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Abstract

Over the last few decades enhanced sampling methods have made great strides.

Here, we exploit this progress and propose a modular workflow for blind reaction

discovery and characterization of reaction paths. Central to our strategy is the use of

the recently developed explore variant of the on-the-fly probability enhanced sam-

pling method. Like metadynamics, this method is based on the identification of

appropriate collective variables. Our first step is the discovery of new chemical reac-

tions and it is performed biasing a one dimensional collective variable derived from

spectral graph theory. Once new reaction pathways are detected, we construct ad-hoc

tailored neural-network based collective variables to improve sampling of specific re-

actions and finally we refine the results using free energy perturbation theory. Our

workflow has been successfully applied to both intramolecular and intermolecular

reactions. Without any chemical hypothesis, we discovered several possible prod-

ucts, computed the free energy surface at semiempirical level, and finally refined it

with a more accurate Hamiltonian. Our workflow requires minimal user input, and

thanks to its modularity and flexibility, can extend the scope of ab initio molecular

dynamics for the exploration and characterization of reaction space.
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One of the main goals of chemistry is the discovery of new molecules and the deter-

mination of the chemical pathways that lead to their formation. In the past this process

has been mainly driven by heuristics and specialist knowledge. However, the recent ad-

vent of machine learning techniques promises to change dramatically the way in which

theoretical chemists operate and it is expected that, in the future, automated reaction

discovery workflows based on machine learning methodologies will become highly rel-

evant.

It is easy to predict that ab initio molecular dynamics (AIMD)1,2 will play a crucial

role in this context and several proposals have already been made in this respect.3–8

However, the impact of AIMD has been hindered by its high computational cost. Ways

have been suggested to accelerate sampling and thus make the use of AIMD practical

for chemical discovery. These methods are of general nature but it is their application to

chemical processes that is of interest here. Among the many methods suggested, great

popularity has been gained by those that are based on the definition of a set of collec-

tive variables (CVs).9–13 These are differentiable functions of the atomic coordinates R

and must reflect the symmetry properties of the system such as invariance under trans-

lation, rotations and permutation. Above all, they should encode the hard-to-sample

modes of the system. Their design requires an understanding of the process and their

determination is often challenging.12,14–16 Once the CVs are chosen, their fluctuations

are then artificially enhanced by one of the enhanced sampling methods that have been

suggested.

In the last few decades, much progress has been made both in sampling method

efficiency and in the identification of better CVs. Our group has been active in both areas

and its efforts have recently culminated in an efficient and robust sampling method that

goes under the name of on-the-fly probability enhanced sampling (OPES).17,18 OPES

amplifies the CVs fluctuations by adding a bias from an on-the-fly estimation of the
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probability distribution of the CVs, and it has been successfully applied to the study

of many challenging problems such as chemical reactions, crystal nucleation and ligand

binding.19–23

In parallel, like several other groups24–27, we have proposed different strategies to

identify useful CVs. The use of neural network based collective variables has allowed ef-

ficient CVs to be defined as non linear combinations of a relatively large set of molecular

descriptors once the initial and final states of the reactive process are known before-

hand.19,28–32 Thus, they are not suitable to explore in a blind way the reaction space. In

this context a collective variable to be used in a reaction discovery simulation should be

agnostic as to the metastable states to be discovered and at the same time efficient.

Efforts at defining such type of CVs have already been made. Lately, Grimme has

used the Cartesian root-mean-square-deviation (RMSD)33 as a CV to be used for chemi-

cal discovery. Earlier, Pietrucci and Andreoni have derived from spectral graph theory a

set of topological coordinates called social permutation invariant coordinates (SPRINT)

which, in combination with metadynamics, have allowed the phase space to be explored

and several metastable states to be identified.14,34–36 Here, we simplify the original

SPRINT formulation and encode all the information of the molecular graph into a one

dimensional CV that drives discovery-based AIMD simulations. Using OPES, we setup

an integrated modular workflow consisting of three steps (Figure 1): 1) blind exploration

of the possible reaction products using a low level electronic potential; 2) construction

of tailored neural-network-based CVs to improve sampling of specific reactions; 3) re-

finement of the free energy estimation with a high level Hamiltonian using free energy

perturbation theory.

Method. As in SPRINT,34 we represent molecules as a graph whose vertices are the

atoms and the edges are the chemical bonds. We associate to the graph a symmetric

adjacency matrix A whose elements aij indicate whether atoms i and j are linked by a
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Figure 1: Schematic representation of our workflow. The first step deals with the blind
exploration of the reaction space and it is followed by a sampling stage of the desired
reaction path. The last step entails the FES refinement with a more accurate Hamiltonian
via free energy perturbation theory (FEP).

chemical bond:

aij =
1 − (

rij
σij
)n

1 − (
rij
σij
)m

(1)

where σij are typical bonding lengths between atoms of species i and j. We shall use

as a CV the largest eigenvalue of this matrix λmax which is real-valued, positive and

non-degenerate. The choice of s = λmax as a CV guarantees translational, rotational and

permutational invariance while preserving much of the chemical information encoded

in the molecular graph.34 Spectral graph theory ensures that it grows with the number

of bonds and its value lies between the average and maximum coordination number. We

depart from the original SPRINT approach in which all the components of the eigenvec-

tor corresponding to s = λmax were used to define a set of N topological coordinates,

where N represents the total number of atoms.34 While biasing SPRINT coordinates

proved capable of exploring the chemical space, their multidimensional character repre-

6



sents a limit to their effectiveness.

We use λmax in combination with the enhanced sampling technique OPES that builds

the bias through an on-the-fly estimation of the CVs probability distribution.17 In partic-

ular, we use a variant of OPES called OPESE where the subscript stands for explore. This

variant of the original approach is better suited for exploratory runs, especially if the CV

is non-ideal.37 Out of necessity, we use here a CV that is generic. As a consequence, we

pay the price that the CV cannot be as efficient as those that are designed to accelerate a

specified process. In OPESE, the probability distribution (pWT(s)) at the kth iteration is

estimated to be proportional to:

pWT
n (s) = ∑n

k G(s, sk)

n
(2)

where G(s, sk) is multivariate Gaussian, centered at the value that the collective variable

s has at the kth iteration. Then, the bias is built as:

Vn(s) =
γ − 1

β
log

(
pWT

n (s)
Zn

+ ε

)
(3)

where Zn is a normalization factor and γ > 1 is a bias factor. A powerful feature

that OPESE shares with methods such as OPES17 and GAMBES38 is the presence of a

regularization term ε which we write as e−β∆E/(1−1/γ) which sets a limit to the maximum

value of the bias V that is deposited. This allows limiting the extent of exploration by

preventing high energy transition states from being visited.

The discovery engine is complemented by a reaction analysis module which allows

to detect the formation of new chemical species on-the-fly. The Open Babel program39,40

was used to detect chemical species at every snapshot of the trajectory, converting the

cartesian coordinates of each frame into a string of ASCII characters referred to as

SMILES.41 When a new species is detected, its SMILES can be directly translated into the
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corresponding IUPAC name employing the NCI resolver or Pubchem web services.42–44

Once the discovery phase has allowed the identification of new metastable states, the

next step is the characterization of the free energy landscape of the discovered pathways.

Although λmax shows a remarkable exploratory power, it does not necessarily identify

all the slow modes involved in the specific reaction pathway. Thus, it does not represent

a suitable choice to compute the free energy surface. Having in mind the spirit of the

present work, we want to make the step of designing a more efficient CV as automatic

as possible. We recently proposed a class of data-driven Deep-learned CVs in which

the task of finding collective variables is left to a neural network, that builds efficient

non-linear CVs starting from the unbiased fluctuations of a large set of molecular de-

scriptors.19,31,32 One of these methods, is the so-called Deep-LDA method that generates

a CV by minimizing a loss function based on Linear Discriminant Analysis.19 Feeding

the neural network with all the N(N-1)/2 elements of the adjacency matrix A, we can

build a CV that separates the reactant and product states and can be used to converge

the corresponding free energy surface.

However, a large number of configurations and transition events must be sampled in

order to converge the FES and the sampling in time would be computationally expensive

if a higher level of theory is used. As a good compromise between accuracy and cost, we

perform enhanced sampling simulations using a semiempirical Hamiltonian (PM6) and

then a posteriori refine the FES at DFT level (B3LYP/6-31G**) via free energy perturbation

theory.45–48 To obtain the FES at a higher-level (FH), we use the low-level FES (FL) and

the perturbative term ∆FFEP = FH − FL :48

∆FFEP(s) =
1
β

log
∑M

i wO
i (Ri)wP

i (Ri)δ(s − s(Ri))

∑M
i wO

i (Ri)δ(s − s(Ri))
(4)

where β is the inverse temperature and M is the number of configurations extracted
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from the low level sampling, whose potential energy is evaluated with a more accurate

and costly Hamiltonian. wP
i (Ri) represents the perturbative weight associated with the

i-th sample, which can be evaluated from the potential energies computed with the low-

and high-level Hamiltonians (UL(R) and UH(R)), according to:

wP
i (Ri) = eβ(UH(Ri)−UL(Ri)) (5)

wO
i (Ri) is simply the weight of the i-th sample extracted from the OPES simulation, and

it can be estimated as wO
i (Ri) = eβV(s(Ri),t), where V(s(Ri), t) is the OPES bias at time t

for the configuration Ri.

We tested our workflow on both intramolecular and intermolecular reactions. Our

intramolecular example is the Claisen rearrangement in which the allyl vinyl ether 3-

ethenoxyprop-1-ene undergoes a [3,3]-sigmatropic rearrangement.49,50 As an example of

intermolecular reactivity, we investigated the aldol reaction between vinyl alcohol and

formaldehyde.51 Without making any a priori assumption, we discovered several prod-

ucts, computed the free energy surface (FES) for the main pathway at the semiempirical

level (PM6
52), and finally refined the FES at a higher level of theory (B3LYP53/6-31G**)

via free energy perturbation (FEP) theory.45–48 The technical details of the calculations,

as well as the time evolution of λmax for the discovery simulations, are reported in the

Supporting Information (SI).

Claisen Rearrangement Reaction. Starting from 3-ethenoxyprop-1-ene (Figure 2a), we

performed five discovery simulations each 500ps long at the PM6 level of theory, setting

the barrier value in OPESE at 100, 200, 300, 400, and 500 kJ/mol. We included all the

14 atoms in the adjacency matrix, whose elements aij are defined in equation 1. More

technical details about the simulations are reported in the SI.

Figure 2b shows the results of the discovery dynamics as a function of the OPESE

9



Figure 2: Summary of the discovery phase. a) The reactant 3-ethenoxyprop-1-ene is
converted in the corresponding molecular graph and the adjacency matrix A is defined.
The CV for the discovery step is the maximum eigenvalue of A. The adjacency matrix
includes all the 14 atoms and its elements (aij) are computed according to eq.1 b) Results
of the discovery dynamics as function of the ∆E cutoff in OPESE. c) Time evolution of
λmax colored according the CO distance of the breaking bond for the dynamics at ∆E =
200 kj/mol.

∆E parameter that is related with the maximum value of the bias that can be deposited.

Three different products were discovered: pent-4-enal, 2-oxabicyclo[2.1.1]hexane, 3-methyl-

2,3-dihydrofuran (Figure 2b). In details, starting from a ∆E value of 100 kJ/mol, several

conformers have been explored but no new product has been detected in 500ps. In-

creasing ∆E to 200 kJ/mol led to the conversion of the reactant (3-ethenoxyprop-1-ene)

into the expected product of the Claisen rearrangement reaction, pent-4-enal.50 The two
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simulations with the ∆E value set to 300 or 400 kJ/mol led to the formation of the bicy-

clo compound 2-oxabicyclo[2.1.1]hexane. Finally, the 3-methyl-2,3-dihydrofuran species

was found by setting ∆E to 500 kJ/mol. All the species thus discovered are stable and

their respective pathways agree well with those computed with the nudged elastic band

method at the B3LYP/6-31G** level of theory.

The time evolution of λmax, colored according to the CO distance of the breaking

bond, is reported in Figure 2c for the dynamics with ∆E = 200 kJ/mol. The reaction

occurs after about 210 ps, as it is visible from the variation in the CO distance. It is

worth pointing out that a bias along the direction of our generic CV is able to induce

a transition to a new state, even though the CV itself is far from ideal since it hardly

changes its value during the dynamics. In fact, as the reactant and the product are both

linear molecules, the number of contacts shows little difference in going from one species

to another, which in turn is reflected into near degenerate values of the CV in the two

states. Instead, when the structure of the product becomes cyclic, the two states become

clearly distinguishable in the CV space (see Figure S1).

As previously discussed, once new metastable states have been discovered, we em-

ployed the Deep-LDA method to construct a specialized and more efficient CV to im-

prove the sampling of the discovered pathways and converging the free energy surface.

In particular, we computed the FES for the Claisen rearrangement reaction using as in-

put descriptors for the neural network the 91 elements of the adjacency matrix A. By

construction, the resulting Deep-LDA CV separates the reactant and product states (3-

ethenoxyprop-1-ene and pent-4-enal) as it is clear from Figure 3b which reports the time

evolution of the CV colored according to the CO distance of the breaking bond.

In a run of 20 ns, the system was reversibly driven from one basin to the other,

demonstrating the efficiency of this CV. The FES thus computed is shown in Figure 3c.

The free energy difference of the reaction is -58.7 kJ/mol with an average FES uncertainty
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Figure 3: Results of the OPES explore simulation when enhancing the Deep-LDA CV. a)
Schematic representation of the workflow to build the Deep-LDA CV. More details can
be found in Ref.19. All the 91 aij elements of the adjacency matrix A are used as input
descriptors and they have been computed according eq.1. b) Time evolution of the CV
coloured according the CO distance of the breaking bond. c) Free-energy surface along
the Deep-LDA CV, computed with a block average over the last 15 ns of the simulation.

of 1.7 kJ/mol computed by a block average.

In the final step, we refined the free energy estimation using free energy perturba-

tion theory. To build the free energy surface at DFT level of theory we extracted 5000

configurations from the last 15 ns of the PM6 trajectory, on which B3LYP/6-31G** single

points were carried out. These structures were selected to represent a uniform distribu-

tion in the Deep-LDA CV space (see Figure S2). The refined FES computed according

to equations 4 and 5 is reported in Figure 4. The free energy difference of the Claisen

rearrangement reaction at B3LYP level is -90.4 kJ/mol.

Aldol Reaction. As an example representative of an intermolecular reaction, we in-
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Figure 4: Free energy along the Deep-LDA CV calculated with the semiempirical Hamil-
tonian (PM6) and then refined at B3LYP/6-31G** level of theory via the free energy
perturbation term ∆FFEP.

vestigated the aldol reaction between vinyl alcohol and formaldehyde.51 Five 500 ps

long dynamics simulations were performed at the PM6 level of theory setting the barrier

value in OPESE at 100, 150, 200, 250, and 300 kJ/mol, including all the atoms in the

adjacency matrix.

Results of the discovery simulations are reported in Figure 5a. Starting from a ∆E

value of 100 kJ/mol, formaldehyde and vinyl alcohol react leading to the expected al-

dol 3-hydroxypropanal. The same product is observed when setting the barrier value

to 150 and 200 kJ/mol. Increasing ∆E to 250 kJ/mol led first to 3-hydroxypropanal,

which subsequently gave an intramolecular cyclization to oxetan-2-ol (Figure 5b). Fi-

nally, ethenoxymethanol was discovered by increasing the barrier to 300 kJ/mol.

Once new metastable states were discovered, we followed our protocol. As in the

case of the Claisen rearrangement reaction we built a Deep-LDA CV out of all the inter-

atomic distances and converged the FES of the aldol reaction at the PM6 level.19 We then

extracted 5000 configurations and refined the FES at the B3LYP/6-31G** level of theory

(Figure S4).
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Figure 5: Summary of the discovery phase. a) Results of the discovery dynamics as
function of the ∆E cutoff in OPES explore. b) Time evolution of λmax coloured according
to the associated SMILES for the dynamics at ∆E = 250 kj/mol.

Conclusions. Using state-of-the-art enhanced simulation techniques, we have pre-

sented an integrated modular workflow to discover and characterize reaction pathways.

This workflow is highly modular and flexible. Reaction discovery can be either used as

a stand-alone tool to guess complex chemical pathways8 or be followed by free energy

calculations where it can be combined with more refined CVs, such as Deep-LDA,19

Deep-TDA,32 or Deep-TICA31. Free energy results can be further refined by free energy

perturbation techniques48,54 to obtain estimates at a higher level of theory. The approach

can also be combined with neural network-based potentials that offer DFT-level preci-
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sion at an affordable cost.55–57 By a careful and focused choice of the adjacency matrix,

our method can be extended to study chemistry in solution, on surfaces and in the solid

state. In the future, as the workflow will evolve and become more automatic with a re-

duction of user input, we are hopeful that it will develop into a powerful tool for reaction

discovery.
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