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Abstract

Membrane Pan-Assay INterference compoundS (PAINS) are a class of molecules that inter-

act non-specifically with lipid bilayers and alter their physicochemical properties. An early

identification of these compounds avoids chasing false leads and the needless waste of time

and resources in drug discovery campaigns. In this work, we optimized an in silico proto-

col based on umbrella sampling (US)/MD simulations to discriminate between compounds

with different membrane PAINS behavior. We showed that the method is quite sensitive

to membrane thickness fluctuations, which was mitigated by changing the US-reference po-

sition to the P-atoms of the closest interacting monolayer. The computational efficiency

was improved further by decreasing the number of umbrellas and adjusting their strength

and position in our US scheme. The ISDM-calculated membrane permeability coefficients

confirmed that resveratrol and curcumin have distinct membrane PAINS characteristics and
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indicate a misclassification of nothofagin in a previous work. Overall, we have presented here

a promising in silico protocol which can be adopted as a future reference method to identify

membrane PAINS.

1 Introduction

High-throughput screening is a commonly used approach in drug discovery campaigns to

identify compounds showing activity to a specific therapeutic target.1 Depending on the

used test readout, certain molecules can emerge as hits without actually interacting with the

desired target. In addition to this lack of specificity, such compounds can also be promiscuous

and show activity in different independent assays.2–4 Such “frequent hitters”, or commonly

known as false-positives, are impossible to optimize and consequently do not lead to a suc-

cessful drug development process, wasting time and resources. Therefore, the ability to

identify such compounds in the early steps of drug discovery campaigns is mandatory for

small-to-large pharma and biotech companies.4

This class of promiscuous compounds was named in 2010 by Baell et al.2 as Pan Assay

INterference compoundS and gained more attention in this past decade.4 PAINS comprise

a large variety of compounds with different sources of diverse behavior or assay interfer-

ence. Compound fluorescence events,5 chelation,6 chemical aggregation,7 redox activity,8

membrane perturbation/disruption9 and non-selective compounds10 are just a few examples

of characteristic interference’s chemicals. Although the selectivity problems associated to

PAINS have been the main focus of the scientific community, there are other categories,

like phytochemicals, that, due to the compound large abundance and perceived health ben-

efits, gained a lot of recent attention.11 Phytochemicals are one of the major components

of plants and have been long used in traditional medicine to treat several different health

problems.12 The molecular mechanism associated with these compounds has been conven-

tionally interpreted or theorized by effects on receptors, biological pathways, ion channels,
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and transporters.13 However, their broad pharmacological activity spectra make it unfeasi-

ble for these compounds to target any specific protein. Furthermore, their activity modu-

lation of apparently unrelated proteins led different authors to pinpoint the interaction of

these compounds with cell membranes as the underlying mechanism behind their promiscu-

ity.9,13 These special phytochemicals are currently known as membrane PAINS since they

affect membrane physicochemical properties, such as curvature, fluidity, viscosity, elastic-

ity, and permeability.14,15 These membrane perturbations are more pronounced than com-

mon protein/membrane-binding phenomena and seem to have more points of contact with

membrane-acting drugs, such as anesthetic, cholinergic, anti-inflammatory, adrenergic, and

anti-tumor compounds.13

In recent years, there has been a large interest in developing computational methods

to identify membrane PAINS and characterize their mode of action.9,16,17 The developed

methodologies focused on quantifying the membrane deformations due to the presence of

embedded potential membrane PAINS. Ingólfsson and co-workers9 explored the membrane

perturbation effects of several phytochemicals in membranes and mechanosensitive mem-

brane proteins through a combination of gramicidin-based assays (experimental) and coarse-

grained Molecular Dynamics (MD) simulations. The developed protocol, which relied on

computationally demanding umbrella sampling (US) simulations, worked as the basis for

several subsequent methodologies.16–18

The new implementations of the US protocol increased the molecular detail by using

atomistic MD and significantly improved the description of the membrane energy barri-

ers.9,16,17 However, such methodologies are very computationally intensive, leading to limi-

tations in their implementation, such as the use of single replicates and short MD simula-

tions.16,17 In this work, we have implemented a new optimized computational protocol for

the identification and characterization of membrane PAINS. Along the same lines as previous

implementations, our approach uses atomistic MD simulations coupled to a US scheme to

calculate the potential of mean force (PMF) energy profiles. It uses a Lennard-Jones probe
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to evaluate the effects of different compounds with varying degrees of reported membrane

PAINS character, namely curcumin, resveratrol, and nothofagin.9,16 We have tested the use

of long MD simulations, multiple replicates, different US schemes, and different atoms as US

reference groups.

2 Methods

2.1 System setup and MM/MD parameters

We started from a pre-equilibrated lipid bilayer system consisting of 128 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) lipids solvated by ∼6000 water molecules.16 This was

also used as the template to build all membrane PAINS systems by adding curcumin (CUR),

nothofagin (NOT), or resveratrol (RES) molecules. The compounds were evenly and ran-

domly distributed between membrane leaflets in a 12:128 mol/mol ratio, resulting in different

starting systems: pure POPC, POPC+CUR, POPC+NOT, and POPC+RES. An additional

system, containing 24 CUR molecules (CUR24) was also built following the same protocol.

Molecular dynamics simulations were performed using GROMACS 2018.619–21 and the

GROMOS 54A7 force field.22 Topologies for the compounds were obtained using the auto-

mated topology builder (ATB),23–25 as previously described.16,18 The force field parameters

used for POPC were the ones included in GROMOS 54A7.26,27

Long-range electrostatic interactions were computed with the particle mesh Ewald (PME)

method28,29 using a Fourier grid spacing of 0.12 nm and a cutoff of 0.9 nm for direct contribu-

tions. Lennard-Jones interactions were calculated using a nonbonded neighbor pair list with

a cutoff of 0.9 nm, allowing the use of a cutoff scheme.30 Lipid and PAINS bonds were con-

strained with the parallel linear constraint solver (P-LINCS),31 while water molecules were

constrained using the SETTLE algorithm.32 The simple-point charge (SPC) water model

was used.33

The system was coupled to a temperature bath at 298.15 K using the v-rescale thermo-
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stat34 with a coupling constant of 0.1 ps. A semi-isotropic Parrinello–Rahman barostat35,36

was used in order to keep a constant pressure of 1 bar with a coupling constant of 2.0 ps

and a compressibility of 4.5× 10−5 bar−1.

The energy of each system was minimized using the steepest descent algorithm37 in

two steps: first, with no constraints and with a maximum step size of 0.0001 nm; and

second, with all bonds constrained and a maximum step size of 0.001 nm. The tolerance

was set to 0.0 kJ mol−1 nm−1 in both steps, meaning the algorithm stopped when reaching

machine precision. The velocities for each system were then generated according to a Maxwell

distribution at 298.15 K varying the initial seed. These system initializations were performed

for 200 ps with a time step of 2 fs using the MD integrator.

Systems were pre-equilibrated in 200 ns-long unbiased MD simulations in order to assess

how the presence of PAINS affected membrane bulk properties, such as the total x/y area

(Figure S1 of Supporting Information). The systems were considered to be equilibrated after

100 ns. Using the final converged 100 ns of the unbiased MD simulations, we calculated the

average insertion of the different PAINS compounds in the bilayer (Figure S2 of Supporting

Information). The insertion relative to the near phosphate monolayer was calculated using

the geometric center of each PAINS compound. The preferred insertion regions for each

compound are also illustrated in the snapshots shown in the right panel of Figure S2 in

Supporting Information.

2.2 Umbrella sampling

To prepare each system for the umbrella sampling simulations, we added a probe that is

analogous to a benzene molecule, as described in reference 16. Different replicates were

then built by replacing one of the bulk water molecules in each system at random. We

ran a steered MD simulation for each system in which the probe is gradually pulled in

the z coordinate across the membrane normal (with a force of 1000 kJ mol−1 nm−2 and a

velocity of 1 nm/ns) while keeping the xy coordinates restrained. From these simulations,
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we selected several initial conformations with the probe placed from the center of the bilayer

to the bulk water every 0.1 nm. The force constant (Kf ) used in these umbrellas was

1000 kJ mol−1 nm−2. For each of these initial conformations, we performed 600 ns-long

umbrella sampling simulations, with the initial 300 ns being discarded for equilibration.

This conservative approach was based on several structural properties, such as the local

monolayer thickness and deformation, which proved harder to converge in the umbrellas

near the membrane/water interface (Figure S3 of Supporting Information). In addition

to the general protocol described above, some variations in the number and positions of

umbrellas (as well as their corresponding Kf values) were introduced. The details of these

variations are included and discussed in the results section.

2.3 Analyses and Error Calculations

The potential of mean force (PMF) profiles for each system were calculated using the

weighted-histogram analysis method (WHAM)38 implemented in GROMACS. Membrane

permeabilities were calculated using the inhomogeneous solubility-diffusion model (ISDM),39,40

implemented in a software package developed by Vila-Viçosa and co-workers,41 based on the

formalism described in references 42 and 43. The standard error values included in figures

and tables were obtained using a modified jackknife resampling approach, as described in

detail in reference 44.

The local membrane thickness was obtained by calculating the half thickness for each

monolayer using all P-atoms within a radius cutoff (10 Å) in the xy plane centered on the

probe, while the membrane center is calculated using all P-atoms outside of a secondary

15 Å radius, i.e. the P-atoms that are unperturbed by the probe.45,46 These calculations

were performed using the MembIT tool (https://github.com/mms-fcul/MembIT).

Other analyses, were performed using either GROMACS or in-house tools, with all plots

and figures being generated using Gnuplot,47 PyMOL,48 and GIMP.49
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3 Results and Discussion

3.1 Protocol Optimization

The umbrella sampling biases over the course of an entire 600 ns-long simulation of replicate

1 of a pure POPC system are shown in Figure S4A of Supporting Information. This system,

which we designate as 37UB, contains 37 umbrellas, each spaced 0.1 nm and uses the bilayer

center as the reference, i.e. the umbrella at 0.0 is located in the center of the bilayer, while

the umbrella at 3.6 is in the bulk water. As previously mentioned (see Methods), the um-

brellas located near the membrane/water interface are the most perturbed, and thus, more

difficult to converge (around 1.9 nm), while the ones located the furthest away from this in-

terface are the least perturbed. It should be noted that discarding the initial 300 ns of these

simulations does not seem to affect the proper sampling of the different umbrellas. When

the equilibrated regions of all replicates are taken into account, we obtain the population

histogram shown in Figure S4B of Supporting Information. Despite the observed small diffi-

culty in the aforementioned membrane/water interface region, there is a high and consistent

overlap between all neighboring umbrellas, which guarantees that a good sampling of the

simulated system is achieved.

We computed the PMF profiles using the entire sampling for the 37UB system (Fig-

ure S4B of Supporting Information) or by separating the individual replicates (Figure 1A).

Although the system is composed only of pure POPC bilayer and the probe, there is sub-

stantial variability between some replicates. This illustrates the importance of using several

replicates, as using only one16 could result in an underestimated or overestimated free en-

ergy. As previously remarked,50 these differences are the consequence of the heterogeneity

in the membrane, i.e. in different replicates, the probe can cross the headgroup layer of

the membrane in different regions with different compactness, thus encountering different

resistances. We observed a clear similarity between our PMF profile (Figure 1A) and the

one obtained by Jesus et al.,16 in particular, the relative location of the energy maximum
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and overall shape. These shared characteristics cannot be dissociated from the fact that

they shared the same probe parameters and lipid force field. However, these PMF profiles

differ significantly from the one published by Ingólfsson and co-workers,9 which has an extra

energy maximum located at the bilayer center. This has been previously discussed16 and is

related with the coarse-grained MARTINI force field used by the authors.

As observed in the PMF profile (Figure 1A), the main source of variability between repli-

cates occurs at the peak of the energy barrier, which corresponds to the region where the

probe encounters the most resistance, i.e. at the P-headgroup region. Depending on the sim-

Figure 1: PMF of translocating a probe across a POPC bilayer using either the center of the
membrane as the reference (A) or the closest P-layer (B). The thicker colored lines include
all replicates, whereas the thinner grey lines correspond to individual replicates. The grey
area is half the average bilayer thickness. The bottom panels show a cartoon of the relative
positions of the probe in the z-axis using the membrane as a reference (C) or the closest
P-layer (D).

ulated replicate, the probe interacts with heterogeneous P-headgroup packing environments,

with different membrane thickness fluctuations, which can take hundreds of nanoseconds to
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equilibrate. The observed differences are also likely related to the initial definition of the

membrane center, which was calculated by the average position along the membrane normal

of all P-atoms. In an attempt to reduce some of the variability between replicates, we used

as a new US reference the average position of the closest monolayer P-atoms. This new

reference axis becomes analogous to a measure of the probe monolayer insertion, where the

new 0.0 nm umbrella corresponds to the average position of the closest P-atoms, while an

umbrella at −2.0 nm corresponds to a deeper insertion, near the membrane center. This new

system, which we termed 37UM (Figure 1B), still does not account for all local deformations

in the membrane, but most of the larger membrane thickness fluctuations are attenuated,

reducing the impact of some individual outlier replicates. It is also worth noting that this

change in the US reference did not impact the quality of the sampling (Figure S5 of Support-

ing Information). Although this is just a simple change in the reference position, it already

leads to a better description of membrane perturbation by the probe. In fact, this will be

particularly important to deal with increased system complexity, as in those in the presence

of potential PAINS compounds.

We still observe some remaining heterogeneity present in the 37UM system, which is evi-

denced in the peak of the energy barrier (Figure 1B). This is mainly due to local membrane

deformation events, which are also difficult to equilibrate between replicates in our timescale.

In an attempt to quantify this local deformation phenomenon and understand how the first

coordination sphere of the P-atoms interacts with the probe, we calculated the local mono-

layer thickness (Figure S6 of Supporting Information). When the probe is located outside

and near the P-headgroup region, its presence creates a local depression, i.e. the phosphate

atoms are pushed down towards the center of the bilayer, reducing the monolayer thickness.

In contrast, when the probe is right below the P-headgroup region, the opposite effect is

observed, as the phosphate groups cover the probe, creating a protrusion and increasing the

value of the thickness.

After significantly attenuating the membrane heterogeneity in the probe insertion ref-
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erence, we need to decrease the computational load of using 5 replicates and 37 umbrellas

along the membrane insertion pathway. We identified three approaches to accomplish this:

reduce the number of replicates, reduce the length of simulations or reduce the number of

individual umbrellas. All these approaches would lead to the desired affect, however, the first

two are more likely to result in sampling issues. A decrease in the number of replicates would

inevitably reduce our sensitivity in the error estimations, which could lead to serious limita-

tions when trying to distinguish between systems containing different membrane-perturbing

compounds. Reducing the length of the simulations also seems to be a precarious solution,

especially since we need significantly long equilibration runs to eliminate all initial bias in-

troduced in the probe/membrane setup (see Methods), a limitation that can be worse with

the introduction of potential PAINS compounds.

We focused on the reduction in the number of individual umbrellas and, for that, we

divided the probe insertion pathway into different regions according to the sampling diffi-

culty. An estimation of this difficulty can easily be inferred from the data already presented

(Figure S4 of Supporting Information) and can be roughly correlated to the proximity to

the membrane/water interface. In the regions around the phosphate groups, the sampling

was harder and we kept all 0.1 nm-spaced umbrellas, whereas in the easier regions away

from the phosphate regions, we managed to increase this spacing distance, with a concomi-

tant adjustment of the force constant values (Kf ). After some trial-and-error, we decreased

the number of umbrella windows to 22 (22UM), representing a substantial decrease in the

overall computational cost. The number and position of the umbrella windows can not be

dissociated from the Kf values used and we increased or decreased these values in regions

near the phosphate or away from the phosphate groups, respectively (Table S1 of Supporting

Information).

Using this protocol, we managed to maintain the quality of the sampling (overlap between

the neighbouring umbrellas, Figure 2A). As shown in Table S1 (Supporting Information)

and Figure 2A, we increased the Kf value in the region near the P-layer (i.e. −0.4 to 0.4)
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Figure 2: (A) Populations histograms for POPC 22UM including all replicates and the
corresponding Kf values (shown in kJ mol−1 nm−2). (B) PMF of translocating a probe across
a POPC bilayer using the closest P-layer as reference using either 22 umbrellas (yellow) or
37 umbrellas (orange). The thicker lines include all replicates, whereas the thinner ones
correspond to individual replicates in the 22UM system.

from 1000 to 2000 kJ mol−1 nm−2, which was pivotal in attenuating some of the sampling

heterogeneity observed in that region. As a result, we obtained more homogeneous PMF

profiles (Figure 2B) that resemble very closely the one obtained using 37 umbrellas. Despite

our efforts in tightening the constraints in those key umbrellas, some variability can still be

observed between replicates, probably due to the inherent differences between the regions

where the probe inserts in the membrane (local deformations), which seem very difficult to

mitigate in our time scale. This reinforces our decision to keep using five replicates and not

to reduce the simulation length. Notwithstanding, there was a significant computational

gain from reducing the overall number of umbrellas from 37 to 22. Since the PMF profiles

resulting from the three different US protocols used in this work (Figures 1 and 2) are very

similar, we will focus on 22UM and take advantage of its reduced computational cost.

The structure of the PMF profiles carries information on the physical state of the mem-

brane and is usually very well-correlated with several other membrane properties.16,43,51

Nevertheless, it is not obvious how to assign deviation in specific parts of the profile with

the membrane stability and possible deformation due to the presence of different membrane
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PAINS. Previously, this has been done by looking at the entry/exit energy barriers (size

and position)16 and at the eventual barrier at the center of the membrane, when present.9

However, the PMF profile also conveys information on the probe diffusion across the mem-

brane, the resistance encountered, and, ultimately, a membrane permeability coefficient.39–43

This coefficient has many important membrane properties convoluted in one value and can

be particularly advantageous when comparing between membrane systems with different

compounds embedded. The permeability coefficient values are calculated using the ISDM

method,39,40 as previously described.41–43 Although ISDM has been successfully used to es-

timate the membrane permeability to hydrophobic compounds,41,43 the method is highly

sensitive to the convergence and overall sampling quality of the PMF profiles. However,

in our system setup, since we use a hydrophobic sphere as a probe instead of an explicit

hydrophobic molecule, the lack of rotational entropy might result in a better convergence.

We calculated the permeability coefficients for the three US protocols used in this work

(37UB, 37UM and 22UM) and observed only small differences between them, all within the

error margin (Table 1). The permeability coefficient values seem to be correlated with

Table 1: Membrane permeabilities coefficients (cm s−1) and energy barriers of entering and
exiting the POPC bilayer (kcal mol−1). The entry barrier (∆Gentry) is the energy difference
between the maximum value (at the membrane/water interface) and bulk water, while the
exit barrier (∆Gexit) is the difference between the global minimum at the membrane center
and previous maximum. Errors were calculated using a jackknife approach.

System Permeability ∆Gentry ∆Gexit

37UB 4.6 ± 0.8 2.6 ± 0.1 7.2 ± 0.1
37UM 4.3 ± 0.5 2.7 ± 0.1 7.2 ± 0.1
22UM 4.4 ± 0.4 2.9 ± 0.0 7.1 ± 0.1

the entry and exit energy barriers, which are also very similar between the three systems

(Table 1). The quality of the PMF profiles obtained for the 22UM system is also expressed in

the smaller error observed for this setup. Using this protocol, we increased the complexity of

our systems by adding compounds with different degrees of PAINS-like behavior, as described

in the literature.9,16

12



3.2 Protocol Application to Identify PAINS Compounds

In the previous section, we showed that the 22UM approach was the least computationally-

demanding option while still retaining the sampling quality and a high degree of homogeneity

in the harder-to-sample regions of the membrane. The well-converged PMF profiles obtained

allowed us to obtain permeability coefficient values with relatively small errors. We applied

this protocol setup to several compounds, known to have different degrees of PAINS-like

behavior, as described in the literature:9,16 resveratrol (RES), as a mild membrane PAINS,

nothofagin (NOT) as a non-PAINS, and curcumin (CUR) as a strong membrane PAINS.

The different complex systems were built by embedding each of the three PAINS compounds

in the lipid bilayer in a 12:128 mol/mol ratio, evenly distributed between the two leaflets,

and then pre-equilibrated using a relatively short unbiased MD simulation, as detailed in the

methodology section. An additional system was also prepared using a 24:128 mol/mol ratio

for curcumin (termed CUR24), as discussed below. All compounds had an impact on the

final PMF profiles obtained when compared to the pure POPC membrane (Figure 3). In all

cases, we observe significantly more variability between individual replicates than what was

previously observed in the pure POPC systems (Figure 2B). The source for this variability is

also the local membrane deformation triggered by the probe insertion in the water/membrane

interface. However, the overall heterogeneity is now also impacted by the presence of the

compounds, which are not uniformly distributed (Figure S2 of Supporting Information).

We observe that all compounds change the PMF profile, however, the differences between

compounds are not easily clarified by visual inspection. Furthermore, it is difficult to evaluate

how the specific PMF differences affect the membrane properties. To tackle this issue, we

calculated the membrane permeability coefficients (Table 2), which provide a quantification

of the membrane perturbation and overall stability. From the permeability coefficients,

resveratrol showed the lowest perturbation to the pure POPC membrane (4.5 ± 0.3 vs

4.4 ± 0.4), which is in agreement with the previously reported description of resveratrol

as a mild membrane PAINS.9 On the other hand, nothofagin has a more noticeable impact
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Figure 3: PMF profiles of translocating a probe across a POPC bilayer in the absence or pres-
ence of the tested compounds: resveratrol (RES), nothofagin (NOT), curcumin 10% (CUR)
and curcumin 20% (CUR24). The thicker lines include all replicates (average), whereas the
thinner ones correspond to individual replicates of the system with PAINS compounds. The
orange profile corresponds to the compound-free control.
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Table 2: Energy barriers of entry (∆Gentry) and exiting (∆Gexit) the POPC bilayer, and
membrane permeabilities. Energy values are shown in kcal mol−1 and permeabilities are
shown in cm s−1. Errors were calculated using a leave-one-out (jackknife) approach.

System Permeability ∆Gentry ∆Gexit

POPC 4.4 ± 0.4 2.9 ± 0.1 7.1 ± 0.1
RES 4.5 ± 0.3 2.5 ± 0.1 6.6 ± 0.1
NOT 5.6 ± 0.6 2.3 ± 0.0 7.1 ± 0.2
CUR 5.0 ± 0.5 2.4 ± 0.0 6.6 ± 0.2
CUR24 5.7 ± 0.3 2.3 ± 0.0 6.3 ± 0.1

on the PMF (Figure 3), leading to a significant difference in the calculated permeability

coefficient (5.6 ± 0.6). This is in disagreement with previous observations that nothofagin

is not a membrane PAINS.16 This discrepancy is most likely related to the lack of sampling

(single short-length US simulation) in the work by the Jesus and co-workers.16 As we found

in the previous section, both the length and the number of replicates for these simulations

are key factors to achieve a good convergence. From our data, it is clear that nothofagin

can, in fact, exhibit some membrane PAINS behavior.

We have also used curcumin in our study, which has been identified as a strong mem-

brane PAINS.9 We did observe noticeable deviations in the overall PMF profile (Figure 3),

leading to an apparent increase in the membrane permeability coefficient value (Table 2).

However, the difference of its permeability coefficient, when compared with pure POPC,

is within the error values (5.0 ± 0.5 vs 4.4 ± 0.4), which are significant due to the

system heterogeneity among individual replicates. Since curcumin has been branded as a

strong membrane PAINS,9 we expected a more significant membrane perturbation effect.

This prompted us to design an extra system (CUR24) with twice the concentration of the

compound (24:128 mol/mol ratio). The effect of doubling the concentration of curcumin

appeared to be twofold: first, an increase in the perturbation effect when compared to pure

POPC, as evidenced by the shape of the PMF profile (Figure 3) and corresponding perme-

ability coefficient (5.7 ± 0.3 vs 4.4 ± 0.4); and second, a reduction in the heterogeneity

between individual replicates (Figure 3) which is reflected in the smaller error value when
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compared to several other systems. In overall, it seems that the addition of more curcumin

molecules to the lipid bilayer does lead to a statistically significant perturbation effect, hence

confirming its membrane PAINS character.

To complement the comparison between the different compounds, we also calculated

the entry/exit barriers, similarly to the pure POPC systems using different methodologies

(Table 1). From the data in Table 2, we calculated the correlation between the permeability

coefficients and either the ∆Gentry or the ∆Gexit values. Similarly to the values for pure

POPC (Table 1), we observed a strong negative correlation (−0.83) for ∆Gentry, and a

significantly smaller value for ∆Gexit (−0.28). With such a high anti-correlation between

the membrane permeability values and the ∆Gentry, we could argue that the estimation of

this energy barrier will suffice to quickly gauge the membrane PAINS-like potential of a

compound. It should be noted that the calculations required to estimate the entry barrier

are only a modest fraction of the total needed for calculating the complete energy profile.

4 Conclusion

Membrane PAINS are promiscuous compounds that can alter membrane physicochemical

properties and perturb the function of transmembrane mechanosensitive proteins. To avoid

the waste of time and resources in drug discovery companies due to this class of compounds,

we have devised a computational protocol based on umbrella-sampling MD simulations to

discriminate between compounds with differentiated membrane PAINS behaviour. By cou-

pling a molecular probe to this robust atomistic sampling scheme, we concluded that this

method strongly depends on the specific environment sensed by the probe, especially at the

membrane/water interface. To mitigate the impact of this heterogeneity, we changed the US

reference position from the membrane center to the closest interacting monolayer P-atoms.

This approach resulted in a higher homogeneity between replicates, in particular, the de-

scription of the energetic barrier at the water/membrane interface. Additionally, in order
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to decrease the computational cost of such demanding simulations while retaining a high

accuracy, we evaluated a reduction in the number of replicates, umbrellas, and simulation

length. The final optimized scheme focused mainly on a reduced number of umbrellas, which

significantly decreased the computational time spent without compromising the overall accu-

racy. This final optimized protocol was then applied to membrane systems in the presence of

three compounds with different reported membrane PAINS behaviors: curcumin (membrane

PAINS), resveratrol (mild membrane PAINS), and nothophagin (non-membrane PAINS).

The membrane permeability coefficients calculated using the in-homogeneous solubility-

diffusion model for the different systems confirmed that resveratrol has mild membrane

PAINS characteristics and that curcumin exhibits a concentration-dependent membrane

PAINS behaviour. However, our results indicate that nothofagin, which was previously

identified as a non-membrane PAINS compound,16 presents a significant membrane pertur-

bation effect, suggesting a misclassification of this compound. Interestingly, we have observed

a very high anti-correlation between the probe entry energy barrier (∆Gentry) and the mem-

brane PAINS character. This can be very useful since this energy barrier can be calculated

using a fraction of the computational cost of our protocol. Overall, our effective approach

emerges as a reference in silico method to identify and discriminate among membrane PAINS

compounds.
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