
High-Throughput Predictions of Metal–Organic Framework Electronic Properties: 

Theoretical Challenges, Graph Neural Networks, and Data Exploration 

Andrew S. Rosen,1,2,3,8 Victor Fung,4 Patrick Huck,5 Cody T. O’Donnell,3 Matthew K. Horton,3 

Donald G. Truhlar,6 Kristin A. Persson,1,7 Justin M. Notestein,8 and Randall Q. Snurr8 

 

1Department of Materials Science and Engineering, University of California, Berkeley, California 94720, 

USA 
2Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, California 

94720, USA 
3Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 
4Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, 

USA 
5Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 
6Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University 

of Minnesota, Minnesota 55455, USA 
7Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States 
8Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, 

USA 
 

Abstract. With the goal of accelerating the design and discovery of metal–organic frameworks (MOFs) for 

(opto)electronic and energy storage applications, we present a new dataset of predicted electronic structure 

properties for thousands of MOFs carried out using multiple density functional approximations. Compared 

to more accurate hybrid functionals, we find that the widely used PBE generalized gradient approximation 

(GGA) functional severely underpredicts MOF band gaps in a largely systematic manner for semi-

conductors and insulators without magnetic character. However, an even larger and less predictable 

disparity in the band gap prediction is present for MOFs with open-shell 3d transition metal cations. With 

regards to partial atomic charges, we find that different density functional approximations predict similar 

charges overall, although hybrid functionals tend to shift electron density away from the metal centers and 

onto the ligand environments compared to the GGA point of reference. Much more significant differences 

in partial atomic charges are observed when comparing different charge partitioning schemes. We conclude 

by using the new dataset of computed MOF properties to train machine learning models that can rapidly 

predict MOF band gaps for all four density functional approximations considered in this work, paving the 

way for future high-throughput screening studies. To encourage exploration and reuse of the theoretical 

calculations presented in this work, the curated data is made publicly available via an interactive and user-

friendly web application on the Materials Project. 

Keywords: metal–organic framework, density functional theory, machine learning, database, band gap, partial atomic 

charge 
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Introduction 
Metal–organic frameworks (MOFs) have been extensively studied over the last two decades due to their 

high degree of synthetic tunability, which makes it possible to tailor their physical and chemical properties 

for a given application.1,2 While much attention has been focused on the use of MOFs for industrial gas 

storage and separations,3,4 the design of MOFs with targeted electronic properties has become a topic of 

recent interest as well.5–8 Through a judicious selection of inorganic nodes and organic linkers, MOFs have 

been proposed for novel (opto)electronic devices, electrocatalysts, photocatalysts, sensors, and energy 

storage devices, among many other applications.6,9–11 However, with tens of thousands of MOFs that have 

been experimentally synthesized12 and virtually unlimited more that can be proposed,13 it is often difficult 

to identify promising MOF candidates with the optimal set of electronic properties.  

 The advent of machine learning (ML) and related big data approaches has made it possible to more 

efficiently search through MOF chemical space, and high-throughput computational screening can often 

provide insight into previously unknown structure–function relationships.14–22 With this goal in mind, a 

high-throughput density functional theory (DFT) workflow23 was recently used to construct a publicly 

accessible dataset of quantum-chemical properties for thousands of MOFs (and coordination polymers), 

known as the Quantum MOF (QMOF) Database.24 Like many databases of material properties generated 

from high-throughput periodic DFT calculations,25,26 the electronic structure properties within the QMOF 

Database were computed with the relatively inexpensive Perdew–Burke–Ernzerhof (PBE)27 exchange-

correlation functional. While PBE is useful for generating large quantities of material property data that are 

often needed for ML, the electron self-interaction error28 of generalized gradient approximation (GGA) 

functionals like PBE can greatly influence the predicted electronic properties.28,29 Perhaps most notably, 

PBE is known to severely underpredict band gaps,30–32 but the degree to which there may be qualitative (as 

opposed to merely quantitative) errors is not well-established. This inherently limits the practical utility of 

data-driven, computational screening approaches based on such a functional. 

For inorganic solids, several approaches have been taken to increase the accuracy of ML-predicted 

band gaps trained on high-throughput DFT calculations in a computationally tractable manner. The most 

straightforward option is to train ML models on experimental band gap data33 or an ensemble of both 

theoretical and experimental band gap data.34 Unfortunately, this approach is challenging to apply to MOFs 

because there are relatively few reports of experimentally measured MOF band gaps.8 Furthermore, the 

reported band gaps of MOFs can vary by several tenths of an eV depending on the synthesis conditions and 

crystallinity of the material.6 Another approach is to carry out higher-accuracy DFT calculations on a subset 

of materials and use them to train an ML model that can make more reliable predictions. Recently, large 

datasets of band gaps computed with meta-GGA and hybrid functionals have been published for inorganic 

solids,35–37 although no such resource currently exists for MOFs. 

In the present work, we complement the existing dataset of PBE electronic structure properties in 

the QMOF Database with analogous data computed using three other functionals: HLE1738 (a high local-

exchange meta-GGA), HSE0639,40 (a screened-exchange hybrid GGA), and a functional we refer to here as 

HSE06* in which the amount of screened Hartree-Fock (HF) exchange of HSE06 has been changed from 

25% at short interelectronic distances to 10%. By analyzing the electronic structure properties calculated at 

these levels of theory, we uncover severe theoretical limitations associated with the more computationally 

efficient (meta-)GGA density functionals that prevent them from achieving quantitatively – and sometimes 

qualitatively – accurate band gap predictions for MOFs and coordination polymers with respect to hybrid 

functionals. Since it is known that different density functional approximations (DFAs) can alter the 

underlying charge density, we also investigated trends related to the computed partial atomic charges. In 

general, we find that the different levels of theory predict similar partial atomic charges; however, as 

compared to PBE, the meta-GGA and screened hybrids tend to shift electron density away from the metal 

centers and onto the ligand environments. 
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We conclude by using the new electronic structure data to train multi-task and multi-fidelity 

convolutional neural network models that can predict PBE, HLE17, HSE06, and HSE06* band gaps given 

a graph-based representation of a MOF crystal structure. We anticipate that the computational data, trends, 

and subsequent deep learning models presented in this work will make it possible to achieve both rapid and 

accurate predictions of MOF band gaps that can greatly accelerate the materials design and discovery 

process. To help realize this vision, all the data underlying the QMOF Database is now also made available 

as a dedicated, interactive application on the widely used Materials Project.41 

Methods 

Density Functional Theory Calculations 
Plane-wave, periodic DFT calculations were carried out using the Vienna ab initio Simulation Package 

(VASP)42,43 version 5.4.4 and the Atomic Simulation Environment (ASE)44 version 3.20.0b1. We consider 

properties calculated with four exchange-correlation functionals: PBE-D3(BJ),27,45,46 HLE17,38 HSE06,39,40 

and HSE06* (i.e. HSE06 with reduced HF exchange). The PBE-D3(BJ) calculations were obtained from 

the QMOF Database, as previously reported.24 The HLE17, HSE06, and HSE06* calculations are new to 

this work and were carried out using structures from the QMOF Database24 that were previously optimized 

with the PBE-D3(BJ) exchange-correlation functional. In commonly accepted notation, these levels of 

theory would generally be referred to as PBE-D3(BJ), HLE17//PBE-D3(BJ), HSE06//PBE-D3(BJ), and 

HSE06*//PBE-D3(BJ), indicating that the functional to the left of the double-slash is a single-point (i.e. 

static) calculation carried out on the geometry obtained using the functional to the right of the double-slash. 

For brevity, we will simply refer to these levels of theory as PBE, HLE17, HSE06, and HSE06*, 

respectively. Of the 20,000+ structures in the QMOF Database with properties computed using PBE, 

approximately 10,700 have newly computed properties at the HLE17, HSE06, and HSE06* levels of theory. 

The HSE06 functional is a screened-exchange functional built upon PBE and replaces a portion of 

PBE’s local exchange with 25% HF exchange at small interelectronic distances, decreasing continuously 

to zero at large interelectronic distances.39,40 HSE06 was selected in this work because it is currently the 

most widely used functional for predicting the band gaps of solid-state materials when high accuracy is 

required, including for MOFs.47,48 Other functionals may have comparable or slightly better performance 

for certain systems37,49–51 but are less widely used and tested. In addition to HSE06, we considered the 

hybrid functional defined here as HSE06*, which has 10% HF exchange at small interelectronic distances 

and decreases to zero at large interelectronic distances. HSE06* was considered because the standard 

HSE06 functional can overcorrect the band gap underprediction problem of PBE for some materials,52 as 

is the case with MOF-5.53,54 Considering a functional with an intermediate fraction of HF exchange between 

that of PBE and HSE06 also makes it easier to discern the impact of HF exchange. The HSE06 and HSE06* 

calculations are considerably more expensive than the PBE calculations because of the nonzero fraction of 

HF exchange. With this in mind, we included the HLE17 meta-GGA functional as well because prior 

benchmarking studies38,47 suggest that it can greatly improve the prediction of semiconductor band gaps 

without the need for computationally expensive HF exchange. While one could also consider the GGA+U 

approach,55 relatively little is currently known about selecting empirically ideal U values for MOFs48,56,57 

despite its widespread use in correcting the predicted energetic and electronic properties of inorganic solids 

in high-throughput DFT databases.58–60 

For materials that are closed-shell (i.e. without magnetic character), the band gap is defined as the 

energy difference between the conduction band minimum (CBM) and valence band maximum (VBM). For 

materials with open-shell character, there can be more than one way to characterize the band gap.61 Except 

where otherwise stated, we define the band gap for spin-polarized systems as min(CBM↑, CBM↓) −
max(VBM↑, VBM↓), where ↑ and ↓ refer to the spin-up and spin-down spin-orbital manifolds, respectively. 

Nonetheless, we note that this definition can occasionally result in a band gap that is associated with a 

formally spin-forbidden electronic excitation, as depicted in Figure S4. Using the band gap instead defined 
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as min(CBM↑ − VBM↑, CBM↓ − VBM↓) does not involve a spin-flip. Regardless of which band gap 

definition is employed, the trends and conclusions reported throughout this work remain unchanged (Figure 

S5). 

The following software packages were used to analyze the DFT data in this work this work: 

Chargemol v. 09-26-2017 (DDEC6 and CM5 calculations),62 ASE v. 3.20.0b1 (orchestrate the VASP 

calculations),44 Pymatgen v. 2020.12.3 (electronic structure analysis),63 Bader v. 1.04 (Bader analysis),64 

NumPy/Pandas/SciPy/matplotlib/seaborn (data analysis and visualization),65–69 and PtitPrince v.0.2.5 (for 

raincloud plots70). Additional methodological details regarding the DFT calculations, dataset curation, and 

data analysis can be found in the Supplementary Information. 

Machine Learning 
Graph neural network architectures, which take graphs representing the crystal structures as inputs, were 

used for the machine learning models. The graph representations contain atoms as nodes and interatomic 

distances as edges. Here, the atoms are represented with a one-hot encoding of the element with a vector 

length of 100 within the node attributes. The edge attributes contain interatomic distances within a cutoff 

of 8 Å and up to 12 neighbors per node, where the distances were then expanded by a Gaussian basis71 to a 

length of 50. In this work, an additional state attribute is included, representing the level of theory used, or 

“fidelity,” as an integer. The graph neural network itself adopts the MatErials Graph Network (MEGNet) 

architecture72 where the node, edge, and state attributes are propagated sequentially in the stated order 

during the graph convolutional steps. The overall model contains one pre-processing layer, four graph 

convolutional layers, one pooling layer using the Set2Set function, and finally two post-processing layers. 

The pre-processing, post-processing, and graph convolutional update functions are all fully-connected 

layers with Rectified Linear Unit (ReLU) activation functions and with dimensions of 128, 128 and (128, 

128), respectively. The models were trained with the AdamW optimizer73,74 using an initial learning rate of 

0.0005 and a batch size of 128 for a total of 250 epochs. The model state with the lowest validation mean 

absolute error (MAE) is saved and used for testing. The training:validation:testing ratio used is 80:5:15, 

and the samples were randomly split across the training, validation, and testing sets. For all cases in this 

work, the same hyperparameters were used in the models. For the individual models, the models were 

trained separately. In multi-task learning, the output dimension was expanded to four, and the predictions 

were performed simultaneously with a single model for all fidelities (i.e., levels of theory). For multi-

fidelity learning, we adopt the approach used by Chen et al.75 where each fidelity is considered a unique 

data sample and structures with different fidelities can appear in both training and testing data splits. The 

model training and testing was set up and performed using the MatDeepLearn framework,76 which is 

implemented using the PyTorch77 and PyTorch geometric78 libraries. The training and evaluation were 

conducted on four NVIDIA Tesla V100 ('Volta') graphics processing units (GPUs). 

Results and Discussion 

Band Gap Comparison 
To develop ML models that can directly guide future experimental efforts, it is essential to first understand 

the behavior and potential limitations of various levels of theory when predicting MOF electronic structure 

properties. As such, we begin by comparing the DFT-predicted band gaps for 10,720 structures in the 

QMOF Database with the PBE (GGA: 0% HF exchange), HLE17 (meta-GGA: 0% HF exchange), HSE06* 

(screened hybrid: 10% HF exchange at small interelectronic distances decreasing to zero at large distance), 

and HSE06 (screened hybrid: 25% HF exchange at small interelectronic distances decreasing to zero at 

large distance) functionals. 

As shown in Figure 1, we observe pronounced differences amongst the predictions of the various 

DFAs. Starting with the box plots, we find that of the four functionals tested in this work, PBE generally 

predicts the lowest band gaps. Including HF exchange — as with HSE06* and HSE06 — tends to increase 
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the predicted band gap values, with the relative increase depending on the fraction of HF exchange in the 

selected functional. Qualitatively, the HSE06* and HSE06 results are more reflective of prior experimental 

studies,6 which suggest that the majority of MOFs are electronically insulating and that comparatively few 

exhibit semi-conducting or metallic character. Switching focus to the HLE17 meta-GGA, we find that the 

median band gap value is within 0.09 eV of the HSE06* calculations, suggesting that the parameterization 

of this functional can partially improve upon the band gap underprediction problem of PBE despite not 

incorporating HF exchange. 

 

Figure 1. Raincloud plots (i.e. combined violin plot, box plot, and strip plot) for the DFT-computed band gaps, 𝐸g, of 

10,720 structures in the QMOF Database at the PBE, HLE17, HSE06*, and HSE06 levels of theory. The strip plots 

show all the data at that level of theory (jittered horizontally for ease-of-visualization). The box plots show the extrema 

(whisker tails), interquartile range (box boundaries), and median (horizontal line). The violin plots show the 

probability density of the data. 

When comparing the violin plots in Figure 1, it is immediately clear that the shape of the band gap 

distribution can vary significantly depending on the DFA. The PBE-computed band gap data exhibits two 

distinct distributions with peaks around 0.90 eV and 2.93 eV (Figure 1), which is observed for the full 

QMOF Database of ~20,000 structures as well (Figure S6). A qualitatively similar distribution of band gaps 

is obtained when using the HLE17 functional, which has peaks around 0.86 eV and 3.21 eV. However, the 

two distributions in the band gap data exhibit much more significant overlap for the HSE06* functional, 

and for the HSE06 functional there is almost complete overlap such that the overall distribution is virtually 

unimodal. 

The two underlying distributions in the band gap data can be better understood by separating the 

computed values based on whether the material has closed-shell or open-shell character, the latter of which 

is associated with lower band gaps on average (Figure 2a). When including 10% HF exchange with HSE06*, 

the degree of overlap between the closed-shell and open-shell band gap distributions is partway between 

that of PBE and HSE06 (Figure 2a), which illustrates the strong dependence of the trends on the fraction of 

HF exchange. Taking the hybrid-quality calculations as the more accurate reference point,47 these findings 

suggest that the PBE functional exhibits severe quantitative and qualitative shortcomings when applied to 

a wide range of MOF structures and that these shortcomings go beyond a simple underprediction of the 

band gap. Although HLE17 increases the median band gap of the dataset compared to PBE and decreases 

the number of structures with a predicted band gap in the low-energy subset, it retains the bimodal nature 

of the band gap distribution. Nonetheless, HLE17 does significantly increase the band gaps of the closed-

shell frameworks, and the distribution of band gaps for the closed-shell MOFs is similar to that of HSE06*. 



6 

 

 

Figure 2. a) Violin plots of the predicted band gaps, 𝐸g, for 10,720 structures in the QMOF Database calculated with 

PBE, HLE17, HSE06*, and HSE06. The left and right sides of each violin plot include structures with closed-shell 

(8628 structures) and open-shell (2092 structures) character, respectively. A box plot is included inside each violin, 

highlighting the extrema (whisker edges), interquartile range (box boundaries), and median (white dot) of the band 

gap data at the specified level of theory. b) Median band gap as a function of the fraction of Hartree-Fock (HF) 

exchange at small interelectronic separation where 0% = PBE, 10% = HSE06*, and 25% = HSE06. The blue triangles 

and orange circles are the median band gaps for the closed-shell and open-shell structures, respectively. The solid 

lines display the linear best-fit equations.  

By directly comparing the predicted band gaps for the PBE, HSE06*, and HSE06 calculations, we 

find that there is a correlation between the median band gap and the fraction of HF exchange (Figure 2b), 

at least within the range of 0–25% HF exchange considered in this work. Assuming linear behavior in this 

region, it can be concluded that the median band gap across the dataset changes by ~0.05 eV per percent of 

HF exchange for the closed-shell frameworks and ~0.10 eV per percent of HF exchange for the open-shell 

frameworks, although we emphasize that these statistics are specific to the QMOF Database and may differ 

for other datasets of MOFs. Collectively, these results have significant implications for computational 

screening studies of MOFs and coordination polymers, as the use of GGA functionals like PBE may lead 

to incorrect qualitative comparisons between the band gaps of different materials if some have closed-shell 

character and others have open-shell character. 

While Figure 1 and Figure 2 show how the entire dataset changes with different density functionals, 

it is also important to investigate the degree of correlation between the various functionals. As shown in the 

parity plots in Figure 3, nearly every MOF has a larger predicted band gap with the HSE06* (Figure 3b) 

and HSE06 (Figure 3c) functionals than with PBE. This is also the case for most of the closed-shell MOFs 

with the HLE17 functional, especially when 𝐸g,PBE is above ~1.5 eV (Figure 3a). For the closed-shell 

frameworks (Figure S7), there is a linear correlation between the computationally inexpensive PBE-quality 

band gaps and those calculated with the more accurate HSE06* and HSE06 functionals as well as the HLE17 

functional. As shown in Figure S7c, a simple linear equation of the form 1.09𝐸g,PBE + 1.04 eV can predict 

HSE06 band gaps with an 𝑅2 value of 0.92, provided the frameworks are closed-shell systems and have 

HSE06 band gaps above ~1.0 eV. Similar linear equations can be obtained for HLE17 and HSE06* for the 

closed-shell structures (Figure S7a and Figure S7b). The correlation between PBE and the hybrid 

functionals is weaker for MOFs with open-shell character, hence the larger degree of scatter in the low 

𝐸g,PBE range of Figure 3b and Figure 3c. 
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Figure 3. Parity plots of the computed band gaps, 𝐸g, for 10,720 structures in the QMOF Database at various levels 

of theory. a) HLE17 vs. PBE; b) HSE06* vs. PBE; c) HSE06 vs. PBE. Given the large dataset size, the parity plots are 

shown as 2D histograms with the color bar reflecting the frequency of points in each bin. The line of parity is shown 

as a diagonal line. 

 As might be anticipated based on trends in crystal-field splitting parameters and spin-pairing 

energies,79 most open-shell materials in the QMOF Database contain 3d transition metal cations 

(particularly Cu, Co, Mn, Ni, Fe, V, and Cr in decreasing frequency of occurrence) (Figure S8). Previous 

theoretical work on transition metal complexes and gas-phase molecules containing transition metal cations 

has implicated large self-interaction errors (a consequence of each electron interacting with the total 

electron density, including its own28) as a major source of errors in systems with 3d transition metal cations 

that have open-shell character.80,81 More generally, self-interaction error is usually considered to be 

responsible for many of the deficiencies of DFT across virtually all properties and material classes, often 

due to the associated delocalization error.82,83 Since self-interaction error is partially decreased by the 

inclusion of HF exchange, this is a major reason that the hybrid functionals give different results than the 

local functionals for the band gap predictions in this work. 

Partial Charge Comparison 
Beyond band gaps, it is well-established that different DFAs can change how the charge density is 

distributed in a given material.84–88 Furthermore, partial atomic charges (which can be computed directly 

from the underlying charge density) are commonly used in molecular simulations of MOFs and can be used 

to interpret trends when modeling redox processes and chemical reactions.89,90 One such method to compute 

partial atomic charges, the sixth-generation Density Derived Electrostatic and Chemical (DDEC6) 

partitioning scheme,91–93 has found widespread use in molecular simulations of MOFs89 (e.g. for gas storage 
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and separations) and has performed well in tests of reproducing the electrostatic potential.94 To explore the 

sensitivity of partial atomic charges to different DFAs, we compared ~960,000 partial charges calculated 

from the DDEC6 method using charge densities at the PBE, HLE17, HSE06*, and HSE06 levels of theory. 

 

Figure 4. Comparison of DDEC6 partial atomic charges, 𝑞DDEC6, for 922,879 atoms based on charge densities at 

various levels of theory: a) HLE17 vs. PBE; b) HSE06* vs. PBE; c) HSE06 vs. PBE. Given the large dataset size, each 

parity plot is a 2D histogram with the logarithmic color bar reflecting the frequency of points in each bin. The line of 

parity is shown as a dashed diagonal line. d) A histogram of the change in DDEC6 charges between the PBE and 

HSE06 levels of theory for the metal sites and ligand atoms within the first coordination sphere. 

As shown in Figure 4a, the DDEC6 partial atomic charges calculated by PBE and HLE17 are highly 

correlated across the entire dataset, with most points falling within 0.04 charge units from the line of parity. 

When investigating the computed partial charges by HSE06*, we find that the HSE06* partial charges are 

even closer to the PBE reference than the HLE17 partial charges are (Figure 4b), indicating that 10% HF 

exchange at small interelectronic distances does not substantially change the first moment of the charge 

density. However, when increasing the HF exchange to 25% with HSE06, a slightly larger difference can 

be observed (Figure 4c). 

By focusing solely on the metal elements and the ligand atoms within their first coordination 

spheres (as determined using the CrystalNN near-neighbor finding algorithm95,96), we find that – compared 

to the PBE reference – there is often a loss of electron density (i.e. increased partial atomic charge) at the 

metal and corresponding gain of electron density (i.e. decreased partial atomic charge) on the surrounding 

ligands when using the HSE06 functional (Figure 4d). These trends are consistent with previous partial 

charge analyses carried out on transition metal complexes and open-framework solids.81,87,97 Given the large 

partial charge dataset in the present work, we can conclude that this shifting of electron density occurs for 

an enormously diverse range of metal–ligand environments and can be taken as a rule-of-thumb in most 

cases. While there are differences in the partial atomic charges between the various levels of theory, they 

are generally relatively minor. The overall strong agreement suggests that the less expensive PBE-quality 
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charges, which are available for thousands of MOFs,24,89 are likely suitable when carrying out high-

throughput computational screening studies. 

Since no single charge partitioning scheme is expected to be ideal for all applications, we also 

compared the effect of different charge partitioning schemes for a given DFA. As shown in Figure 5, the 

differences between Bader,64,98 DDEC6,91,92,99 and Charge Model 5 (CM5)100 partial atomic charges (as 

computed with the PBE functional) tend to be far larger than any differences observed when changing the 

DFA, similar to what has been observed for several inorganic solids.101 This is especially the case when 

directly comparing the Bader and DDEC6 methods. As one example of many, large deviations are often 

observed for the S and P atoms of SO4
2- and PO4

2- groups, which have partial atomic charges upwards of 

~2.4 charge units higher with the Bader method than the DDEC6 method. Additionally, there can be 

qualitative differences between Bader and DDEC6 charges, such as atoms that have a partial positive charge 

with the Bader method but a partial negative charge with the DDEC6 method. While there are also clear 

differences between the DDEC6 and CM5 methods (Figure 5b), the agreement between these two charge 

partitioning approaches is generally greater than that between DDEC6 and Bader. For applications 

involving systems quite different from those in available benchmarks,90,91,100 it might be advisable to 

compare multiple partial charge schemes and further investigate any substantial differences.102 

 

Figure 5. a) Comparison of the partial atomic charges, 𝑞, for 1,429,082 atoms computed using the Bader and DDEC6 

charge partitioning schemes at the PBE level of theory. b) Parity plot of the partial atomic charges, 𝑞, for 2,321,435 

atoms computed using the CM5 and DDEC6 charge partitioning schemes at the PBE level of theory. Given the large 

dataset size, the parity plots are shown as 2D histograms with the logarithmic color bar reflecting the frequency of 

points in each bin. The line of parity is shown as a dashed diagonal line. 

Machine Learning 
With the goal of reducing the number of DFT calculations needed in future high-throughput computational 

screening studies, we have evaluated the performance of several ML models that can predict MOF band 

gaps from graph representations of their three-dimensional structures (for the prediction of partial atomic 

charges, we refer the reader to several ML models103–105 that have been shown to accurately predict PBE-

quality DDEC6 and CM5 charges for MOFs). Using MatDeepLearn,76 we first trained individual graph 

neural networks for each DFA and found that they performed well at predicting DFT-computed band gaps 

compared to a baseline model that simply predicts the mean of the dataset for each entry (Table 1). Prior 

work24,76 on the QMOF Database showed that a crystal graph convolutional neural network (CGCNN) 

model106 could predict PBE band gaps with a comparable accuracy, and it is reassuring that relatively low 

testing-set MAEs on the order of 0.24 – 0.29 eV can be obtained for the more accurate DFAs (i.e., HLE17, 

HSE06*, HSE06). Overall, the graph neural network trained on PBE band gap data performs better than the 

graph neural networks trained on the HLE17, HSE06*, or HSE06 datasets, which can likely be attributed to 

the greater number of data points available for training with PBE. Despite similar training set sizes for the 

HLE17, HSE06*, and HSE06 levels of theory, the model based on HSE06 data has the largest testing set 
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MAE of 0.29 eV, which may be attributed in part to a wider range of possible band gap values and a greater 

overlap in the band gap distributions for the closed- and open-shell frameworks. 

Table 1. Individual, multi-task, and multi-fidelity model performance. The individual models represent four separate 

models that are each trained on band gaps at a single level of theory. The multi-task model is a single model that is 

trained on and predicts band gaps at all four levels of theory simultaneously. The multi-fidelity models combine data 

from different levels of theory without all samples needing to have band gaps at each level of theory. The 2-fi, 3-fi, 

and 4-fi models are trained/tested on PBE+HSE06, PBE+HLE17+HSE06, and PBE+HLE17+HSE06*+HSE06 data, 

respectively. A baseline model that simply predicts the mean value of the dataset is shown for reference. The dataset 

sizes refer to the entire available dataset, which is split 80:5:15 train:validation:test. The mean absolute errors (MAEs) 

are shown for the testing set. 

Level of 

theory 

Constant 

mean 
Individual Multi-task 

Multi-fidelity  

(2-fi) 

Multi-fidelity  

(3-fi) 

Multi-fidelity  

(4-fi) 

Test 

MAE 

(eV) 

Test 

MAE 

(eV) 

Dataset 

size 

Test 

MAE 

(eV) 

Dataset 

size 

Test 

MAE 

(eV) 

Dataset 

size 

Test 

MAE 

(eV) 

Dataset 

size 

Test 

MAE 

(eV) 

Dataset 

size 

PBE 0.940 0.228 20,423 0.217 10,720 0.214 31,235 0.209 41,993 0.175 52,806 

HLE17 1.076 0.242 10,758 0.239 10,720 — — 0.145 41,993 0.119 52,806 

HSE06* 0.858 0.257 10,813 0.236 10,720 — — — — 0.094 52,806 

HSE06 0.802 0.289 10,812 0.267 10,720 0.276 31,235 0.179 41,993 0.119 52,806 

 

Next, we considered various approaches that could make more efficient use of the available band 

gap data obtained with different functionals. Starting with a multi-task learning approach that predicts band 

gaps for all four DFAs simultaneously using a single model architecture, perceptible but minor 

improvements to the model performance are obtained (Table 1). While more convenient to use than multiple 

individual models if multiple band gap estimates are desired, an inherent drawback of the multi-task 

learning method is that the training process requires structures that have band gaps computed for all DFAs 

of interest, which limits the amount of data that can be used. 

An alternate way to efficiently leverage data at multiple levels of theory is to construct a multi-

fidelity model, which treats each level of theory as a unique sample.75,107 With a substantially expanded 

dataset size of up to 52,806 samples, we find that the multi-fidelity MEGNet model architecture of Chen et 

al.75 achieves significantly lower MAEs than the individual and multi-task models for the “3-fi” (i.e. PBE, 

HLE17, and HSE06*) and “4-fi” (i.e. PBE, HLE17, HSE06*, and HSE06) models (Table 1). These results 

demonstrate that data at multiple levels of theory can be used to improve the overall model performance, 

which is especially important for the prediction of band gaps from hybrid functionals that are more 

computationally demanding to calculate. However, we note that the “2-fi” model (i.e. PBE+HSE06) does 

not outperform the multi-task model. In future studies, it may be worthwhile to consider additional 

approaches (e.g. Δ-learning)108 if only two fidelities are available, especially given the correlation between 

the PBE and HSE06 functionals (Figure 4c). The testing set parity plots for each model are presented in 

Figures S11–S15, which show that the predictive accuracy generally holds over the range of band gaps, 

albeit with an increase in scatter towards the low band gap region (e.g. 𝐸g,DFT < 0.5 eV). The increased 

error in the low band gap region can likely be traced back to several factors, such as a smaller number of 

MOFs to train on in this range and a higher fraction of open-shell MOFs whose properties are likely more 

difficult to predict with ML models. Collectively, we anticipate that the multi-task and multi-fidelity ML 

models will be a valuable resource for future high-throughput screening studies by minimizing the need to 

carry out computationally demanding hybrid DFT calculations, particularly if low-fidelity PBE band gap 

data is readily available (as is the case with the QMOF Database). 
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QMOF Database on the Materials Project 
With new DFT-computed properties at multiple levels of theory, we aimed to make the QMOF Database 

align with the findable, accessible, interoperable, and reusable (FAIR) guiding principles.109,110 Therefore, 

we conclude by showcasing a new interactive web application hosted on the Materials Project,41,111 which 

can be accessed at the following webpage: https://materialsproject.org/mofs. Known as the Materials 

Project “MOF Explorer,” the web application makes it possible to investigate the computed properties in 

the QMOF Database through a user-friendly, search-based interface. The data driving the MOF Explorer is 

made available to the public through the Material Project’s contribution platform MPContribs.112,113 The 

MPContribs application programming interface (API) and its accompanying Python client114 provide a 

unified mechanism for contributors to submit a dataset and for the community at large to programmatically 

retrieve, download and query the contributed materials data. Here, contributions containing materials data 

are linked to a given MOF via a dedicated, unique identifier (“QMOF ID”) and are organized in components 

of queryable dictionary data, Pymatgen63 structure objects, and binary data files. 

As shown in Figure 6, the Materials Project-hosted MOF Explorer allows users to sort and filter 

materials in the QMOF Database by numerous geometric, compositional, textural, topological, magnetic, 

and electronic properties. Selecting a single material on the MOF Explorer leads to a detailed calculation 

summary page, which lists various tabulated properties for that material and an interactive visualization of 

the DFT-optimized crystal structure. In addition to DFT-computed properties, each material has an 

associated MOFid/MOFkey115 (where computable) to support substructure searches as well as cross-

referencing with other MOF databases. As the QMOF Database continues to evolve, we plan to incorporate 

new computed properties and visualizations on the Materials Project to enable further data exploration. 

 

Figure 6. Representative snapshot of the current search interface to the MOF Explorer application on the Materials 

Project with an example multi-query search applied. 

Conclusion 
With a newly generated dataset of electronic structure properties for a subset of ~10,700 MOFs and 

coordination polymers in the QMOF Database,24 we compare the performance of different density 

functional approximations for the prediction of band gaps and partial atomic charges. When comparing 
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DFT-computed band gaps with the commonly used PBE functional against those that incorporate some 

fraction of HF exchange, we observe that PBE almost universally results in a lower band gap prediction, as 

might be expected from prior work. Notably, this difference is largely systematic for MOFs with closed-

shell electronic configurations and can be empirically corrected through a simple linear relationship for 

structures that are semi-conductors or insulators. For MOFs with open-shell electronic configurations (in 

particular, those containing 3d transition metals), an even larger — and less predictable — disparity 

between band gap predictions is observed as a function of the fraction of HF exchange. As compared to the 

PBE results, the meta-GGA HLE17 is found to increase the computed band gaps for the closed-shell MOFs 

such that they are similar to values predicted using the HSE06 screened hybrid functional with 10% HF 

exchange at small interelectronic distances (denoted here as HSE06*). However, compared to the hybrid 

functionals, HLE17 does not as significantly increase the band gaps of the open-shell MOFs. 

 When investigating partial atomic charges, which are reflective of the underlying charge density 

for a given density functional approximation, we find that there are slight systematic differences amongst 

the predictions of the different functionals. For both the HLE17 meta-GGA and the screened hybrid 

functionals, electron density localized on the metals is lower than with PBE, and the opposite is true for the 

coordinating ligand atoms. Nonetheless, these changes in the partial atomic charges are relatively minor 

compared to the differences that arise from using different charge partitioning schemes. 

 Finally, we used the new electronic structure data generated in this work to train multiple machine 

learning models that can predict MOF band gaps at various levels of theory from graphs of the underlying 

crystal structures. We find that individual graph neural network models can predict PBE, HLE17, HSE06* 

or HSE06 band gaps from the QMOF Database with a testing-set mean absolute error of 0.23 – 0.29 eV. A 

multi-task graph neural network model capable of simultaneously predicting MOF band gaps for all four 

functionals performs slightly better than the individual models, but with three or more functionals to train 

on, a multi-fidelity model achieves the best performance of the models tested in this work. 

 High-throughput computational screening approaches have historically been devoted to the 

discovery of MOFs tailored for gas storage and separations. With the new dataset and machine learning 

models presented in this work – coupled with an increased understanding of the behavior of common 

density functional approximations for predicting electronic properties – we anticipate that a computational 

materials design perspective can be brought to countless new application areas for MOFs. Now hosted on 

the widely used Materials Project platform (https://materialsproject.org/mofs), theorists and 

experimentalists alike can leverage the data from tens of thousands of quantum-mechanical calculations to 

accelerate the discovery of promising new MOFs for electronic and optoelectronic applications. 

Data Availability 
With the release of the Materials Project-hosted MOF Explorer interface to the QMOF Database, all data 

in this work can be accessed at the following webpage: https://materialsproject.org/mofs. Each version of 

the QMOF Database made available on the Materials Project is permanently archived on Figshare at the 

following DOI: 10.6084/m9.figshare.13147324. The VASP input and output files are made available via 

the Novel Materials Discovery (NOMAD) platform116,117 with the following dataset names and DOIs: 

QMOD Database - PBE (10.17172/NOMAD/2021.10.10-1), QMOF Database - HLE17 

(10.17172/NOMAD/2021.11.17-3), QMOF Database - HSE06* (10.17172/NOMAD/2021.11.17-2), and 

QMOF Database - HSE06 (10.17172/NOMAD/2021.11.17-1). 
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