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Abstract 

Monitoring lead in drinking water is important for public health, but seasonality in lead 

concentrations can bias monitoring programs if it is not understood and accounted for. 

Here, we describe an apparent seasonal pattern in lead release to orthophosphate-

treated drinking water, identified through point-of-use sampling at sites in Halifax, 

Canada, with various sources of lead. Using a generalized additive model, we extracted 

the seasonally-varying components of time series representing a suite of water quality 

parameters and we identified aluminum as a correlate of lead. To investigate 

aluminum’s role in lead release, we modeled the effect of variscite (AlPO4 · 2H2O) 

precipitation on lead solubility, and we evaluated the effects of aluminum, temperature, 

and orthophosphate concentration on lead release from new lead coupons. At 

environmentally relevant aluminum and orthophosphate concentrations, variscite 

precipitation increased predicted lead solubility by decreasing available orthophosphate. 

Increasing the aluminum concentration from 20–500 µg L-1 increased lead release from 

coupons by 41% and modified the effect of orthophosphate, rendering it less effective. 

We attributed this to a decrease in the concentration of soluble (<0.45 µm) phosphorus 
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with increasing aluminum and an accompanying increase in particulate lead and 

phosphorus (>0.45 µm). 
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Synopsis 

Water treatment with aluminum salts can cause seasonally high aluminum 

concentrations that interfere with orthophosphate corrosion control. 

Graphical abstract 

 

Introduction 

Lead is a contaminant of concern in drinking water due to its well-documented health 

effects.1,2 Many jurisdictions require that it be monitored, but seasonal variation in lead 

release can bias monitoring programs if it is not understood and accounted for. 

Temperature-driven seasonal lead release has been described in previous work,3 and 

sampling guidance is often designed to control for temperature effects.4 

But water quality parameters other than temperature can also contribute to seasonal 

lead concentrations, and aluminum is an important example. Aluminum concentrations 

can vary seasonally when water is treated to remove particles and dissolved organic 

matter by coagulation. This is because the solubility of the aluminum hydroxide 

(Al(OH)3) that precipitates during coagulation with aluminum salts is highly temperature-
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dependent. Below the solubility minimum at pH 6–7,5 solubility decreases with 

increasing temperature, and above pH 6–7, solubility increases with temperature.6 

Treatment facilities that coagulate below the pH of minimum solubility, then, tend to see 

high residual aluminum in winter, while facilities that coagulate at alkaline pH may see 

high aluminum in summer.7 

This in turn may influence lead release, but the complex environment of a drinking water 

distribution system—and the possibility of multiple competing mechanisms—make it 

difficult to predict aluminum’s net effect. Aluminum might precipitate at the scale-water 

interface as a hydroxide or silicate mineral that slows lead diffusion to the bulk water,8–11 

but this is controversial.12,13 It might also precipitate as a phosphate mineral, diminishing 

the activity of orthophosphate and preventing formation of hydroxypyromorphite 

(Pb5(PO4)3OH) and other low-solubility phases that control lead release.5,11,14–18 

Aluminum precipitation that results in suspended particles or colloids may generate a 

mobile sink for lead, facilitating lead transport from source to tap.19–21 

Here, we consider aluminum and other seasonally-varying water quality parameters as 

drivers of seasonal lead release. We use a hybrid approach that combines statistical 

analysis of observational data, a factorial experiment, and a mechanistic model. We 

identify possible origins of periodic lead release in the distribution system of Halifax, a 

mid-sized North American city, and we isolate a subset of these—aluminum, 

orthophosphate, and temperature—for investigation using a lead coupon study and a 

geochemical solubility model. We find that interactions between orthophosphate and 

aluminum have an important effect on lead release and that variation in aluminum 

concentrations may play a key role in observed lead concentrations. In our view, 

mechanisms involving soluble, colloidal, and particulate lead are all relevant to this 

phenomenon. 
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Materials and methods 

Field sample collection 

Distribution system monitoring 

Distribution system samples were collected by utility staff as part of a routine, long-term 

monitoring program designed to understand the state of the system and respond to 

water quality issues. Temperature and pH were measured in the field (Hach PH281 

probe), and samples were sent to a third-party accredited laboratory for determination of 

alkalinity,22 total aluminum,23 and orthophosphate.24 

Point-of-use corrosion control monitoring 

The point-of-use corrosion control monitoring dataset represents two distinct monitoring 

programs, described in McIlwain25 and Trueman et al.26 The first comprised samples 

collected at residential (1 L volume) and non-residential (0.25 L volume) sites in the 

distribution system after a minimum 8 hour stagnation period (Table 1).25 Samples were 

collected over three years (2010–2012), representing two October and two February 

collection periods. This program was designed to evaluate the utility’s corrosion control 

program and to identify outlets with high lead levels. The 34 residential sites included 

three and six with full and partial lead service lines, respectively. A further 18 had 

copper service lines and the remaining 7 had unknown configurations. Outlets used for 

drinking or cooking were sampled in 48 non-residential buildings.25 

The second program was designed to evaluate the effect of lead service line 

replacement on lead levels in tap water.26 Volunteers residents collected 1 L samples as 

4 × 1L minimum 6-hr. stagnant profiles with the addition of a 5-min. flushed sample 

after each profile (Table 1). We filtered a subset of these using 0.45 µm membrane 

filters in a syringe-mounted apparatus. To quantify aluminum in the distribution system, 

we used 5-min. flushed samples only, to minimize the impact of site-specific factors 

(e.g., premises plumbing). To estimate particulate lead and copper, we used samples 

collected before replacement, since extreme particulate lead release is typical 

immediately after replacement. 
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All samples were collected in high-density polyethylene (HDPE) bottles, cleaned by 

immersion in ~2 M HNO3 for at least 24 h, and rinsed thoroughly with ultrapure water. 

Aluminum, lead, copper, and phosphorus were determined by ICP-MS (Thermofisher X 

series II) according to Standard Method 3125,27 with reporting limits of 4.0, 0.4, 0.7, and 

10 µg L-1, respectively. 

Table 1. Data sources, sample sizes, and figures in which specific datasets appear. 

Data source Analytes Appears 
in Figure 

Source 

Volunteer-collected 1 
L flushed samples 

Total Al (n = 849), 0.45 µm-
filtered Al (n = 362) 

2, 4b, 7c Utility data 

Plant/distribution 

system monitoring 
data 

Al (n = 1217), PO4 (n = 2708), 

temperature (n = 1595), 
alkalinity (n = 414), pH (n = 
414), orthophosphate product 
dose (n = 6035) 

2, 7c Utility data 

Volunteer-collected 1 
L profile samples 

Pb, Cu (n = 360 per 
parameter) 

S11 Utility data 

Volunteer-collected 1 
L profile samples 

Al, Fe, Pb, via SEC-ICP-MS (n 
= 16) 

4a doi.org/10.5281/zenodo.5139734 

Residential 1 L first-
draw and flushed 
samples 

Pb (n = 193), Cu (n = 193), pH 
(n = 125), temperature (n = 
86), turbidity (n = 192) 

3 McIlwain et al.25 and 
doi.org/10.5281/zenodo.5139734 

Non-residential 0.25 
L first-draw and 
flushed samples 

Pb (n = 303), Cu (n = 303), pH 
(n = 232), temperature (n = 
148), turbidity (n = 303) 

3 McIlwain et al.25 and 
doi.org/10.5281/zenodo.5139734 

Coupon study Total Pb, Al, P (n = 128 per 
parameter); 0.45 µm-filtered 
Pb, Al, P (n = 32 per 
parameter) 

5 doi.org/10.5281/zenodo.5139734 

Size-exclusion chromatography 

Relative size distributions of lead, aluminum, and iron were determined for a subset of 

the profile samples described above (see “Point-of-use corrosion control monitoring”), 

using size-exclusion chromatography with multielement detection (SEC-ICP-MS). The 

full method is detailed in a previous publication.20 Briefly, we separated samples on a 

stationary phase composed of cross-linked agarose and dextran (Superdex 200, 10 × 

300 mm, 13 μm particle size, GE Healthcare) with 50 mM tris-HCl (pH 7.3) as the 

mobile phase. The flow rate was 0.5 mL min-1 and the injection volume was 212 µL. We 

monitored 27Al, 56Fe, and 208Pb in the column effluent as a function of time by ICP-MS 
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(see Point-of-use corrosion control monitoring above). The retention volume of 

thyroglobulin (669 kDa, Stoke’s radius 8.5 nm), indicated in chromatograms as a 

qualitative point of reference, was monitored as 127I. Chromatograms were summarized 

as the sum of two skewed or exponentially modified Gaussians using the R package 

fffprocessr,28 as described elsewhere.29 R code to reproduce the analysis is included as 

Supplementary Text S1, the individual chromatograms are shown in Figure S1, and the 

data are available at doi.org/10.5281/zenodo.5139734. 

Lead coupon study 

We investigated the effect of three factors—aluminum (0.02 or 0.5 mg Al L-1), 

orthophosphate (0 or 1 mg PO4 L-1), and temperature (4 or 21°C)—on lead release from 

new lead coupons using a set of batch corrosion cells made with new lead coupons. 

Using a 23 factorial design (Table S1), we evaluated all eight factor combinations (two 

aluminum concentrations × two orthophosphate concentrations × two water 

temperatures) to generate independent estimates of each factor’s effect, along with 

estimates of the interactions among factors. 

Preparation of test water 

Preparation of test water for the coupon study is summarized in Figure 1. We 

coagulated untreated source water from the water supply plant with Al2(SO4)3 · 18H2O 

(12 mg Al L-1) in a 20 L HDPE plastic container. The coagulant dose was chosen to 

match the dose applied at the treatment plant supplying the distribution system we 

studied. 

Immediately after adding the coagulant, water was mixed at approximately 800 rpm for 

one minute using a magnetic stirplate (n.b., rpm is nominal and was determined by the 

stirplate dial setting). Coagulated water was then mixed for 12.5 minutes each at 600, 

500, and 400 rpm. pH was maintained throughout at 6.3 using sodium hydroxide. The 

flocculated water was allowed to settle overnight, pumped into a separate reservoir, and 

filtered using a vacuum flask fitted with a 1.5 µm glass-fibre filter membrane. 
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Figure 1. Summary of test water preparation for the coupon study (created at biorender.com). 

This procedure reduced total organic carbon (TOC) to 1.8 mg L-1 (standard deviation 

0.02 mg L-1), from an approximate raw water concentration of 3.8 mg L-1 (a summary of 

untreated water quality is provided in Table S2). TOC samples were collected, 

headspace-free, in 40 mL clear glass vials and preserved with concentrated phosphoric 

acid to pH < 2. Vials were washed and then baked at 105°C for at least 24 h before use, 

and TOC was quantified using a Shimadzu TOC-V CPH analyzer.30 

Filtrate was dosed as needed with H3PO4, Al2(SO4)3 · 18H2O, and NaHCO3 (5 mg C L-1) 

to achieve the experimental conditions listed in Table S1. The initial pH for all test 

waters was adjusted to 7.5 with HNO3 and NaOH. pH was measured using a 

combination electrode, and the nominal orthophosphate concentration was verified 

colorimetrically.24 

Corrosion cell construction 

Corrosion cells were constructed by fastening new lead coupons to the lids of 50 mL 

polypropylene centrifuge tubes with a silicone sealant. Beforehand, coupons (Canada 

Metal North America, Québec, Canada) were cleaned by immersion for 2 minutes in 1.8 

M HNO3 followed by thorough rinsing with ultrapure water. This step was repeated 

afterward with 40 mM HNO3. 
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Coupon conditioning 

Corrosion cells were refilled with 50 mL of fresh test water according to the 

experimental design summarized in Table S1; this volume was chosen to prevent 

contact with the sealant while minimizing headspace. We completed 42 changes of 

water before beginning to collect data, and each change was followed by a minimum 24 

hour stagnation period. After conditioning, lead in 0.45 µm filtrate agreed reasonably 

well with predicted equilibrium lead solubility, with a mean absolute error of 8 µg L-1 at 

the low level of aluminum, a temperature of 21°C, and either 0 or 1 mg PO4 L-1. 

Sample collection 

After each 24-hour stagnation period, cells were mixed by inverting five times. Aliquots 

of 10 mL were then decanted into polypropylene tubes, acidified to pH < 2 with 

concentrated trace metal grade nitric acid, and held for a minimum of 24 hours before 

analysis. Separate 10 mL aliquots were filtered, immediately after collection, using 0.45 

µm membrane filters in a syringe-mounted apparatus. 

X-ray diffraction 

We identified crystalline phases in coupon corrosion scale using X-ray diffraction (XRD). 

Coupons were dried and analyzed without removing scale from the surface. We used a 

Rigaku Ultima IV X-ray diffractometer with a copper K𝛼 radiation source, operated at 35 

kV and 30 mA. Scans were acquired over the range 10–70° (2𝜃) with a step size of 

0.04° and a scan speed of 0.8° min-1. The powder diffraction file numbers corresponding 

to standards referenced in the manuscript are listed in Table S3. 

X-ray photoelectron spectroscopy (XPS) 

The elemental composition of corrosion scale was determined by XPS using a Thermo 

VG Scientific Multilab 2000 instrument. An aluminum X-ray source was used under a 

high vacuum, and a CLAM4 Hemispherical Analyzer with a multichannel detector was 

used to detect photoelectrons. Survey scans were acquired at a pass energy of 50 eV 

with a step size of 1.0 eV, and high-resolution scans were acquired at a pass energy of 
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30 eV with a step size of 0.1 eV. Binding energy was calibrated using the C 1s spectral 

line, due to adventitious carbon, at 285 eV. 

Data analysis 

We used R for data analysis and visualization,31 along with a collection of widely used 

contributed packages.32–35 

Paired comparisons of lead levels at the point of use 

Paired measurements collected at the point of use in October and February were 

compared using a parametric test of mean difference for censored data, using the 

cen_paired() function in the NADA2 package.36 (Censoring here refers to lead 

concentrations below the reporting limit.) Duplicate measurements at sites within a 

single group were averaged; when one was observed and one censored, the duplicate 

measurements were re-censored at the midpoint value. Due to a log transformation of 

the data, back-transformed group differences are expressed as ratios. R code required 

to reproduce the analysis is provided as Supplementary Text S2, and data are available 

at doi.org/10.5281/zenodo.5139734. 

Equilibrium lead solubility modeling 

We modeled equilibrium lead solubility using tidyphreeqc,37 an R interface for 

PHREEQC,38 and pbcusol,39 an extension of tidyphreeqc. Thermodynamic data relevant 

to the lead-water-carbonate-orthophosphate system were sourced from Schock et al.40 

(Table S4), and activity coefficients were calculated as described in Parkhurst and 

Appelo.38 Model inputs were pH, orthophosphate, and dissolved inorganic carbon 

concentration, calculated from pH and alkalinity.41 We assumed that lead solubility was 

controlled by hydroxypyromorphite, a mineral that has been identified in lead pipe 

corrosion scale recovered from the distribution system described here.42 

While polyphosphate—dosed at the treatment plant at approximately 0.04 mg P L-1—is 

known to form soluble complexes with lead, we did not identify lead-polyphosphate 

complexation at the point of use via SEC-ICP-MS.20,42 For this reason, we opted not to 

include polyphosphate in the solubility model. (Lead-polyphosphate complexes were 
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evident by the same method in another distribution system, at a higher polyphosphate 

dose of approximately 0.2 mg P L-1.42) 

Since there were not enough paired distribution system data to include aluminum in the 

model, we fit a separate model to account for aluminum’s effect. We calculated 

hydroxypyromorphite solubility on a grid of orthophosphate and aluminum 

concentrations at pH 7.5 and 5 mg L-1 of dissolved inorganic carbon, assuming that both 

hydroxypyromorphite and variscite (AlPO4 · 2H2O) reached equilibrium with the solution. 

Thermodynamic data describing variscite dissolution and two aqueous aluminum 

phosphate species were sourced from Roncal-Herrero and Oelkers,43 and R code to 

reproduce the analysis is included as Supplementary Text S3. 

Distribution system monitoring data 

We fit generalized additive models (equations 1–2)44,45 to a compiled dataset 

comprising fully-flushed residential samples, distribution system monitoring samples, 

and treated water samples collected at the water supply plant. We restricted our 

analysis to the period when a nominal orthophosphate concentration of 0.5 mg PO4 L-1 

was dosed to the system (2003–2016, P dosed as a 3:1 ortho:polyphosphate blend). 

Time series included between 10 and 366 measurements per year. 

Generalized additive models included a multi-year trend, a seasonal trend, and an 

autoregressive error term.46 The multi-year trend was estimated using a thin plate 

regression spline and the seasonal trend using a cyclic cubic regression spline.44 We fit 

separate cyclic splines to orthophosphate data collected at the treatment plant and in 

the distribution system, and we included a parametric term to model the difference in 

orthophosphate residual between these two groups. The autoregressive error term was 

second order in the models fitted to the temperature and orthophosphate product dose 

series and continuous-time first-order otherwise. Equation (1) describes the basic 

model. 

(1) 𝑦 = 𝛽0 + 𝑓𝑡𝑟𝑒𝑛𝑑(𝑡1) + 𝑓𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙(𝑡2) + 𝜖 
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In equation (1), 𝑦 is the response, 𝑡1 is the numeric date, 𝑡2 is the day of the year, 𝛽0 is 

the intercept, 𝜖 is the error term, and the 𝑓(𝑡) are linear combinations of basis functions 

(equation 2). 

(2) 𝑓(𝑡) =∑𝑏𝑗

𝑘

𝑗=1

(𝑡)𝛽𝑗  

In equation (2), 𝛽𝑗  is the weight associated with the 𝑗th basis function. The weighted 

basis functions 𝑏𝑗(𝑡)𝛽𝑗  comprising each model—and their sums, the fitted values—are 

shown in Figure S2–S4. While the utility data are confidential, we have included the 

code used to generate the models in Supplementary Text S4, along with a simulated 

dataset. Models are further summarized in Table S5; residuals were approximately 

Gaussian (Figure S5), homoscedastic (Figure S6–S7), and largely free from 

autocorrelation (Figure S8). 

Static corrosion cell data 

We fit a linear regression model to the 23 factorial coupon study after a natural log 

transformation of the response, as described in Montgomery.47 Model residuals were 

approximately Gaussian and homoscedastic (Figure S9). A response surface was 

generated by predicting from the model over a grid of aluminum concentrations, 

orthophosphate concentrations, and water temperatures. R code to reproduce the 

results is provided as Supplementary Text S5 and experimental data are available at 

doi.org/10.5281/zenodo.5139734. 

Results and discussion 

Aluminum and orthophosphate seasonality in the distribution system 

Aluminum levels were strongly seasonal in the distribution system we studied (Figure 

2). Median aluminum was highest in February and lowest in July: 182 and 32 µg L-1 

respectively. The aluminum residual in treated water is generally highest when water 

temperature is lowest,21 due largely to the inverse temperature dependence of 
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aluminum hydroxide solubility at the median coagulation pH of 5.75.6,48,49 Median water 

temperature in these two months was 5 and 20°C. 

 

Figure 2. (a) Mean alkalinity (as CaCO3), aluminum, predicted soluble lead, pH, aqueous 
orthophosphate, and water temperature by date. Due to orthophosphate demand in the 
distribution system, data are separated by sample location: source (treatment plant) or tap 
(distribution system). Source and tap are combined in the series representing alkalinity, 
aluminum, pH, predicted lead, and temperature. The long-term smooth component of the 
additive fit to the data is superimposed. (b) The seasonal component of each additive model, 
along with the partial residuals representing the differences between the data and the non-
seasonal components of the model, aggregated into weekly means. Both the data and the 
model are displayed on the transformed scale. Shaded regions represent point-wise 95% 
confidence intervals on the fitted values. 
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Orthophosphate also exhibited a seasonal pattern. This is due primarily to variation in 

the applied corrosion inhibitor dose (Figure S10), but seasonal variation in the reversion 

rate of polyphosphate may have also been a factor.50 Minimum and maximum 

orthophosphate concentrations occurred in February and May respectively (130 and 

170 µg P L-1), approximately opposite those of aluminum (Figure 2b). Orthophosphate 

was 11% lower in the distribution system compared to the treatment plant, as estimated 

by a parametric term in the generalized additive model (Table S5). Aluminum 

precipitates with orthophosphate as AlPO4,5 which may contribute to this difference and 

to the seasonal pattern in the distribution system. Alkalinity exhibited a bimodal 

seasonal pattern, with maxima in March and July and a minimum in December, while 

seasonal maximum and minimum pH occurred in September and February, 

respectively. 

Seasonal variation in predicted equilibrium lead solubility 

Variation in orthophosphate, pH, and alkalinity predicted a complex seasonal pattern in 

equilibrium lead solubility, with two prominent peaks (Figure 2b). The first occurred in 

March, corresponding to the minimum seasonal orthophosphate concentration and the 

first of two seasonal alkalinity maxima. The second occurred in July, corresponding to 

the second seasonal alkalinity maximum. Both peaks in alkalinity yielded corresponding 

peaks in calculated dissolved inorganic carbon (Figure S10), and at circumneutral pH, 

equilibrium solubility increases with dissolved inorganic carbon in the presence of 

orthophosphate.40 Maximum and minimum predicted lead solubility occurred in March 

and May, respectively, with mean concentrations of 39 and 27 µg L-1. 

Periodic variation in lead at the point of use 

Consistent with equilibrium solubility predictions, lead release exhibited periodic—

possibly seasonal—variation concurrent with that of aluminum and opposite to that of 

orthophosphate. We compared lead levels in first-draw samples collected in October 

with those measured in February at matched sites and drinking water outlets (Figure 3). 

Lead release to standing water in October was an estimated 65% of that in February (p 

<<0.001, n = 134, signed-rank test). Copper release exhibited a similar trend: its 
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concentration in standing water in October was an estimated 67% of that in February (p 

<<0.001, n = 134). While these data represent total concentrations only, lead and 

copper concentrations in 0.45 µm filtrate were an estimated 75 and 89% of the 

corresponding total concentrations in paired aliquots representing 360 samples 

collected as profiles from residences with full or partial lead service lines (as described 

in Trueman et al.,26 Figure S11). This suggests that lead and copper were largely 

present in the system in forms smaller than 0.45 µm. 

On a percentage basis, differences in lead release were larger than expected based on 

lead solubility—predicted equilibrium lead concentrations were just 8% lower in October 

compared with February (accounting for variation in pH, alkalinity, and orthophosphate). 

This discrepancy suggests that factors not captured by the solubility model—processes 

involving aluminum, for instance—were important. Observed differences were probably 

not due to water temperature: during overnight stagnation seasonal temperature 

variation is significantly damped,51 and October standing sample temperatures were 

113% of February sample temperatures (p <<0.001, n = 89, signed-rank test). If 

anything, this would tend to increase October lead and copper levels relative to those in 

February.52,53 
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Figure 3. Lead, copper, pH, water temperature, and turbidity at seasonally high (February) and 
low (October) aluminum concentrations (point-of-use samples). Grey lines represent y = x, and 
coloured vertical or horizontal lines represent left-censored lead measurements. 

Colloidal aluminum and lead in the distribution system 

While variation in equilibrium lead solubility probably explains at least some of the 

difference between October and February point-of-use lead levels, particle-generating 

mechanisms are also likely to be important, including partitioning of lead to particulate 

(>0.45 µm) or colloidal (<0.45 µm) aluminum.20,54,55 Particulate aluminum was seasonal 

in the distribution system we studied, with the median concentration in October less 

than half that in February (20 and 48 µg L-1, respectively, Figure 4b). The particulate 

fraction of total aluminum ranged from 16% in August to 35% in February, as estimated 

from the cyclic cubic regression splines shown in Figure 4b. The variation in particulate 

aluminum is consistent with turbidity in October being 66 and 26% of that in February in 

stagnant and flushed point-of-use samples, respectively (p <<0.001 and <<0.001, n = 

134 and 32, signed-rank tests). 

Seasonally-varying particulate aluminum concentrations accord with equilibrium 

aluminum solubility calculations at the expected distribution system water quality 

conditions. The aluminum hydroxide phases gibbsite (𝛾-Al(OH)3), diaspore (𝛼-AlOOH), 

and boehmite (𝛾-AlOOH) are all predicted to precipitate at the seasonally-high total 

aluminum concentrations, and variscite (AlPO4 · 2H2O) is predicted to precipitate 

seasonally at a dose of 0.5 mg PO4 L-1 (Supplementary Text S6). 

Also consistent with equilibrium solubility predictions, a fraction of aluminum in 0.45 µm 

filtrate was colloidal (Figure 4a). This fraction was sized nominally between 17 nm—the 

hydrodynamic diameter of thyroglobulin (19.6 min. retention time)—and 450 nm—the 

pore size at which samples were filtered. Colloids in this size range may have served as 

a mobile sink for lead, promoting release from corrosion scale. 

Relative size distributions of lead, aluminum, and iron were typically bimodal (Figure 

4a), with two incompletely resolved peaks representing colloids with different apparent 

molecular weights. Aluminum co-occurred with lead (and iron) in at least one of these 

two fractions in all samples with detectable aluminum peaks (Figures 4a and S1). This 
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is consistent with previous work documenting adsorption of lead to aluminum 

hydroxides56–58 or mixed iron/aluminum (oxyhydr)oxides,59 and with previous studies 

reporting occurrence of lead and aluminum in a common colloid size fraction.20,54,55 The 

presence of aluminum, iron, and lead in distinct but overlapping colloid populations, 

however, cannot be ruled out completely. Moreover, these data do not provide a 

complete picture of colloid composition; the role of phosphorus, for example, is not 

clear. 

 

Figure 4. (a) Size-exclusion chromatograms representing the relative size distributions of 
aluminum, iron, and lead. Size distributions were correlated at high apparent molecular weight 
(n = 16 tap water samples representing 11 homes), and the colloidal fraction shown was sized 
nominally at 17–450 nm. Intensities have been normalized, baseline-corrected, and summarized 
as the mean intensity at each retention time. The retention time of thyroglobulin (669 kDa, 17 
nm diameter) is indicated by the vertical dashed line. (b) Aluminum in fully-flushed residential 
samples in two size fractions: greater and less than 0.45 µm. Data are aggregated into means 
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by week of the year, and a generalized additive fit to the data with a cyclic cubic regression 
spline basis is superimposed. 

Interaction between aluminum and orthophosphate (lead coupon 

study) 

Distribution system monitoring data suggest that variation in both aluminum and 

orthophosphate may have contributed to the seasonal differences in lead release, but it 

is not clear which factor was more important or to what extent they acted synergistically. 

We evaluated these factors—along with water temperature—as predictors of lead 

release using a coupon study. While the effect of orthophosphate on equilibrium 

solubility is relatively well understood, its interactions with other species to form particles 

are less well characterized.60 

As expected, lead release from coupons increased with water temperature. Raising the 

cell temperature from 4 to 21°C caused a 120% increase in geometric mean lead 

release (Figure 5a). That is, [𝑃𝑏]
21˚𝐶

/[𝑃𝑏]
4˚𝐶

− 1 = 1.2. But while temperature-

dependent lead release has been described elsewhere,26,61 the solubilities of several 

common lead minerals do not appear to be temperature-sensitive.52 It is not clear 

whether changes in solubility, dissolution, complex formation, or particle mobility are 

primarily responsible for temperature-driven seasonality.26,40,52,61 
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Figure 5. (a) Effect estimates generated by the linear model (lead coupon experiment), along 
with their 95% confidence intervals. (b) Predicted lead concentrations generated by applying the 
linear regression model to a grid of inputs (aluminum, orthophosphate, temperature). (c) Median 
lead and phosphorus in corrosion cells as a function of temperature, aluminum concentration, 
and orthophosphate dose. Error bars span the interquartile range. 

Adding 1 mg PO4 L-1 decreased total lead release by 34% (Figure 5a), while aluminum 

had the opposite effect; increasing the aluminum concentration from 20 to 500 µg L-1 

increased total lead release by 41%. Adding orthophosphate and increasing aluminum 

concentration accompanied a further 61% increase in lead. That is, the combined effect 

of aluminum and orthophosphate was larger than would be expected based on the main 

effect of each factor. This may be due to formation of particulate aluminum and 

phosphorus—perhaps as aluminum phosphate. Particulate phosphorus was highest at 

the high aluminum level, and in this form it would presumably be less available to react 

with lead in a way that immobilized lead at the scale-water interface (Figure 5c and 
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Figure S12). Consistent with this interpretation, substantially less phosphorus was lost 

to the system at the high aluminum level (i.e., more remained in the water phase). 

Particulate lead was also greatest at the high aluminum and orthophosphate levels 

(Figure 5c), which may be due to partitioning of lead to precipitated aluminum 

phosphate. 

With lead in 0.45 µm filtrate as the response, several effect estimates in the linear 

model were notably different. Adding orthophosphate, for instance, caused a much 

larger percentage decrease in filtrate lead levels (78%, Figure 5a). This is consistent 

with orthophosphate’s expected effect on lead solubility, while effective control of 

particulate lead by orthophosphate requires that lead phosphate precipitates become 

immobilized in corrosion scale. Here, P:Pb molar ratios were much greater than one, a 

threshold that has been noted previously to promote formation of dispersed lead 

phosphate particles.60 And in addition to the effect of aluminum in boosting particulate 

lead concentrations, the dispersive effect of orthophosphate may be especially 

pronounced at the relatively low hardness characteristic of our experimental water (3.9 

mg CaCO3 L-1, Table S2). Orthophosphate-induced dispersion is also enhanced in the 

presence of humic and fulvic acids.60 And while coagulation here would have removed 

the majority of the hydrophobic acid fraction,62 natural organic matter may still have 

played a role in dispersing particulate lead.63 

In contrast to its effect on total lead release, aluminum decreased lead in filtrate by 21% 

(Figure 5a, neglecting the aluminum-orthophosphate interaction). This agrees with 

previous work suggesting that aluminum may promote formation of a diffusion barrier on 

lead composed of aluminum hydroxide, silicate, or other compounds.11 Alternatively, 

aluminum may have facilitated partitioning of soluble lead to suspended particles, 

shifting the size distribution of lead in the test waters. 

Coupon corrosion scale 

We characterized the corrosion scale that formed on coupons under all experimental 

conditions using XRD (Table S1). As expected, hydroxypyromorphite formed in the 

presence of orthophosphate, while hydrocerussite (Pb3(CO3)2(OH)2) was identified in 
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scale from all sample coupons. Massicot (𝛽-PbO) was also universally present, but the 

intensities of the (111) and (200) peaks at 29.1 and 30.3°, respectively, were not 

consistent with the standard pattern. This may have been due to preferential orientation 

of crystallites on the coupon surfaces. 

 

Figure 6. XRD patterns representing corrosion scale on lead coupons at each treatment 
combination. Intensities are scaled to a [0, 1] interval in all patterns and standards. 

Aluminum was not identified in any crystalline mineral forms by XRD, and the 

experimental patterns representing coupons exposed to 20 and 500 µg Al L-1 were 

similar (Figure 6). Moreover, aluminum was not detectable by XPS in the top few 

nanometers of corrosion scale exposed to the high level of aluminum (0.5 mg Al L-1) 

(Figure S13). Thus it is likely that the aluminum content of scale was relatively low, 

although XPS detection limits for light elements (e.g., Al) in a heavy element matrix 

(e.g., Pb) tend to be above 1 atomic percent.64 
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The low surface concentration of aluminum is consistent with our interpretation that 

aluminum acted primarily by promoting particulate lead formation and limiting the 

activity of orthophosphate in solution. Moreover, the mineralogy of the scale, as 

determined by XRD, was predictable without considering the aluminum concentration. 

On the longer time scales relevant to drinking water distribution, however, aluminum 

may alter lead corrosion scale in a way that impacts lead release. Here, the apparent 

effect of aluminum in limiting dissolved lead release in the absence of orthophosphate 

was relatively small, and it was not due to readily discernable differences in coupon 

scale at the high and low aluminum levels. 

Modeling aluminum-phosphate interactions 

Key findings from the coupon study—high lead release from and inhibited phosphorus 

uptake by corrosion scale in the presence of aluminum—agree well with a previous 

report that aluminum interferes with orthophosphate corrosion control.14 Given the 

results we report, this is likely due to both increased solubility and particle-generating 

mechanisms. And while the full picture is complex, the effect of aluminum on lead 

solubility—neglecting particles and surfaces—can be modeled by allowing 

coprecipitation of aluminum and orthophosphate (here as variscite, AlPO4 · 2H2O) in the 

presence of hydroxypyromorphite (Figure 7). We applied this model over a grid of 

aluminum and orthophosphate concentrations (Figure 7a and b) and, neglecting other 

sources of variation, to the aluminum concentrations measured in the distribution 

system (Figure 7c). Consistent with the experimental results, aluminum phosphate 

precipitation increased lead solubility by decreasing the concentration of 

orthophosphate in solution. This was predicted to occur except at very low aluminum 

concentrations (e.g., approximately 50 µg Al L-1 at 1 mg PO4 L-1, Figure 7b). And at the 

aluminum concentrations characteristic of the distribution system, significant seasonal 

variation in lead solubility is predicted (Figure 7c). 
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Figure 7. (a) Predicted lead solubility due to dissolution of hydroxypyromorphite, evaluated on a 
grid of orthophosphate and aluminum concentrations at pH 7.3 with 5 mg L -1 of dissolved 
inorganic carbon. (b) Precipitated variscite, AlPO4 · 2H2O, at equilibrium under the same 
conditions. In (a) and (b), heavy dashed lines represent approximate variscite saturation. (c) 
Predicted lead solubility by day of the year, using distribution system aluminum data, pH 7.3, 5 
mg L-1 of dissolved inorganic carbon, and 0.5 mg PO4 L-1 as inputs. N.B., one anomalously high 
record with 0.96 mg Al L-1 is omitted from the plot. 

Conclusions 

We identified an apparent seasonal pattern in lead release to orthophosphate-treated 

drinking water via point of use sampling. And while variation in orthophosphate, pH, and 

alkalinity predicted a similar pattern in equilibrium lead solubility, seasonal variation in 

aluminum may have also been a factor, given its strong correspondence with observed 
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lead levels. In a follow-up coupon corrosion study, aluminum increased total lead 

release significantly. As expected, orthophosphate decreased lead release, but high 

levels of aluminum and orthophosphate together resulted in greater lead release than 

would be predicted based on the main effects of these two factors. We suggest that the 

interference of orthophosphate corrosion control by aluminum is due largely to 

precipitation of aluminum phosphate. This reaction limits the activity of orthophosphate 

and may provide a surface to which soluble lead can partition—increasing the total lead 

content of drinking water. 

Our data suggest that treatment facilities applying aluminum-based coagulants should 

ensure that residual aluminum in treated water remains low to limit seasonal variation in 

the performance of orthophosphate. In the water system we studied, a recent increase 

in coagulation pH to 6.2 has decreased the median April aluminum concentration at the 

treatment plant by a factor of more than four relative to the 2003–2016 study period. At 

the more recent concentrations, predicted aluminum phosphate precipitation is minimal 

(<1 µmol), even at a higher orthophosphate dose of 1 mg PO4 L-1. The predicted effect 

of aluminum on equilibrium lead solubility, then, is also much smaller. 

More generally, aluminum-orthophosphate-lead interactions highlight an important 

connection between corrosion control and the treatment process, potentially involving 

the soluble, colloidal, and particulate fractions of these elements. 
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Figures 

 

Figure S1. As determined by size-exclusion chromatography, the relative size distributions of 
aluminum, iron, and lead were correlated at high apparent molecular weight (n = 16 tap water 
samples). The colloidal fraction shown was sized nominally at 17–450 nm. Intensities have been 
normalized for improved visualization, and the retention volume of thyroglobulin (669 kDa, 17 
nm hydrodynamic diameter) is indicated by the vertical dashed line. 



 3 

 

Figure S2. Weighted basis functions comprising the long-term time series trends. 
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Figure S3. Weighted basis functions comprising the seasonal time series trends. 
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Figure S4. Generalized additive model predictions for each water chemistry time series. 
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Figure S5. Model residuals plotted against the standard normal quantiles, by parameter. 
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Figure S6. Model residuals plotted against the fitted values, by parameter. 
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Figure S7. Model residuals over time, by parameter. 
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Figure S8. Autocorrelation functions of the raw and normalized model residuals. Shaded grey 
bands denote the critical values ±1.96/√𝑛. Normalization here refers to raw residuals divided by 
their corresponding standard errors and pre-multiplied by the inverse square-root factor of the 
estimated error correlation matrix (i.e., the R function nlme::residuals.lme()). 
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Figure S9. After a natural log transformation of the response variable, linear model residuals 
were (a) approximately Gaussian and (b) homoscedastic. 
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Figure S10. (a) Mean alkalinity (as CaCO3), pH, and orthophosphate product dose by date. 
Combined indicates that the series includes data collected at the treatment plant and in the 
distribution system, whereas source indicates that data were collected at the treatment plant 
only. The long-term smooth component of the additive fit to the data is superimposed. (b) The 
seasonal component of each additive model, along with the partial residuals representing the 
differences between the data and the non-seasonal components of the model, aggregated into 
weekly means. Shaded regions represent point-wise 95% confidence intervals on the fitted 
values. 
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Figure S11. Lead and copper in paired filtered (0.45 µm) and unfiltered aliquots representing 
360 samples collected as profiles at residences with full or partial lead service lines. The 
difference estimate in each panel (red line) was estimated using the R function 
NADA2::cen_paired() after a natural log transformation of both variables. Left-censored 
measurements are shown as dashed grey lines. 

 

Figure S12. Median aluminum in static corrosion cells as a function of temperature, aluminum 
concentration, and orthophosphate dose. Error bars span the interquartile range. 
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Figure S13. High-resolution XPS scans of lead coupons exposed to 0.5 mg Al L-1, before and 
after removal of corrosion scale. The feature at 73 eV was present in scans acquired before and 
after removal of the corrosion scale and was not attributable to aluminum. 
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Tables 

Table S1. Static corrosion cell experimental design. [Al] represents observations in 24-hour 
stagnant test water, while the other settings are nominal. 

[PO4]initial (mg L-1) Temperature (deg. C) [Al] (µg L-1) Replicates 
0 4 20 2 
0 4 500 2 
0 21 20 2 
0 21 500 2 
1 4 20 6 
1 4 500 6 
1 21 20 6 
1 21 500 6 

 

Table S2. Chemical analysis of untreated water from the water supply plant (source: utility 
data). 

Parameter Untreated water 
Alkalinity (mg CaCO3 L-1) <5.0 
Calcium (mg L-1) 1 
Chloride (mg L-1) 6.4 
True colour (PtCo) 17 
Conductivity (μS cm-1) 32 
Hardness (mg CaCO3 L-1) 3.9 
Magnesium (mg L-1) 0.39 
pH 6.1 
Potassium (mg L-1) 0.23 
Sodium (mg L-1) 4.3 
Sulfate (mg L-1) 3.2 
Total Organic Carbon (mg C L-1) 3.8 
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Table S3. Standard XRD patterns and their PDF entry numbers. 

Phase PDF entry no. 
Hydroxypyromorphite 00-086-0236 
Hydrocerussite 96-210-8232 
Massicot 96-900-7711 
Lead 96-153-1229 

 

Table S4. Summary of thermodynamic data used in equilibrium solubility modeling (LEADSOL 
values). 

Phase Equation log K 
_ Pb+2 + H2O = PbOH+ + H+ -7.22 
_ Pb+2 + 2H2O = Pb(OH)2 + 2H+ -16.91 
_ Pb+2 + 3H2O = Pb(OH)3- + 3H+ -28.08 
_ Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ -39.72 
_ 2Pb+2 + H2O = Pb2OH+3 + H+ -6.36 
_ 3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ -23.86 
_ 4Pb+2 + 4H2O = Pb4(OH)4+4 + 4H+ -20.88 
_ 6Pb+2 + 8H2O = Pb6(OH)8+4 + 8H+ -43.62 
_ Pb+2 + CO3-2 = PbCO3 7.10 
_ Pb+2 + 2CO3-2 = Pb(CO3)2-2 10.33 
_ Pb+2 + CO3-2 + H+ = PbHCO3+ 12.59 
_ Pb+2 + PO4-3 + H+ = PbHPO4 15.41 
_ Pb+2 + PO4-3 + 2H+ = PbH2PO4+ 21.05 
_ Pb+2 + SO4-2 = PbSO4 2.73 
_ Pb+2 + 2SO4-2 = Pb(SO4)2-2 3.50 
_ Pb+2 + Cl- = PbCl+ 1.59 
_ Pb+2 + 2Cl- = PbCl2 1.80 
_ Pb+2 + 3Cl- = PbCl3- 1.71 
_ Pb+2 + 4Cl- = PbCl4-2 1.43 
Cerussite PbCO3 = Pb+2 + CO3-2 -13.11 
Hydrocerussite Pb(OH)2:2PbCO3 + 2H+ = 3Pb+2 + 2CO3-2 + 2H2O -18.00 
Hydroxylpyromorphite Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O -62.83 
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Table S5. Terms in the generalized additive models fitted to water chemistry time series. 𝑓(day) 
is a function of the day of the year and 𝑓(date) is a function of the date. 

Parameter Term Estimate p-value Adjusted R2 
Alkalinity (mg CaCO3 L-1) 𝑓(date) . <<0.001 0.33 
. 𝑓(day) . <<0.001 . 
. Intercept (𝛽!) 19.00 <<0.001 . 
. 𝜙 0.86 . . 
Aluminum (µg L-1) 𝑓(date) . <<0.001 0.76 
. 𝑓(day) . <<0.001 . 
. Intercept (𝛽!) 78.00 <<0.001 . 
. 𝜙 0.83 . . 
Predicted [Pb] (µg L-1) 𝑓(date) . <<0.001 0.44 
. 𝑓(day) . <<0.001 . 
. Intercept (𝛽!) 32.00 <<0.001 . 
. 𝜙 0.51 . . 
pH 𝑓(date) . <<0.001 0.13 
. 𝑓(day) . <<0.001 . 
. Intercept (𝛽!) 7.50 <<0.001 . 
. 𝜙 0.79 . . 
Orthophosphate (mg P L-1) 𝑓(date) . <<0.001 0.71 
. 𝑓(day)"#$%&' . <<0.001 . 
. 𝑓(day)()* . <<0.001 . 
. Intercept (𝛽!) 0.15 <<0.001 . 
. Tap (𝛽+) -11.00 <<0.001 . 
. 𝜙 0.83 . . 
Orthophosphate (mg product L-1) 𝑓(date) . <<0.001 0.91 
. 𝑓(day) . <<0.001 . 
. Intercept (𝛽!) 1.30 <<0.001 . 
. 𝜙+ 0.44 . . 
. 𝜙, 0.13 . . 
Temperature (˚C) 𝑓(date) . <<0.001 0.78 
. 𝑓(day) . <<0.001 . 
. Intercept (𝛽!) 12.00 <<0.001 . 
. 𝜙+ 0.11 . . 
. 𝜙, 0.82 . . 



 17 

R code 

Supplementary text 1 

library("tidyverse") 
 
# from doi.org/10.5281/zenodo.5139734 
sec_data_zenodo <- read_csv(here::here("zenodo/2021-06-01_sec_cleaned.csv"))  
 
sec_out <- sec_data_zenodo %>%  
  # linear baseline correction: 
  fffprocessr::correct_baseline(left = 2.5, right = 47.5) %>%  
  # normalize to [0, 1] 
  group_by(date, sample, param) %>% 
  mutate(conc = conc / max(conc)) %>%  
  ungroup() %>%  
  # aggregate data by analyte and timeslice (each equal to 0.1 min.): 
  filter(time > 14, time < 21) %>%  
  group_by(param, time = round(time, 1)) %>%  
  summarize(conc = mean(conc)) %>%  
  ungroup() %>%  
  # fit data as sum of component peaks: 
  group_by(param) %>%  
  nest() %>%  
  ungroup() %>%  
  mutate( 
    func = if_else(param == "208Pb", "emg", "skew_gaussian"), 
    param = str_remove(param, "\\d+") 
  ) %>%  
  mutate( 
    model = map2( 
      data, func, 
      ~ fffprocessr::deconvolve_fff( 
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        .x$time, .x$conc,  
        # initial guesses for peak parameters: 
        h = c(.5, .8), mu = c(15.8, 17.3), s = c(2, 1), g = c(1, 2),  
        fn = .y 
      ) 
    ), 
    fitted = map(model, "fitted"), 
    peaks = map(model, "peaks") 
  ) %>%  
  unnest(c(data, fitted, peaks)) 
 
sec_out %>%  
  pivot_longer(starts_with("peak")) %>%  
  ggplot(aes(time)) +  
  facet_wrap(vars(param)) + 
  geom_point(aes(y = fitted, fill = "fitted"), alpha = .3) + 
  geom_line(aes(y = conc)) +  
  geom_line(aes(y = value, col = name)) +  
  labs(col = NULL, fill = NULL) 

Supplementary text 2 

library("tidyverse") 
 
# from doi.org/10.5281/zenodo.5139734 
mthesis <- read_csv(here::here("zenodo/2021-06-

01_mcilwain_thesis_cleaned.csv")) 
 
mthesis_out <- mthesis %>%  
  mutate(param = str_remove(param, "\\.")) %>%  
  pivot_wider( 
    id_cols = c( 
      address, building, type, outlet, location,  
      manufacturer, site_type, param 
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    ), 
    names_from = date, 
    values_from = c(value, censored) 
  ) %>%  
  janitor::clean_names() %>%  
  # following two lines remove rows with no values  
  # for oct or feb in either year 
  filter_at(vars(matches("value_\\d{4}_10_")), any_vars(!is.na(.))) %>%  
  filter_at(vars(matches("value_\\d{4}_02_")), any_vars(!is.na(.))) %>%  
  rowwise() %>%  
  mutate( 
    # we have data from oct and feb in 2 years each 
    # for each site and month, if one value is censored and the other not,  
    # recensor at the midpoint:  
    # 1. calculate midpoints for noncensored observations: 
    value_oct = mean(c_across(matches("value_\\d{4}_10_")), na.rm = TRUE), 
    value_feb = mean(c_across(matches("value_\\d{4}_02_")), na.rm = TRUE), 
    # 2. coalesce censoring indicator columns: 
    cen_oct = coalesce(censored_2010_10_01, censored_2011_10_01), 
    cen_feb = coalesce(censored_2011_02_01, censored_2012_02_01) 
  ) %>%  
  ungroup() %>%  
  # convert censoring indicator to logical: 
  mutate_at( 
    vars(starts_with("cen_")),  
    ~ str_detect(.x, "<") %>% replace_na(FALSE) 
  ) %>%  
  group_by(param, type) %>%  
  nest() %>%  
  ungroup() %>%  
  arrange(param, type) %>%  
  mutate( 
    n = map(data, nrow), 
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    # fraction censored: 
    frac_cen = map(data, ~ with(.x, mean(c(cen_oct, cen_feb)))),  
    # signed rank test from the NADA2 package: 
    nada2_paired_t = map( 
      data,  
      ~ with(.x,  
        NADA2::cen_paired( 
          xd = log(value_oct),  
          xc = cen_oct,  
          yd = log(value_feb),  
          yc = cen_feb,  
          printstat = FALSE 
        ) 
      ) 
    ), 
    nada_diff = map(nada2_paired_t, ~ exp(.x$MeanDifference)), 
    nada_pval = map(nada2_paired_t, "p.value") 
  ) %>%  
  unnest(c(n, frac_cen, nada_diff, nada_pval)) %>% 
  select(where(~!is.list(.))) 

Supplementary text 3 

library("tidyverse") 
# remotes::install_github("bentrueman/pbcusol) 
library("pbcusol")  
 
variscite <- list( 
  "Variscite", 
  "AlPO4:2H2O = Al+3 + PO4-3 + 2H2O", 
  "log_k" = -22.36 # https://doi.org/10.1016/j.gca.2010.10.012 
) 
 
aqueous_species <- list(  
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  # from https://doi.org/10.1016/j.gca.2010.10.012 and  
  # https://doi.org/10.1080/09593332708618735 
  "HPO4-2 + Al+3 = AlHPO4+", 
  "log_k" = 7.4, 
  "HPO4-2 + H+ + Al+3 = AlH2PO4+2", 
  "log_k" = 3.1 
) 
 
future::plan("multisession") 
 
solution_pH <- 7.5 
 
out <- crossing( 
  po4 = seq(0.1, 1, length.out = 15), 
  al = seq(0, .5, length.out = 15) 
) %>%  
  rowid_to_column() %>%  
  group_by(rowid) %>%  
  nest() %>%  
  ungroup() %>%  
  mutate( 
    output = furrr::future_map(data, 
      ~ pbcusol::eq_sol_fixed(element = "Pb", 
          solution_pH, 5, .x$po4, "Hxypyromorphite",  
          Al = .x$al / chemr::mass("Al"), 
          Na = 10 / chemr::mass("Na"), 
          eq_phase_components = list("Variscite" = c(0, 0)), 
          new_species = aqueous_species, 
          new_phase = variscite, 
          phase_out = "Variscite" 
      ) 
    ) 
  ) 
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out %>%  
  unnest(c(data, output)) %>%  
  ggplot(aes(po4, al, fill = pb_ppb)) +  
  geom_raster() +  
  geom_contour(aes(z = pb_ppb), col = "white") 

Supplementary text 4 

library("tidyverse") 
 
chng_yr <- function(date, new_yr) { 
  lubridate::year(date) <- new_yr 
  date 
} 
 
# simulate data: 
 
simul_data <- tibble( 
  date = seq(as.Date("2005-01-01"), as.Date("2010-01-01"), by = "1 week"), 
  numeric_date = as.numeric(date) - min(as.numeric(date)) + 1, 
  yday = lubridate::yday(date), 
  long_trend = numeric_date / max(numeric_date) 
) %>%  
  crossing(location = paste0("l", 1:2)) %>%  
  mutate( 
    param = "param_1", 
    location_numeric = if_else(location == "l1", -1, 1), 
    location = factor(location), 
    seasonal_trend = sin(2 * pi * yday / 365), 
    long_trend = long_trend + long_trend ^ 2, 
    noise = withr::with_seed(123,  
      {arima.sim(model = list(ar = .8), n = length(date)) %>% as.numeric()} 
    ), 
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    value = 5 + long_trend + seasonal_trend + location_numeric + noise 
  ) 
   
simul_gam <- simul_data %>%  
  group_by(param) %>%  
  nest() %>%  
  ungroup() %>%  
  mutate( 
    model = map(data, 
      ~ mgcv::gamm( 
        log(value) ~  
          s(numeric_date) + s(yday, by = location, bs = "cc") + location, 
        correlation = corCAR1(form = ~ numeric_date | location), 
        method = "REML", 
        data = .x 
      ) 
    ), 
    # linear predictor matrix: 
    lpmat = map2(model, data,  
      ~ predict(.x$gam, newdata = .y, type = "lpmatrix") 
    ),  
    # modify lpmat to exclude the long term trend: 
    lpmod = map( 
      lpmat,  
      ~ .x %>%  
        as_tibble() %>%  
        mutate_at( 
          vars(matches("numeric_date"),  
          matches("Intercept")), ~ 0 
        ) %>% 
        as.matrix() 
    ), 
    preds = map2(model, data,  
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      ~ predict(.x$gam, newdata = .y, type = "iterms", se = TRUE) 
    ), 
    seasonal = map2( 
      lpmod, model, 
      ~ tibble( 
        fit = rowSums(.x %*% coef(.y$gam)), 
        se_fit = rowSums(.x %*% vcov(.y$gam) * .x) %>% sqrt(), 
        lwr = fit - qt(.975, df = df.residual(.y$gam)) * se_fit, 
        upr = fit + qt(.975, df = df.residual(.y$gam)) * se_fit 
      ) 
    ), 
    longtrend = map2( 
      preds, model, 
      ~ .x %>%  
        with( 
          tibble( 
            crit_val = qt(.975, df = df.residual(.y$gam)), 
            longsmooth = fit[, "s(numeric_date)"] + attr(.x, "constant"), 
            se_longsmooth = se.fit[, "s(numeric_date)"], 
            lwr = longsmooth - crit_val * se_longsmooth, 
            upr = longsmooth + crit_val * se_longsmooth 
          ) 
        ) 
    ) 
  ) 
 
p1 <- simul_gam %>%  
  unnest(c(data, longtrend)) %>%  
  ggplot() +  
  geom_line( 
    data = function(data) data %>%  
      group_by(param, date, location) %>%  
      summarize( 
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        value = mean(value) 
      ), 
    aes(date, value, col = location) 
  ) + 
  geom_ribbon(aes(date, ymin = exp(lwr), ymax = exp(upr)), alpha = .2) + 
  geom_line(aes(date, exp(longsmooth))) + 
  labs(x = NULL, y = NULL, col = NULL) 
   
  p2 <- simul_gam %>%  
    unnest(c(data, seasonal, longtrend), names_repair = tidyr_legacy) %>%  
    mutate( 
      date = chng_yr(date, 2000), 
      location = factor(location) 
    ) %>%  
    ggplot(aes(date, fit, col = location, fill = location)) +  
    geom_point( 
      data = function(data) data %>%  
        group_by(param, location, week = lubridate::week(date)) %>%  
        summarize( 
          value = mean(log(value) - longsmooth), 
          date = median(date) 
        ), 
      aes(date, value, col = location), 
      alpha = .5, shape = 16, show.legend = FALSE 
    ) + 
    geom_ribbon( 
      aes(ymin = lwr, ymax = upr), alpha = .2, col = NA 
    ) + 
    geom_line() + 
    theme( 
      axis.line.y = element_blank(), 
      axis.text.y = element_blank(), 
      axis.ticks.y = element_blank() 
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    ) + 
    scale_x_date(date_labels = "%b") + 
    labs(x = NULL, y = NULL, col = NULL) +  
    guides(fill = "none") 

 

Figure S14. Plot of gam components in the fit to simulated data, described in supplementary 
text 4. Panel (a) shows the data and the long-term trend with a pointwise 95% confidence 
interval. Panel (b) shows the seasonal trend and its 95% pointwise confidence interval along 
with the partial residuals aggregated into weekly means. See Figure 2 in the article body. 

Supplementary text 5 

library("tidyverse") 
 
# from doi.org/10.5281/zenodo.5139734 
coupon_data <- read_csv(here::here("zenodo/2021-06-

01_cleaned_data_coupon_study.csv")) 
 
fit_in <- coupon_data %>%  
  filter(element == "208Pb") %>%  
  rename(po4_mg_l = initial_po4_mg_l) %>%  
  mutate_at(vars(-matches("conc_ppb")), as.factor) %>%  
  mutate( 
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    po4_mg_l = fct_relevel(po4_mg_l, "1", after = 0), 
    temp_c = fct_relevel(temp_c, "21", after = 0) 
  ) %>%  
  group_by(filtered, element, code, al_level, temp_c, po4_mg_l) %>%  
  # typical value from each cell: 
  summarize(conc_ppb = median(conc_ppb)) %>%  
  ungroup() %>%  
  select(-code, -element) 
 
fit <- fit_in %>%  
  group_by(filtered) %>%  
  nest() %>%  
  ungroup() %>%  
  mutate( 
    model = map( 
      data,  
      ~ lm( 
        log(conc_ppb) ~ . ^ 3,  
        data = .x,  
        # -1, 1 coding: 
        contrasts = list( 
          al_level = "contr.sum",  
          temp_c = "contr.sum",  
          po4_mg_l = "contr.sum" 
        )  
      ) 
    ), 
    tidied = map(model, ~ broom::tidy(.x, conf.int = TRUE)), 
    retransformed = map(tidied,  
      ~ .x %>%  
        filter(term != "(Intercept)") %>%  
        mutate_at( 
          vars(c(estimate, matches("conf"))),  
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          ~ 100 * (exp(2 * .x) - 1) 
        ) 
    ) 
  ) 
 
percent_change <- fit %>%  
  unnest(retransformed) %>%  
  select(where(~ !is.list(.))) 

Supplementary text 6 

library("tidyverse") 
# remotes::install_github("bentrueman/pbcusol) 
library("pbcusol")  
 
variscite <- list( 
  "Variscite", 
  "AlPO4:2H2O = Al+3 + PO4-3 + 2H2O", 
  "log_k" = -22.36 # https://doi.org/10.1016/j.gca.2010.10.012 
) 
 
aqueous_species <- list(  
  # from https://doi.org/10.1016/j.gca.2010.10.012 and  
  # https://doi.org/10.1080/09593332708618735 
  "HPO4-2 + Al+3 = AlHPO4+", 
  "log_k" = 7.4, 
  "HPO4-2 + H+ + Al+3 = AlH2PO4+2", 
  "log_k" = 3.1 
) 
 
tibble(phases = c("Variscite", "Gibbsite(C)", "Diaspore", "Boehmite")) %>%  
  rowwise() %>%  
  mutate( 
      model = list( 
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        pbcusol::eq_sol_fixed( 
          phase = phases, 
          # primary arguments: 
          ph = 7.3,  
          dic = 4.8,  
          phosphate = .16,  
          element = "Al",  
          phase_quantity = 0,  
          Al = .1 / chemr::mass("Al"),  
          # other elements: 
          Ca = 4.3 / chemr::mass("Ca"), 
          Cl = 4.3 / chemr::mass("Cl"), 
          K = 0.4 / chemr::mass("K"), 
          Mg = 0.4 / chemr::mass("Mg"), 
          Na = 12 / chemr::mass("Na"), 
          temp = 5, 
          # database additions: 
          new_phase = variscite,  
          new_species = aqueous_species 
        ) 
    ) 
  ) %>%  
  unnest(model) %>%  
  select_at(vars(-starts_with("mol_"))) %>%  
  arrange(al_ppb) 
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