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ABSTRACT 

Multi-drug resistant Mycobacterium tuberculosis requires a complex antibiotic treatment program 

and poses a major threat to tuberculosis (TB) treatment outcomes. Resistance is mostly conferred 

by chromosomal single nucleotide polymorphisms, many of which are well characterized and 

catalogued. However, not all mutations have been mapped and novel mutations can emerge. 

Methods able to quickly predict the effects of such mutations are needed to complement the 

existing catalogues, thereby permitting the prescription of effective treatment for patients and 

preventing the further spread of resistant strains. Relative binding free energy (RBFE) calculations 

can rapidly predict the effects of mutations, but this approach has not been tested on large, complex 

proteins. We use RBFE calculations to predict the effects of seven M. tuberculosis RNA 

polymerase mutations on rifampicin susceptibility and five M. tuberculosis DNA gyrase mutations 

on moxifloxacin susceptibility. These mutations encompass a range of amino acid substitutions 

with known effects and include large steric perturbations and charged moieties. We find that 

moderate numbers (n=3-15) of short RBFE calculations can predict resistance in cases where the 

mutation results in a large change in the binding free energy, but that the method lacks 

discrimination in cases with either a small change in energy or that involve charged amino acids, 

due to the associated large magnitude of error. We investigate how this error may be decreased by 

analyzing the sources of error and the distributions of repeated measurements from the different 

components of the RBFE calculations.  
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INTRODUCTION 
 
Tuberculosis is a difficult disease to treat; the standard regimen is four antibiotics, rifampicin, 

isoniazid, pyrazinamide and ethambutol, for six months. An infection that is resistant to both 

rifampicin and isoniazid is called multi-drug resistant tuberculosis (MDR-TB) and the treatment 

regimen recommended by the World Health Organization (WHO) is complex but always includes 

levofloxacin or moxifloxacin, which are fluoroquinolones1.  

Rifampicin acts by binding to the β-subunit of the RNA polymerase (RNAP, encoded by the rpoB 

gene), preventing the extension of the RNA (Fig. 1a). The most common resistance-conferring 

mutation is rpoB S450L, however a wide range of mutations have been observed clinically2-5. The 

majority of these are found in amino acids 428 to 452 which pack against the drug (usually known 

as the “rifampicin resistance determining region” or RRDR), enabling the development of nucleic 

acid amplification tests, such as the Cepheid GeneXpert MTB/RIF system which is endorsed by 

the WHO for diagnosis of MDR-TB6, 7. Not all non-synonymous mutations in the RRDR, however, 

confer resistance, for example rpoB L443F5. Nor does resistance arise purely within the RRDR: 

rpoB I491F and V170F are proximal to S450L and the former was suspected to be behind an 

outbreak of MDR-TB in Eswatini since it is not detected by GeneXpert8.  

The fluoroquinolones target the DNA gyrase (DNAG), a tetrameric enzyme which unwinds DNA 

by forming and re-ligating double stranded DNA breaks prior to transcription and replication (Fig. 

1b). Specifically, two fluoroquinolone molecules intercalate into DNA breaks and bind specific 

gyrA residues via a coordinated Mg2+ ion. This stabilizes DNA-DNA gyrase covalent linkages and 

prevents re-ligation of DNA double stranded breaks.  
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The most common DNA gyrase mutations found in MDR-TB samples are gyrA D94G and gyrA 

A90V and these mutations are strongly associated with fluoroquinolone resistance2, 3, 9-12. These 

residues are part of the gyrA “quinolone resistance determining region” (QRDR), defined as gyrA 

codons 74 to 11313. However, again, not all mutations in this region confer resistance, leading to 

false positive resistance results in genotypic assays14. Rarely seen DNA gyrase mutations in gyrB 

are also associated with fluoroquinolone resistance, and a gyrB QRDR from residues 461 to 501 

has also been proposed15. The residues of the two QRDR regions make up the fluoroquinolone 

binding pocket, and gyrB A642P is the only mutation significantly associated with an increase in 

minimum inhibitory concentration (MIC) to fluoroquinolones that was found outside this region9. 

We assume that mutations cause resistance by reducing the affinity of an antibiotic ligand for its 

target. Since we are only interested in whether a mutation increases or decreases the antibiotic’s 

affinity for the target, the difference in binding free energy (DDG) between the wild type and 

mutant systems is calculated. This can be achieved by employing relative binding free energy 

(RBFE) methods, whereby a wild type amino acid is transmuted into the mutant along a non-

physical pathway defined by a progress coordinate, 0 ≤ l ≤ 1. For equilibrium-based methods, a 

series of short molecular dynamics (MD) simulations are performed at fixed values of l and the 

resulting DG values are related to the difference in binding free energy via a thermodynamic cycle 

(Fig. 2). This approach has been shown to successfully predict if mutations in a relatively small 

protein, S. aureus DHFR16, 17 (157 residues), confer resistance to trimethoprim, an antibiotic used 

to treat urinary-tract infections.  In this paper we shall apply the same approach to two much larger 

protein complexes, the RNA polymerase (4,671 residues) and the DNA gyrase cleavage complex 

(1,473 residues), to assess how well we can predict the effect of seven and five mutations on the 

action of rifampicin and moxifloxacin, respectively. 
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Figure 1. Structures of M. tuberculosis (a) RNA polymerase (RNAP)18 and (b) DNA gyrase 

(DNAG)19 cleavage complex, showing the selected clinical mutations associated with antibiotic 

resistance and susceptibility relative to the antibiotic binding sites. For clarity, RNAP subunits 

(excluding rpoB) are shown in surface view and nucleic acids are hidden in close-up visualisations. 

Resistance-conferring mutations are drawn in red, those associated with susceptibility blue and 

those residues where different mutations confer different resistance phenotypes purple. An asterisk 

(*) indicates a gyrB mutation.  
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METHODS 

RNA polymerase and DNA gyrase system setup. The structure of the M. tuberculosis RNA 

polymerase (PDB:5UH6)18, including a 14-base stretch of DNA, 2 RNA nucleotides, 2 zinc ions, 

a magnesium ion and a bound rifampicin molecule, was solvated with 114,838 waters and 127 

sodium ions – the latter to ensure electrical neutrality – creating a cubic simulation unit cell of 

initial dimensions 20.1 x 15.2 x 13.1 nm.  The flexible loop region of each gyrB protein that were 

not resolved in the structure of the M. tuberculosis DNA gyrase cleavage complex (PDB:5BS8)19 

were modelled in using the ModLoop server20. This structure, including the 19-base stretch of 

DNA, 4 Mg2+ ions, 2 bound moxifloxacin molecules and 403 crystal waters was placed in a 

rhombic dodecahedron unit cell with dimensions 13.8 x 13.8 x 9.8 x 0.0 x 0.0 x 0.0 x 0.0 x 6.9 x 

6.9 nm. The unit cell was solvated with 59,895 waters, 175 Na+ and 112 Cl- ions providing 

electrical neutrality and a 100mM salt concentration. The generalized AMBER and AMBER 

ff99SB-idln forcefields were used throughout21. To facilitate the covalent bond between gyrA 

Tyr129 and the phosphate backbone of DNA by GROMACS, two modified amino acids (TYX 

and TYY) were created. These ‘hybrid’ amino acids contained the parameters for Tyr, excluding 

the hydroxyl hydrogen, all nucleotides in the covalently bound DNA chain and the covalent bond 

between the Tyr hydroxyl oxygen and the corresponding DNA backbone phosphorus atom. The 

PDB file order and residue naming was adjusted to reflect the modified amino acids. The system 

was left with a non-integer charge due to the exclusion of the hydrogen atom from Tyr, so a solvent 

chloride ion was modified to provide a balancing charge. 

The energies of the resulting RNA polymerase and DNA gyrase unit cells of 396,776 atoms and 

205,883 atoms, respectively, were then minimized by GROMACS22 2016.3 and 2018.2 

respectively, using a steepest descent algorithm for 1,000 steps before being gradually warmed 
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from 100 K to 310 K over 500 ps. For comparison, the DHFR unit cell only contained 27,115 

atoms16, 17. The resulting structure and velocities were used to seed three RNAP and five DNAG 

equilibration simulations, each 50 ns long. The temperature was maintained at 310K using a 

Langevin thermostat with a time constant of 2 ps. An isotropic Parrinello-Rahman barostat with a 

1 ps time constant and a compressibility of 4.46 x 10-5 bar-1 was applied to keep the pressure at 1 

bar. Electrostatic forces were calculated using the particle mesh Ewald algorithm with a real space 

cutoff of 1.2 nm whilst van der Waals forces were only calculated between atoms less than 1.2 nm 

apart with a switching function applied from 0.9 nm. The lengths of all bonds involving a hydrogen 

were constrained using LINCS23, permitting a timestep of 2 fs. For DNA gyrase, to prevent the 

moxifloxacin coordinated Mg2+ from dissociating from moxifloxacin, we used a harmonic distance 

restraint of sufficient strength (100,000 kJ mol-1 nm-2) to maintain the distance observed in the 

crystal structure (0.209 nm) throughout all simulations, lower values were not sufficient. A series 

of assumed independent structures were obtained by saving the coordinates of the system every 10 

ns from each of three RNAP equilibration simulations and each of five DNAG equilibration 

simulations.  

Mutations were then introduced into each of these structures using pmx24. To reduce the likelihood 

of clashes between the ‘new’ sidechain and the remainder of the protein (i.e. in simulations with 

λ~1) we then applied a short Alchembed procedure25 to each structure – this involved a 1,000 step 

simulation where λ was increased from 0 to 1 using a soft-core van der Waals potential. This 

created a pool of presumed independent mutated structures that could be used to seed alchemical 

thermodynamic integration simulations. 

Following best practice26, the free energies (Fig. 2) required to remove the electrical charge on the 

perturbing atoms (DGqoff), transmute the van der Waals parameters (DGvdW) and recharge the 
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remaining atoms (DGqon) were separately calculated using GROMACS 2016.3 for RNAP and 

2019.1 for DNAG. Each calculation required eight simulations at equally spaced values of the 

progress parameter, λ. To accelerate convergence, 10,000 replica exchanges were attempted 

between neighboring λ-simulations every 1,000 timesteps. The process was repeated for both apo 

and complexed forms of either the RNAP or DNAG, thereby resulting in six independent free 

energies (Fig. 2). The timestep was reduced from 2 fs to 1 fs and LINCS constraints were removed 

for the vdW transitions for all DNA gyrase mutations and the qon transition of gyrA D94G to 

prevent crashing. To ensure the drug remained bound, a harmonic distance-based potential with 

spring constant 1,000 kJ mol-1 nm-2 was applied between the centers of mass of the drug and the 

RNAP beta subunit. Two additional free energies describing the cost of removing this restraint 

(Fig. 2) were then also calculated.  

Calculation of errors. In previous studies of S. aureus DHFR16, 17 all alchemical free energies 

were repeated the same number of times which, since n values of the final difference in binding 

free energy (ΔΔG) were then obtained, simplified the calculation of errors. Both simulation unit 

cells studied here were over an order of magnitude larger and we therefore instead calculated errors 

at the level of an individual alchemical free energy (e.g. DGvdW), with the final error in ΔΔG 

estimated by adding these in quadrature. Throughout a 95% confidence limit was estimated by 

multiplying the standard error by the appropriate t-statistic. We arbitrarily decided that at least 

three independent values of each alchemical free energy would be calculated, and then additional 

repeats would be run with the aim of reducing the magnitude of the overall 95% confidence limit 

to less than 1 kcal/mol. Achieving the latter was not always possible even when large numbers of 

repeats were run (n ≥ 10, see Supplementary Information). 
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Simulations run. Overall, 241 alchemical free energies, each requiring 8x λ simulations 0.5 ns 

long, were calculated for the RNA polymerase allowing the six mutations to be studied. When the 

equilibration simulations are included, this is a total of 1.11 µs of molecular dynamics simulations. 

To study the five DNA gyrase mutations, a total of 231 alchemical free energies were calculated 

(8x λ simulations 0.5 ns long) and including equilibration simulations, a total of 1.17 µs of 

molecular dynamics simulations were initially performed. As described later, for DNA gyrase, 

nine calculations were extended to 5 ns which increased the total molecular dynamics performed 

to 1.49 µs. To avoid equilibration effects, the first 0.25 ns of each λ simulation was discarded. 

 

 

Figure 2. Free energy cycles for (a) rifampicin binding RNAP and (b) moxifloxacin binding 

DNAG gyrase cleavage complex. The subscripts qoff, vdW and qon describe the process of first 

removing the electrical charge from atoms being perturbed, followed by transforming their van 
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der Waals parameter, before finally recharging the atoms being perturbed. Double headed arrows 

represent the restraint used to prevent rifampicin from leaving the binding pocket. In all cases we 

are making use of the fact that free energy is a state function and therefore we can write the 

difference binding free energy (ΔΔGbinding) as a sum of so-called alchemical free energies (e.g. ΔG4 

- ΔG3). 
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RESULTS 
 

Selecting the mutations studied 

To test the ability of RBFE to predict antibiotic resistance we selected a small number of mutations 

in the RNAP and DNAG that confer resistance; to act as negative controls we added several more 

mutations known to have no clinical effect.  We chose to test the most common resistance-

conferring mutations for each drug. For RNAP this is S450L in the RRDR of rpoB and for the 

DNA gyrase these are A90V and D94G in the QRDR of gyrA (Fig. 1). D94G is a robust test of 

RBFE as the mutation involves a significant change in amino acid properties and electrical charge. 

For rifampicin we also selected V170F and I491F in rpoB which both confer resistance, are 

proximal to both S450L and the antibiotic binding site, but are not in the RRDR (Fig. 1a). I491F 

is one of the so-called “disputed” mutations which either have variable or borderline rifampicin 

minimum inhibitory concentrations12, 27. For moxifloxacin we also tested E501D in gyrB12 which 

is close to the antibiotic binding site but not in the gyrA QRDR (Fig. 1b). 

 

When choosing negative controls, we prioritised mutations that were observed multiple times in 

clinical samples, are close to the drug binding site and do not involve a charge change or a proline 

residue. For the RNAP, L443F was selected since it lies within the RRDR and is close to the 

rifampicin binding site yet does not confer resistance11 and therefore is a good negative control 

(Fig. 1a). We also selected S388L and T585A which are further from the binding site and are seen 

in clinical samples. Finally, we choose an amino acid (Ser428) at which non-synonymous 

mutations are expected to confer resistance, since it lies in the RRDR, but for which no firm 

statistical association has been made, and choose a mutation (S428C) which minimally chemically 

perturbs the sidechain. We expect this to not confer resistance, since it has not been observed 
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clinically and the sidechain points away from the drug and is therefore a good, if somewhat 

artificial, negative control.  

 

For the DNA gyrase negative controls, we chose gyrA S95T (Fig. 1b) since it is very common – it 

is found in almost all samples except the H37Rv reference genome - and is within the QRDR.  

Testing different mutations at the same position which have different effects is a particularly 

stringent test of the ability of RBFE methods to predict antibiotic resistance. We therefore also 

tested the gyrA A90S mutation (Fig. 1b) – this is not seen clinically but a serine is present at the 

equivalent position in the DNA gyrase of other bacterial species and is suggested to help stabilise 

the gyrase-fluoroquinolone complex via participation in water-ion bridging interactions with the 

drug coordinated Mg2+. M. tuberculosis has some innate immunity to fluoroquinolones which has 

been suggested is due to the alanine at this position19.  The gyrA A90S mutation is therefore 

expected to strengthen the binding of moxifloxacin, thereby conferring hyper-susceptibility.  

 

Predictions 

The simplest approach is to assume that a positive value of the change in binding free energy of 

the antibiotic (ΔΔG < 0) indicates that the antibiotic binds less well to the target following the 

mutation and therefore would be predicted to confer resistance to that drug. Clinically, however, a 

sample is categorized as ‘resistant’ if its minimum inhibitory concentration (MIC) is greater than 

a critical concentration, often the epidemiological cutoff value (ECOFF/ECV), which is defined 

as the MIC of the 99th percentile of a collection of phenotypically-wildtype samples. Such  

thresholds for both drugs were derived using published ECOFF/ECV values28 as described 

previously17. 
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Figure 3. The calculated effect of the listed mutations on the binding free energy of (a) rifampicin 

to RNAP and (b) moxifloxacin to DNA gyrase. Dotted lines represent the value of DDG equivalent 

to the epidemiological cutoff value for (a) rifampicin and (b) moxifloxacin; above this value an M. 

tuberculosis isolate would be considered clinically resistant. Bars represent the mean DDG for each 

susceptible (blue) and resistant (red) mutation compared to the wild-type protein and 95% 

confidence limits are shown, calculated using the appropriate t-statistic. An asterisk (*) indicates 

a gyrB mutation. 
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Table 1. Summary of free energy calculations for RNAP and DNAG mutations 

Protein Mutation Expectation DDG (kcal mol-1) N 
[1] 

Nmin 
[2] Nmax 

[2] 

RNAP S388L Susceptible 0.1 + 0.8 18 3 3  
S428C Susceptible 1.1 ± 1.7 21 3 5  
L443F Susceptible -0.2 ± 2.1 28 3 8  
T585A Susceptible 0.2 ± 1.5 20 3 4  
V170F Resistant 5.4 ± 1.9 37 3 13  
S450L Resistant 4.9 ± 2.3 49 4 13  
I491F Resistant 5.1 ± 2.3 22 3 5 

DNAG S95T Susceptible -1.6 ± 1.8 50 5 15  
A90S Hyper-susceptible -1.1 ± 1.4 33 5 8  
A90V Resistant 2.0 ± 1.6 44 4 15  

E501D* Resistant -2.0 ± 3.2 59 9 10  
D94G Resistant -2.8 ± 8.9 45 4 10 

 [1] N is the total number of free energy calculations used to calculate the DDG, excluding the 
rpoB restraints as their contributions were negligible (see Supplementary Information) [2] Nmin and 
Nmax list the minimum and maximum number of repeat calculations used for apo or drug-bound 
de-charging (DGqoff), van der Waals (DGvdW) or re-charging (DGqon) transitions, respectively (Figure 
2). * indicates a gyrB mutation. 

 

Three independent values of ΔΔG were first calculated. Each value of ΔΔG required the 

calculation of 6-8 alchemical free energies (Fig. 1, Methods). Repeats of the alchemical free energy 

components exhibiting the greatest variation were then run to efficiently reduce the confidence 

limits of the prediction as described in the Methods. First let us consider the overall values of ΔΔG 

and whether successful predictions can be made. 

 

For rifampicin, only one of the four negative controls (S388L) was correctly predicted to have 

no effect on the action of rifampicin (Fig. 3a); since the confidence limits of S428C, L443F and 

T585A all bracket the ECOFF threshold no definite prediction could be made for these mutations. 

Clinically the method as implemented would therefore return an ‘Unknown’ phenotype for these 
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mutations. All three rifampicin-resistance conferring mutations, including the disputed mutation 

I491F, not only have positive values of ΔΔG but also lie above the clinical threshold derived from 

the ECOFF/ECV. These mutations are therefore correctly predicted to confer resistance to 

rifampicin. 

 

Both moxifloxacin negative controls (gyrA S95T & A90S) were correctly predicted to not affect 

the binding of moxifloxacin to the DNA gyrase. Although hyper-susceptibility is expected for 

A90S, the magnitude of the confidence limits prevents us drawing any conclusions. No definite 

prediction could be made for any of the three mutations associated with moxifloxacin resistance 

since the confidence limits of all three mutations straddled the clinical threshold.  Unlike the RNA 

polymerase, two of the mutations to the DNA gyrase involved charged residues (gyrB E501D & 

gyrA D94G) and not surprisingly these had the largest estimated errors.  

 

To see how our ΔΔG values compared with clinical resistance measurements, we calculated an 

estimated ‘expected ΔΔG’ corresponding to the geometric mean of MICs associated with each of 

the resistance conferring mutations, using previously described methods17. However, the errors in 

both the ‘expected ΔΔG’ and the ΔΔG values calculated by RBFE were too large to enable us to 

draw any conclusions about how well the values compare with one another (Fig. S1).  

 

The magnitudes of the estimated errors prevented us from making a definite classification in six 

of the 12 mutations studied. One hypothesis is that the larger the alchemical perturbation, the larger 

the magnitude of error. We therefore examined whether there was a correlation between the 

number of atoms where the atom type was perturbed during the alchemical transition and the 
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magnitude of error in calculated DDG values (Fig. S2). There was a weak positive correlation for 

both RNAP and DNAG mutations, suggesting that whilst this does play a role, it is not the main 

driver behind the large errors observed here. 

  

To further examine what is driving the magnitudes and confidence limits of the individual DDG 

values in Fig. 3, we analysed the alchemical free energy components from the de-charging (DGqoff), 

van der Waals (DGvdW) and re-charging (DGqon) transitions (Fig. 2) for both apo and drug-bound 

legs of the free energy calculations (Fig. 4). As expected, for both the RNA polymerase and the 

DNA gyrase, there were no significant differences for the negative control mutations between the 

mean apo and drug-bound values of DGqoff, DGvdW and DGqon and the estimated error is generally 

low.  

 

For all three resistance-conferring mutations in rpoB the value of DGvdW when rifampicin is 

bound is significantly greater than the same transition for the apo protein and it is this that is mainly 

driving the positive value of DDG. The difference between the apo- and rifampicin-bound vdW 

transitions for V170F, S450L and I491F are 4.6, 5.6 and 5.3 kcal/mol, respectively. Since all three 

of these mutations involve the introduction of a larger sidechain that is oriented towards the bound 

drug, this is consistent with resistance arising primarily through steric hindrance of the rifampicin 

binding site. For comparison, despite a similar number of atoms being perturbed, there was no 

difference in the apo- and drug-bound values of DGvdW for the susceptible mutation rpoB L443F, 

which is also in the RRDR (Fig. 1a) and, whilst this also involves the introduction of a larger 

sidechain, in the crystal structure this is directed away from rifampicin. Differences in DGvdW 
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between the apo- and complexed DNA gyrase also appear mainly responsible for the positive value 

of DDG for gyrA A90V, however the net effect is reduced.  

 

Figure 4. Apo (light grey) and drug-bound (dark grey) free energy calculations for (a) RNAP and 

(b) DNA gyrase mutations for de-charging (qoff), van der Waals (vdW), and re-charging (qon) 

transitions. All results are normalized to the mean of the calculations for the apo leg for each 

transition for each mutation. Mean values are denoted by a cross and the error bars describe the 

95% confidence limits, calculated from the SEM using the appropriate t-statistic. The free energy 

cost of removing the restraints for rifampicin is not shown since for all mutations it is negligible, 

indicating that restraints were likely not required to keep the drug in the binding site. An asterisk 

(*) indicates a gyrB mutation. 
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Hence the variation in DDG arises mainly from the apo and complexed values of DGvdW – the 

notable exceptions being gyrB E501D and gyrA D94G. This is despite our efforts to minimize the 

overall error by running up to 4x the number of repeats for those transitions (Table 1) to reduce 

their individual estimated errors. For gyrB E501D and gyrA D94G all three transitions contribute 

significant error, which since they add in quadrature, leads to a large overall error in DDG. This is 

not surprising since both mutations involve turning off (and on) electrical charge and D94G 

involves a net charge change that must be compensated for elsewhere in the system. To investigate 

how far we might reduce the errors, let us now consider the individual values of DGqoff, DGvdW and 

DGqon (Figure 5). 
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Figure 5. Swarm plots of individual results from apo (light grey) and drug bound (dark grey) 

alchemical free energy calculations for mutations in the RNA polymerase (a) and DNA gyrase (b). 

All results are normalized to the mean of the calculations for the apo leg for each qoff, vdW or qon 

transition for each mutation. p-values from Shapiro Wilks test are displayed for each transition 

showing evidence of non-normality in the repeated calculations, transitions where no p-value is 

shown indicates there was no evidence of non-normality in the data (p > 0.05). An asterisk (*) 

indicates a gyrB mutation. 

 

By starting each simulation from a different structural seed and discarding the first half of the 

alchemical free energy simulations and then applying statistics to the resulting values of DG we 

are assuming that they are independent. If true, then one would also expect the values to be 

normally distributed which would appear to be the case for most sets of DG values (Figure 5). 

Applying the Shapiro-Wilks test of normality to the rpoB data confirms that, despite the small 

numbers of samples in some cases, the majority of DG values are indeed normally distributed with 

the exceptions of DGqon for the apo leg of S428C and DGqon for the drug bound leg of S450L. For 

two DNA gyrase mutations there was also evidence of non-normality in the DGvdW for the apo leg 

of gyrA S95T and DGon for both the apo and drug bound leg of gyrA D94G. 

To test how far our simulations are from normality, we extended four apo and five drug-bound 

simulations underlying the most variable component (qon, Fig. 1) of the most complex mutation, 

gyrA D94G, by an order of magnitude (from 0.5 ns to 5 ns). As assessed by the Shapiro-Wilks, the 

resulting distributions of apo- and drug-bound free energies were indeed normal after 5 ns of 

simulation (p = 0.92 and p = 0.16) but the distribution of results for the repeated calculations, and 

therefore the error, remain large (Fig. S3). 
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DISCUSSION 

 

We have shown how relative binding free energy (RBFE) techniques can be applied to large 

protein complexes to predict, with some success, the effect of individual protein mutations on the 

binding of an antibiotic, and thence whether resistance is conferred. When the size of the signal is 

large and the mutations do not involve significant changes in the electrical charge, as is the case 

for the rpoB mutations, one can successfully predict whether a mutation confers resistance to the 

antibiotic (in this case rifampicin). If the fold increase in minimum inhibitory concentration is 

small and/or there are significant charge changes, as is the case for most of the resistance 

conferring mutations in the DNA gyrase, then the estimated error of DDG will likely be so large 

that no definite prediction can be made. In addition, the observed non-normality of the DGqon free 

energy for gyrA D94G indicates that these values are also not independent: to solve this either the 

λ simulations would have to be extended or the equilibration simulations would need to be more 

numerous as well as longer. 

 

Despite the focus on resistance, it is more useful to be able to accurately and reproducibly predict 

susceptibility since clinically that will lead to immediate action i.e. starting the patient on the 

appropriate treatment regimen. A prediction of resistance will likely result in the sample being sent 

for further testing, at which point any incorrect predictions (false positives) will be detected. 

Unfortunately, it may be more difficult to predict susceptibility than resistance using RBFE, and 

for rpoB only one susceptible mutation could be confidently predicted. If we assume that most 

susceptible mutations will not affect the binding affinity for the antibiotic, then they would have a 

DDG of zero. The predicted DDG of such mutations would hence require the estimated error to be 
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at least less than the value of the ECOFF (for rpoB and DNA gyrase 1.2 and 0.9 kcal/mol, 

respectively) to make a confident susceptible prediction. The magnitude of error for the mutations 

in this study was greater than the relevant ECOFF in all but one case (rpoB S388L, Table 1). It is 

likely that the error could be reduced by running a greater number of repeats, however some 

mutations can result in a small increase in MIC but not enough to confer resistance (as 

susceptibility can be defined as any MIC up to the ECOFF), and in such cases even a lower level 

of error (± 0.5 kcal/mol) may still prove insufficient for prediction. 

 

Whilst alchemical binding free energy calculations therefore can play a role in predicting 

antibiotic resistance, the method currently works best when the target protein is small and the 

magnitude of the change in the binding free energy large, as is the case for S. aureus DHFR and 

trimethoprim17. For this system it has also been shown that it is possible to reduce the length of the 

simulations yet further but still maintain an accurate qualitative prediction16. Taking all this 

together, we appear to have probed the limits (for now at least) of using RBFE methods to predict 

antibiotic resistance de novo. Interestingly, unlike the majority of other applications of RBFE, one 

can tolerate large, estimated errors since we are ultimately only interested in the final binary 

classification of resistant or susceptible. A second and related application for RBFE is reducing 

the likelihood of a lead compound developing resistance by providing information during the 

development process of the likely mutations that could confer resistance and we hope to explore 

this in future work. 

 

There are several shortcomings with our approach. We have assumed that resistance arises by 

reducing how well the antibiotic binds; this will not always be true. Secondly, our predictions 
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depend on the accuracy of the molecular forcefields that describe the interatomic interactions. 

Finally, we assume that the conformations used to seed each calculation are independent of one 

another and/or that the λ simulations are long enough to allow the initial state to be ‘forgotten’. 

Given we chose to use very short λ simulations the latter is almost certainly not true and whilst the 

majority of our calculated DG values appear to be normally distributed, some are not which is 

concerning. One would expect to have to run 4x the number of simulations to reduce the estimated 

error to half its original value if the simulations are independent. This makes simulations of these 

size prohibitively computationally intensive at the time of writing. 

 

It is not in doubt that how the structure and dynamics of a protein change upon mutation contains 

valuable information that can, in theory, be used to predict whether individual mutations confer 

antibiotic resistance. An alternative route, which is much less computationally intensive, is to train 

machine learning models using structural and chemical input features. This is the focus of future 

work and ultimately machine learning and RBFE/MD approaches may not only complement one 

another but also form part of a larger toolkit that helps us to tackle antimicrobial resistance by 

improving diagnosis. 
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Supporting Information. Figures S1-S3 are available in the Supporting Information, along with 

two CSV files; one for the RNAP and one for the DNAG. Each CSV contains a list of all the 

individual alchemical free energy transitions and their errors allowing Figure 4 and thence Figure 

3 to be reproduced. 
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