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Abstract

Given the importance of accurate polarizability calculations to many chemical ap-

plications, coupled with the need for e�ciency when calculating the properties of sets

of molecules or large oligomers, we present a benchmark study examining possible

calculation methods for polarizable materials. We first investigate the accuracy of

highly-e�cient semi-empirical tight-binding method GFN2-xTB, and connected D4

dispersion model, comparing its predicted additive polarizabilities to !B97XD results

for a subset of PubChemQC and a compiled benchmark set of molecules spanning po-

larizabilities from approximately 3Å3 to 600 Å3, with a few compounds in the range of

approximately 1200 Å3-1400 Å3. Although we find GFN2, and thus D4, to have large

errors with polarizability calculations on large oligomers, it would appear a quadratic

correction can remedy this. We also compare the accuracy of DFT polarizability cal-

culations run using basis sets of varying size and level of augmentation, determining

that a non-augmented basis set may be used for large, highly polarizable species in

conjunction with a linear correction factor to achieve accuracy extremely close to that

of aug-cc-pVTZ.

Introduction

Polarizability plays a key role in many chemical processes and phenomena, and its accurate

calculation is therefore crucial to a variety of applications. Because of its fundamental role

in explaining dispersion forces,1 it is a key component of widely-used dispersion corrections

for computational calculations.2 The importance of accurate electrostatic interactions has

led to the development and widespread use of polarizable force field models for studying

systems such as biomolecules3,4 and ionic liquids.5 Computationally-derived Raman spectra

also rely on the calculation of polarizability tensors.6 Polarizability values are also necessary

to calculate the values of more complex material properties such as refractive index7 and

dielectric constant,8 often in the context of molecular screening.
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Because of its wide utility, polarizability has been the topic of a number of recent com-

putational benchmark studies. Hait and Head-Gordon provided a thorough examination of

the performance of a large number of density functional theory (DFT) functionals at the

complete basis set (CBS) limit for 132 small molecules.9 Frediani et. al. used a subset of the

Head-Gordon study’s molecule set to test the veracity of that study’s CBS limit claim using

alternative multiwavelet bases in order to reduce potential error.10 Sauer and co-workers

used a benchmark set of 14 heteroaromatic molecules to assess the accuracy of various

second-order methods for both static and frequency dependent polarizabilities.11 Afzal and

Hachmann tested various DFT methods to determine the best way to balance accuracy and

e�ciency for high-throughput non-conjugated polymer screening.12

While all of these studies provide valuable insight into the relative accuracy of various

polarizability methods for di↵erent applications, none of them examine such methods for the

high polarizability limit. As shown in our previous work using a genetic algorithm (GA) to

search for high dielectric oligomers, there is a need for a polarizability method capable of

calculating large polarizabilities (on the scale of 102 Å3) while making e�cient use of time

and computational resources.8 As a point of reference, all of the molecular species exam-

ined by the previously mentioned studies possess isotropic polarizabilities less than 40 Å3.

The Hachmann study suggests the viability of extrapolating polymer polarizabilities from

oligomers for non-conjugated species, but notes that this proves untenable for species with

conjugated backbones due to electron correlation e↵ects in the ⇡-system.12 Wong and cowork-

ers performed a polarizability benchmark on oligomers of polydiacetylene and polybutatriene

which included some hexamer polarizabilities greater than 200 Å3.13 It is worth noting that

despite augmented basis sets being recommended for accurate polarizability calculations,14

the basis sets used in this study were not augmented due resource constraints. In another

benchmark study from Wong, linear polarizabilities (and hyperpolarizabilities) were found

for a range of streptocyanine oligomers.15 By using CCSD(T)-F12 which enhances basis set

convergence, they were able to give a basis set extrapolation of computed polarizabilities
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from a non-augmented triple zeta basis set. Both studies provide useful data, including the

e↵ects of short-range exchange on polarizability and CCSD(T) calculations in the former and

an assessment of MP2 quality and the importance of potential lower-energy open-shell states

in the latter, however the scope of neither study was intended to examine resource e�cient

polarizability methods for large oligomers. With the realm of computationally-generated

novel materials continuing to grow, data is needed on resource-e�cient methods and basis

sets to find accurate polarizabilities of largely polarizable molecules.

In this work, we analyze the viability of using a semi-empirical method and smaller basis

sets to make large polarizability calculations more tractable. We first test the durability

of popular semi-empirical tight-binding method GFN2-xTB (GFN2) through the additive

polarizabilities of the D4 dispersion model, on both small organic molecules from Pub-

ChemQC16 for which we expect GFN2/D4 to perform well, and highly polarizable species,

for which we expect some degree of notable inaccuracy. Testing on a set of small organic

molecules gives us a point of comparison which allows us to precisely identify GFN2/D4’s

strengths and limitations when it comes to polarizability calculations for larger extended

systems. While it is understood that GFN2/D4 is empirically tuned to most accurately

calculate the polarizabilities of relatively small molecules, testing this method on larger con-

jugated systems is of special interest since the same basic method used to compute GFN2

polarizabilities is also central to the D4 dispersion correction used widely with DFT methods

on species of a wide variety of sizes and chemical structures.2,17 We also examine four basis

sets of varying size and level of augmentation to determine whether smaller basis sets can

be used to calculate large polarizabilities since they minimize issues regarding computation

time and potential linear dependence.

4



Computational methods

Two primary data sets were analyzed in this benchmark. The first set is a randomly cho-

sen subset of approximately 8,400 species from PubChemQC’s approximately 3.2 million

known small (molecular weights less than 500 a.u.) organic molecules.16 It was chosen to

provide a strong basis of comparison as a set of molecules for which we expected GFN2/D4

to perform well. The second “wide [polarizability] range” set is drawn from previous stud-

ies and designed to cover a very wide range of polarizabilities. Drawing from the pool of

hexamer structures we had created with our GA, we constructed a set of 54 hexamers with

GFN2/D4 predicted polarizability values in the approximate range of 80-280 Å3. In order to

balance out our benchmark set, we also added 19 conjugated oligomers and small molecules

with GFN2/D4 predicted polarizability values in the “medium polarizability” range of 4-91

Å3. Hexamer equilibrium geometries were found using preliminary force-field optimization

using OpenBabel18 with MMFF9419–23 or UFF24,25 followed by geometry optimization us-

ing GFN2.17 Equilibrium geometries for the medium polarizability molecules were optimized

with ORCA 4.0.0.226 using DFT with the B3LYP functional27–30 and 6-31G(d) basis set.31,32

All polarizabilities reported in this study are isotropic, meaning they are the average of

the diagonal elements of the polarizability tensor. We chose to focus on static, isotropic

polarizabilities for this study due to their general applicability to a variety of theoretical and

computational fields, including method development, dispersion correction, and polarizable

electrostatics. For GFN2 calculations, polarizabilities were calculated using xTB which relies

on the D4 method in which polarizabilities are calculated using a weighted sum of precom-

puted atomic polarizabilities.2,17 DFT calculations were performed in Gaussian 0933 for the

PubChemQC set and ORCA 4.0.0.226 for the wide range set, both analytical derivatives and

coupled-perturbed equations.

For GFN2/D4 comparison studies with both the PubChemQC and wide range sets, non-

augmented basis sets were chosen with an emphasis on e�ciency over absolute accuracy.

This was done to estimate how well GFN2 compared generally to DFT, without facing
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potential resource and/or linear dependence issues likely to arise when using augmented basis

sets with large molecules. For the comparison of basis set accuracy, aug-cc-pVTZ34,35 was

selected as the standard of comparison. This basis set was chosen as the standard because

di↵use functions are necessary to describe the long-range electron behavior and electron

correlation important for polarizability calculations, demonstrated in by Rowley and co-

workers’ assessment that augmenting basis sets with di↵use functions leads to a substantial

increase in accuracy, particularly for polarizability calculations.14 This study also determined

that aug-cc-pVTZ performed better than both a similar non-augmented triple-zeta basis set

and an augmented double-zeta basis set. Additionally, Sauer and co-workers found using

larger augmented basis sets do not yield substantial accuracy increases for polarizability

calculations despite the increased time required.11

Results and discussion

Due to our interest in finding an e�cient method for calculating molecular polarizabili-

ties for novel molecular searches, we sought to test the accuracy of GFN2/D4 on common

small molecules. As an initial experiment, we calculated the polarizabilities for approxi-

mately 8,400 species from the PubChemQC dataset, using both GFN2/D4 and DFT with

the !B97XD functional36 and the cc-pVTZ basis set. Although this does not allow polar-

izabilites to be as accurate as when calculated with augmented basis sets, it allowed us to

perform thousands of calculations quickly and gave us an initial baseline against which we

could compare GFN2/D4. As discussed below, such results can be scaled to augmented basis

sets.

Due to the presence of a few outliers, robust linear regression was performed using SciKit

learn’s Huber regressor method37,38 with default epsilon value of 1.35 to limit outlier e↵ects.

The y-intercept was also forced to zero, representing the physical reality that a completely

non-polarizable molecule should be computed to have zero polarizability by any method.
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After performing Huber linear regression (Figure 1), two notable observations were apparent.

While the trendline’s slope was very close to one, the values calculated with GFN2/D4 were

often substantially lower than those calculated with DFT, with di↵erences as great as over

100 Å3 between the two methods. This error appears to be somewhat systematic, as species

with lower polarizabilities generally have smaller di↵erences in calculated values (Figure 1A)

whereas those with high polarizabilities generally have larger di↵erences in calculated values

(Figure 1C). A substantial number of species’ values appear as outliers from the regression

line, suggesting a level of random error in GFN2/D4 calculations.

Highly Polarizable Oligomers

Figure 1: Comparison of PubChemQC polarizabilities calculated with GFN2/D4 to those
calcuated with DFT functional !B97X.

In order to further explore the performance of GFN2/D4 for large polarizability calcula-

tions, we pursued testing a smaller group of molecules with a wider range of polarizabilites.

While we are aware that because of its minimal basis set approach GFN2 is best geared

toward polarizability calculations for small molecules, we believe it is important to test its

performance on a range of species, including conjugated oligomers. We are interested in the

viability of GFN2/D4 additive polarizabilities for two primary reasons: first, to test them

as resource-inexpensive albeit relatively low accuracy calculations that allow for bulk molec-

ular screening. For example, because of its vast speed-up compared to ab initio methods,
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we previously used GFN2/D4 to calculate the polarizabilities of novel hexamer structures

generated by a genetic algorithm (GA)-driven search for high-dielectric organic conjugated

oligomers.8 For that work, we chose to use GFN2/D4 despite suspecting a degree of inac-

curacy at high polarizabilities. The speed-up GFN2/D4 provides over DFT methods was

necessary to complete the thousands of hexamer polarizability calculations in a reasonable

amount of computation time. We qualified our work by noting that while GFN2/D4 ap-

peared to vastly underestimate large polarizabilities, it appeared to do so in a systematic

way, such that the order of the polarizabilities’ magnitudes relative to one another was pre-

served (allowing us to accurately rank molecules by polarizability, as was needed for the

GA). The second reason we believe it is both relevant and important to test GFN2’s ability

to calculate polarizabilities for a wide range of chemical species is that shares the additive

polarizability model with the D4 disperson-correction method, which is widely used for a

variety of species including those not limited to the types of small molecules for which GFN2

has been calibrated.

To test the integrity of the GFN2/D4 polarizability results for the 73 member “wide

range” benchmark set, we ran single point DFT polarizability calculations using the !B97X

functional36 and the cc-pVTZ basis set.34,35,39–41 This functional was chosen because it al-

lowed us to compare the DFT results for the “wide range” set to the previously computed

results for the PubChemQC subset, since the former was performed in ORCA 4.0.0.2, which

does not have an option for the exact dispersion-corrected functional used in the latter’s

calculations in Gaussian 09. This basis set was chosen because it was the largest basis set

that we were able to reach convergence with for all species in the “wide range” set in a

reasonable amount of computation time.

Performing Huber regression with a fixed intercept at the origin on the GFN2/D4 and

!B97X polarizabilities from our “wide range” set (Figure 2), we observed trends similar to

those seen in the PubChemQC study. We again observed smaller di↵erences in polarizabil-

ities less than 50 Å3, with a mean absolute error of 4.72 Å3 (Figure 2A), and increasingly
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larger di↵erences as polarizabilities increased, with an MAE of 37.31 Å3 for polarizabilities

less than 100 Å3(Figure 2B), and an MAE of 145.02Å3 for the entire set (Figure 2C). We sim-

ilarly observed greater variation in polarizability di↵erences as their magnitudes grew, shown

by the drastically smaller R2 value for the full set as compared to the subset with values less

than 50 Å3. Three extreme outliers appeared (Figure 2C), in which the percent error of the

GFN2/D4 calculated value was in excess of 80%. These outliers were run with the same DFT

method and basis set using Gaussian (Table S1), which confirmed the ORCA results and

the presence of troubling random errors in GFN2’s polarizability calculations. Examining

their chemical structures (Figure 3), all notably include sulfur ring systems, suggesting the

possibility that this particular motif is not well accounted for by GFN2/D4.

Figure 2: Using the Huber Regressor to perform linear regression robust to outliers (and
forcing the y-intercept to 0), GFN2/D4 shows some linear correlation with !B97X cc-pVTZ
for isotropic polarizability calculations.

Investigation of Potential GFN2/D4 Improvement Strategies

As shown in the above assessment, GFN2/D4 performs well when calculating relatively

small isotropic polarizabilities, in the range <50Å3 common for most small molecules. For

species with larger polarizabilities, especially for long conjugated systems like the hexamers in

the “wide range” set, GFN2/D4 appears to systematically underestimate the polarizability.

This derives from its use of an atom-additive polarizability model, neglecting the nonlocal

polarizability-enhancing e↵ects of electron delocalization. Our results suggest a correction
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Figure 3: Chemical structures of the hexamers seen as the three major outliers in Figure 2C.

is needed to allow GFN2/D4 to more accurately predict larger polarizabilities.

We began by constructing an additive polarizability model as a baseline comparison for

GFN2/D4 performance. For this model, each atom in a molecule was assigned its GAFF

atom type,42 which was used to further assign it to an Alexandria polarizability type and then

finally a corresponding atomic polarizability.4 The molecular polarizability was calculated as

the simple sum of these atomic polarizabilities. We found that the additive model performed

extremely similarly to GFN2/D4 (Figure S1), providing computed polarizabilities with high

correlation with GFN2/D4 (Figure S2).

Given GFN2/D4’s systematically increasing inaccuracy for large polarizability calcula-
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tions, we considered additional chemical properties related to electron delocalization that

could potentially correct the additive GFN2/D4 polarizability.

Since the polarizability is connected to chemical hardness ⌘ in conceptual DFT,43,44

which is defined by the HOMO-LUMO gaps, we first examined the GFN2-computed HOMO-

LUMO gaps for both the PubChemQC subset and the hexamers from the wide range polar-

izability set. In principal, the highly polarizable ⇡-conjugated species should have smaller

HOMO-LUMO gaps. Unfortunately, there was not a useful correlation between the calcu-

lated polarizability and molecular HOMO-LUMO gap (Figure 4A), likely because GFN2 is

not parameterized for HOMO or LUMO eigenvalues to connect with ionization potential or

electron a�nity.

We then used an empirical descriptor of the geometric size of the largest conjugated

⇡-system.45,46 While better correlated to GFN2/D4 polarizability than HOMO-LUMO gap,

this information was not enough to meaningfully correct large polarizabilities (Figure 4B).

Figure 4: Linear regression demonstrates the lack of useful correlation between GFN2/D4
calculated polarizabilities and both GFN2/D4 calculated HOMO-LUMO gap (A) and a ⇡-
system size descriptor (B).

Plotting DFT polarizabilities against GFN2/D4 polarizabilities for the PubChemQC sub-

set and the “wide range” set, we examine the e↵ects of using a polynomial fit. As an aside,

because the PubChemQC subset and “wide range” sets were computed at di↵erent times

using slightly di↵erent methods, with Gaussian with a dispersion correction and with ORCA
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without a dispersion correction, respectively, the functional has been labeled !b97X(D) here

to indicate that for part of the data set a dispersion correction was used. We do not believe

the dispersion correction or program makes a meaningful di↵erence in this case, as shown by

the low MAE demonstrated for a sample of PubChemQC species in Table S2, and therefore

the PubChemQC and “wide range” results may be grouped together and treated as one large

dataset. We note that a quadratic fit provides a better correlation description than a linear

fit, where the former has a MAE of 2.47 Å3 compared to !B97X(D), while the latter has

an MAE of 7.94Å3 compared to !bB7X(D) (Figure 5). As an aside, for comparison and the

sake of completeness, we also tested the correlation between DFT and sTDA-xTB, a sim-

plified time-dependent DFT procedure with a larger inherent basis set.47 This yielded worse

results, with a linear fit MAE of 15.85Å(Figure S3). We therefore conclude that although

not as physically meaningful as an adjustment based on a related molecular property, we

find a quadratic fit with zero intercept provides the best correction to GFN2/D4 for large

polarizability calculations, and note the linear coe�cient remains close to unity.

Figure 5: Linear and quadratic regression are performed on the combined PubChemQC
subset and “wide range” set.
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Basis Set Comparison

Augmented basis sets are regarded as ideal for accurate polarizability calculations,14 however

running calculations with a large basis set for the larger species in the “wide range” set

presented convergence issues. Both the large amount of computation time needed and the

possibility of linear dependence concerns led us to choose a non-augmented triple-zeta set for

our comparative DFT calculations above. Because we were interested in both the magnitude

of the increase in accuracy provided by di↵use basis functions and the correlation between

polarizabilities calculated with di↵erent basis sets, we ran the “wide range” set subset of

low to medium polarizability species with four di↵erent basis sets for comparison. The sets

we used were cc-pVDZ,34,35,39–41 cc-pVTZ,34,35,39–41 jun-cc-pVTZ,48 and aug-cc-pVTZ,34,35

the latter two providing increasing amounts of di↵use functions. Pairwise comparison of

increasingly accurate basis sets (Figure 6) reveals incredibly linear correlations, with simple

linear regression analysis showing slopes close to one and an R2 value of 1.00 for all three

comparisons. In summary, while di↵erences in computed polarizabilities exist using larger

and augmented basis sets, across a wide range of molecular polarizabilities, such e↵ects

appear small.

Figure 6: Linear regression is performed on isotropic polarizabilities calculated with system-
atically increasing basis set size for species less than 250 Å3.

Comparing each smaller basis set to the largest set considered, aug-cc-pVTZ, we see sim-

ilar results to the increasing pairwise comparison (Table 1). Again, simple linear regression
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analysis reveals slopes close to one and R2 values of or nearly 1.00, even when comparing

the largest basis set to a non-augmented double zeta basis set. The speed-ups are also worth

noting, since even using a partially-augmented basis set (jun-cc-pVTZ) provides over a 2x

speedup over the traditionally augmented set. Timings are shown in more detail in the box

plot in Figure 7, where the range of calculation times for each basis set is shown to decrease

substantially as the sets become smaller.

Table 1: Comparison of Smaller Basis Sets to aug-cc-pVTZ

Basis Set Linear Regression Line R² RMSE Speed-up
cc-pVDZ y = 1.059 x + 3.108 0.999 2.163 63.211
cc-pVTZ y = 1.028 x + 1.312 1.000 0.755 5.941

jun-cc-pVTZ y = 1.007 x - 0.341 1.000 0.424 2.213

Figure 7: Mean CPU time and the range of CPU time distribution are shown for systemat-
ically larger basis set, displaying dramatic increases in both as basis sets become larger.

The large speed-ups provided by non or partially augmented basis sets, combined with

lower risk of linear dependence issues, make them better, albeit less accurate, choices for

polarizability calculations for large systems. The linearity between systematically larger ba-
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sis sets suggests that for species with large polarizabilities, the increase in accuracy of the

magnitude of the polarizability is not substantial, and that a simple linear correlation coe�-

cient could be used to correct large polarizabilities found with smaller basis sets. Given the

increased RMSE observed with cc-pVDZ, we suggest that for routine use on large molecules,

non-augmented triple zeta basis sets, as used here, are an e�cient balance of time and

accuracy.

Conclusion

Based on our studies, GFN2/D4 appears best parameterized for species with polarizabilities

less than 50Å3. In its current implementation GFN2/D4 does not compare favorably to

DFT-computed polarizabilities in highly polarizable oligomers. We note that in addition to

limiting GFN2’s usefulness in its present form as a polarizability method for larger and/or

conjugated systems, this raises important concerns about the D4 model’s accuracy for similar

systems, since the methods share the additive polarizability model.

The method’s underestimation of polarizability values, which systematically grows as po-

larizability increases, indicates that the application of a quadratic scaling correction factor

could provide a relatively simple solution to drastically improve the accuracy of large polar-

izability calculations. The presence of three significant outliers in the GFN2/D4 comparison

data, all containing similar sulfur motifs, suggests the need to examine GFN2/D4 parame-

terization for such chemical structures. Beyond increasing GFN2/D4 usefulness for e�cient

polarizability calculations for large polarizability molecular screening applications, these im-

provements would notably also improve the accuracy of the D4 dispersion method for large

⇡-conjugated species. We also note that the semi-empirical additive model for GFN2/D4

remains more accurate than calculating polarizabilities using the related sTDA-xTB model.

With regard to the accuracy and e�ciency of basis sets, our study suggests that using

smaller, even non-augmented basis sets to save time and resources is appropriate for large po-
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larizability calculations. The substantial linear correlations seen between methods of varying

size and levels of augmentation suggests that using a basis set such as cc-pVTZ with a linear

scaling factor is appropriate for large polarizability molecules. By calculating polarizability

in this manner for molecules with polarizabilities over 200Å3, we believe accuracies near the

level of those achieved with an aug-cc-pVTZ basis set are attainable at nearly a six-fold

speed-up and without the convergence issues we faced when attempting to use this basis set

to calculate polarizabilities in this range. Using a basis set with a linear correction factor

opens up the possibility of calculating highly accurate polarizabilities for increasingly large

molecules using conventional DFT methods. Additional work will need to be done to test

the limits of the polarizability magnitudes that can be accurately calculated in this manner.

We hope that the results of this study aid work where the calculation of large polariz-

ability values is crucial. We note that for some applications, such as dielectric device de-

velopment, the frequency dependence of polarizability should be considered, but is outside

the scope of this work. While GFN2/D4 is not currently fit to provide accurate calculations

for large polarizability values, we hope that after some minor corrections it will be a vi-

able method for such applications and improve the accuracy of future dispersion correction

methods. Considering the incredible e�ciency, this would provide a valuable tool for future

molecular screening studies of highly polarizable materials. Meanwhile, using lower-cost

non-augmented basis sets with a correction factor vastly increases the number of potential

molecular species for which highly accurate polarizabilities can be now obtained.
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Supporting Information Available

Verification of outlier polarizabilities, analysis of additive and GFN2 / D4 polarizabilities,

comparison between polarizabilities calculated with Gaussian and ORCA are included in

the supporting information. This information is available free of charge via the Internet at

https://pubs.acs.org

Full data files, including molecular geometries for the “wide range” set and SMILES

for the PubChemQC subset, along with Python analysis notebooks are available at https:

//github.com/hutchisonlab/conjugated-polarizability
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