectivity. Unlike strings, they can easily represent cycles,
branches and other non-local features of arbitrary complex-
ity. Moreover, graphs and nets (their periodic equivalent)
are already used to characterize inorganic solids such as Zeo-
lites, Metal-Organic-Frameworks and carbon allotropes.19,20

A further advantage of graphs over strings is that they can
in principle directly encode the relative positions of atoms
in three dimensional space and are thus overall more expres-
sive. Furthermore, it is easier to define meaningful measures
of similarity for graphs than for strings, which can be im-
portant in ML applications.21

An analogous concept to formal grammars also exists for
graphs. Such graph grammars use production rules that de-
fine how subgraphs can be modified and replaced.22 As a
downside, developing and using graph grammars is signifi-
cantly more complicated, however, because they operate on
a more complex type of object. This is particularly true
for periodic graphs. We also note that defining bonds in
inorganic solids is not always unambiguously possible, so
that a straightforward graph representation based on va-
lence rules is not necessarily equally well suited for all types
of materials. However, it has been shown that graph neural
networks are able to learn powerful graph representations

in very diverse settings, without prior definition of chem-
ical bonds.23 A combination of generative grammars with
graph-based ML may therefore be a promising route.
Validity: As noted above, the central advantage of using
a grammar in the context of catalyst discovery is that it
allows the exclusive generation of syntactically ’valid’ can-
didates, thus avoiding the unnecessary consideration of ’in-
valid’ ones. We have so far been fairly vague about what is
meant by valid structures, however. Indeed, this is not clear
and depends on the context. In the case of SMILES, validity
simply means that the valence rules of organic chemistry are
not violated. This implies that the corresponding molecules
will also be reasonably stable in most (but not all) cases.
Relying on valence rules alone is unlikely an adequate con-
cept of validity for the full periodic table though, not least
due to the ambiguous nature of chemical bonds. Similarly,
the charge balance condition used in the toy example above
is not sufficient to guarantee stability and only applies to
ionic materials. Yet another type of validity criterion can be
defined based on atomic or ionic radii, as e.g. used in the
Goldschmidt tolerance factor for perovskites.24 In principle,
a combination of these different validity measures could be
encoded in a formal grammar, while in general and as noted
above ’valid’ could simply mean ’consistent’ with available
partial understanding.

An alternative approach would be to infer validity from
data instead of defining it a priori. This could be achieved by
treating a database of known ’valid’ compounds (i.e. stable
compounds or active catalysts) and view these as a corpus of
examples generated from an unknown underlying grammar.
The corresponding grammar could then be learned using the
methods of grammar induction (also known as grammatical
inference).25 In this setting, a broader concept of validity
(beyond e.g. mere stability) could in principle be obtained.
For example, one could construct the database of examples
to only include systems with certain conditions (such as ad-
equate band-gaps for photocatalysts). This approach could
also incorporate a notion of synthesizability into the gram-
mar, which has recently been demonstrated to be a learnable
property.26

Relation to Generative Deep Learning: The above al-
ready implies a close relationship between formal grammars
and generative ML models. In particular, deep learning
approaches like Generative Adversarial Networks or Vari-
ational Autoencoders have recently been the focus of in-
tense study in materials design.27 While such models can be
extremely powerful tools for exploring chemical space they
tend to require large amounts of data for training. Further-
more, the generation of unphysical or invalid structures and
so-called ’mode collapses’ (i.e. models which do not cover
the full space of relevant structures but only generate highly
similar outputs) are frequently observed issues that can be
difficult to debug.

The grammatical approach outlined herein is in many
ways complementary to such deep generative models. A
simple generative grammar can be defined with very little
reference data or derived from physical concepts (partial
understanding) like charge neutrality. Furthermore, ’mode-
collapse’ is not an issue, as the grammar can simply be sam-
pled uniformly. On the flipside, deep generative models are
currently a much more powerful and mature technology. In
this context we can again take cues from the related field of
molecular design, where it has been shown that the robust
SELFIES grammar can be used both to enhance the quality
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of deep generative models and as a competitive generative
model in its own right.10,28

Conclusions: In this perspective, we have discussed the
potential benefits of using formal grammars to discover
new heterogeneous catalysts. This approach is intellectu-
ally stimulating, though it may seem slightly frivolous at
first glance. Considering the leading role that string repre-
sentations and grammars play in molecular design, we firmly
believe that this can lead to real advances in catalyst discov-
ery, however. To achieve this goal, we have sketched several
promising research directions. These include the develop-
ment of powerful string representations for solids and sur-
faces, the use of graph-based grammars and the combination
of grammars with deep generative models.
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