
Surge - A Fast Open-Source
Chemical Graph Generator

Brendan D. McKay1*, Mehmet Aziz Yirik2 and Christoph Steinbeck2*

1 School of Computing, Australian National University, ACT 2601, Australia
2Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University, Lessingstr. 8,
07743 Jena, Germany

Corresponding author email: brendan.mckay@anu.edu.au, christoph.steinbeck@uni-jena.de

Abstract
Chemical structure generators are used in cheminformatics to produce or enumerate virtual
molecules based on a set of boundary conditions. The result can then be tested for properties of
interest, such as adherence to measured data or for their suitability as drugs. The starting point
can be a potentially fuzzy set of fragments or a molecular formula. In the latter case, the
generator produces the set of constitutional isomers of the given input formula. Here we present
the novel constitutional isomer generator surge based on the canonical generation path
method. Surge uses the nauty package to compute automorphism groups of graphs. We
outline the working principles of surge and present benchmarking results which show that
surge is currently the fastest structure generator. Surge is available under a liberal
open-source license.

Introduction
Chemical structure generators enumerate or generate molecular graphs of organic or bioorganic
molecules. They are an integral part of systems for computer-assisted structure elucidation
(CASE) [1] and can be used to create molecular libraries for virtual screening [2], [3] or
enumerate chemical spaces in general [4]. The history of chemical graph generators goes back
at least to the 1960s DENDRAL project which was aimed at the CASE of organic molecules
based on mass spectrometric data [5]. DENDRAL was developed for NASA’s Mariner program
to search for life on Mars [5] [6]. Its structure generator used substructures as building blocks
and was able to deal with overlapping substructures. In the early history of the structure
generators, ASSEMBLE was another building block based structure generator [7]. In the field,
there is a family of generators based on mathematical theorems such as algorithmic group
theory [8] and combinatorics [9]. Besides DENDRAL, MASS [10] was also another good
example for the applications of mathematical theorems in structure generation. It was a tool for

1

mailto:Brendan.McKay@anu.edu.au
mailto:christoph.steinbeck@uni-jena.de
https://paperpile.com/c/I6jrVj/6D26
https://paperpile.com/c/I6jrVj/Ml94
https://paperpile.com/c/I6jrVj/bbb0
https://paperpile.com/c/I6jrVj/utfH
https://paperpile.com/c/I6jrVj/CBfA
https://paperpile.com/c/I6jrVj/CBfA
https://paperpile.com/c/I6jrVj/EpMt
https://paperpile.com/c/I6jrVj/bTgn
https://paperpile.com/c/I6jrVj/c64Z
https://paperpile.com/c/I6jrVj/Y6Py
https://paperpile.com/c/I6jrVj/hl09

the mathematical analysis of molecular structures. SMOG [11] was the successor of the MASS
algorithm.
Many works followed but few examples of practical usability are available even today [12].
Among the currently available structure generators, such as DENDRAL, ASSEMBLE, SMOG,
COCON [13] and LSD [14], MOLGEN [15] constituted the state-of-the-art for decades in terms
of speed, completeness and reliability. The first version of MOLGEN was based on the strategy
of DENDRAL software and developed to overcome the limitations of DENDRAL [16]. The
software is based on the orderly graph generation method [17]. Although MOLGEN is the de
facto gold standard in the field, it has the downside of being closed-source software. The
algorithm cannot be further developed or modified by scientists based on their interests. The
most efficient and fast open-source chemical graph generator was MAYGEN [18] based on the
orderly generation method. However, MAYGEN is approximately 3 times slower than MOLGEN.
The state of the art of large scale structure generation was recently set by the lab of Jean-Louis
Reymond [19] in developing an in-house solution for a nauty-based structure generator, which
enabled them to produce the numeration of 166 billion organic small molecules in the chemical
universe database GDB-17. To the best of our knowledge, this in-house generator was not
released as open-source or otherwise.
Thus, there is still the need for an efficient open-source chemical graph generator. In [18] we
expressed the hope to “trigger a surge in the development of improved and faster” structure
generators. Here we present the novel structure generator surge, based on the principle of the
canonical generation path method. Surge is open-source and outperforms MOLGEN 5.0 by
orders of magnitude in speed. Furthermore, surge is easily extensible with more features and
adaptable to further application.

Methods

Data
We assembled a list of molecular formulae for benchmarking surge against MOLGEN 5.0 in
Table 1-2. These formulae were taken from the natural products database COCONUT [20]. The
size of these molecular formulae varies and is enough to challenge even the best constitutional
isomer generators available (see results section).

Algorithm and mathematical background
Surge is based on the nauty [21] package for computing automorphism groups of graphs as
well as canonical labels. Like nauty, surge is written in a portable subset of C and runs on a
considerable number of different systems.
Surge is an integration of three existing tools from the nauty suite [22]: a) geng generates
simple graphs based on certain boundary conditions, b) vcolg colors vertices in the output of
geng and c) multig inserts multi-edges in the output of the first two tools (Figure 1).

2

https://paperpile.com/c/I6jrVj/XugC
https://paperpile.com/c/I6jrVj/0bIo
https://paperpile.com/c/I6jrVj/nPM1
https://paperpile.com/c/I6jrVj/Z2Jy
https://paperpile.com/c/I6jrVj/zAfC
https://paperpile.com/c/I6jrVj/BEVF
https://paperpile.com/c/I6jrVj/rBW1
https://paperpile.com/c/I6jrVj/0f3o
https://paperpile.com/c/I6jrVj/430L
https://paperpile.com/c/I6jrVj/0f3o
https://paperpile.com/c/I6jrVj/7boS
https://paperpile.com/c/I6jrVj/piex
https://paperpile.com/c/I6jrVj/GIck

Figure 1: An example case for the combination of geng, vcolg and multig functions for the
furan molecule, C4H4O. First the simple graph is constructed. The nodes are coloured as, black
for carbons and red for the oxygen. In multig, the edge multiplicities are optionally increased
to create multiple bonds.

Figure 2: Surge flowchart.

An isomorphism between two graphs is a bijection between their vertex sets that maps edges
onto edges. If the graphs have adornments, such as atom types for the vertices or bond
multiplicities for the edges, then those adornments must be preserved by the mapping. If the
two graphs are the same; i.e., the isomorphism is from a graph to itself, it is called an
automorphism. The automorphisms form a group under the operation of function composition,
called the automorphism group.
The meanings of isomorphism and automorphism are different for each of the three stages in
our algorithm. Referring to Figure 1, at the first stage (which we call a simple graph) there are no
vertex or edge adornments and all rotations and reflections, 10 in total, are automorphisms.

3

When vertex adornments are added in the second stage, the atom type becomes significant so
only the identity mapping and the reflection through the oxygen atom are automorphisms. In the
final stage, edge adornments are added but in this example the automorphism group is not
further reduced since the reflection through the oxygen atom preserves both atom type and
bond multiplicity. Note how the automorphism groups in the second and third stages are
subgroups of the automorphism groups in the previous stages.

First stage
Input to surge consists of a molecular formula such as C7H12O2S. Based on the element
counts, in this case C=7, O=2, S=1, H=12, the atom valencies are used to calculate the
plausible range of the number of edges of a connected simple graph representing the topology
of a molecule with this formula, with hydrogen atoms omitted. Then geng is called to generate
all the connected simple graphs with those parameters, subject also to a maximum degree
condition depending on the molecular formula [23]. Geng generates one graph from each
isomorphism class and these are passed to the second stage as they are produced, without any
need to store them [23]. In this example, there are 10 non-hydrogen atoms and the number of
edges is in the range 9-11.

Second stage
Given a simple graph G from the first stage, the second stage assigns elements to vertices in all
distinct ways. The element counts must be correct, and we must have valence degree at each≥
vertex. More onerously, we only want one member of each equivalence class of element
assignment under the automorphism group of G. We next explain how this is accomplished.
The vertices of G are arbitrarily numbered 1,2,...,n. An element assignment can be represented
as a list showing the element assigned to each vertex in order of vertex number. For example, a
valid list might be L = (C,C,C,S,O,C,C,C,O,C).
Automorphisms of G have an action on lists that permutes their entries. Namely, for list L and
automorphism the list (L) assigns the same element to vertex (v) as L assigns to v, for eachγ, γ γ
vertex v. Thus,

L = (C,C,O,S,O,C,C,C,C,C) and = (1 2 3)(5 6) imply (L) = (O,C,C,S,C,O,C,C,C,C).γ γ

If L is a list of elements and is an automorphism, L and (L) give equivalent assignment ofγ γ
elements to the vertices of G. Our task in this stage is to choose exactly one assignment from
each equivalence class. Given a fixed ordering of the elements, for example C < O < S, two lists
can be compared lexicographically, for example

(C,C,C,S,O,C,C,C,O,C) < (C,C,O,C,S,C,C,O,C,C)

This enables us to define
canon(L) = max { (L) | in Aut(G) },γ γ

4

https://paperpile.com/c/I6jrVj/cLF7
https://paperpile.com/c/I6jrVj/cLF7

the maximum list in the equivalence class of L. Note that canon(L)=canon(L’) if L and L’ are
equivalent, so there is a unique maximum list L* in the equivalence class and we can recognize
it by the condition canon(L*)=L*. To put it another way, if (L) > L for any automorphism then Lγ γ

L*; otherwise L = L*.≠
Now we describe the conceptual method for the second stage. For given G:

This algorithm is efficient if the automorphism group Aut(G) is small, but that is not always the
case. Therefore, we adopt a more complex approach. An automorphism of G is called minor if
there are two leaves (vertices of degree 1) x,y with a common neighbour and the automorphism
merely swaps x and y; i.e. (x y). The minor subgroup M Aut(G) is the subgroup generated by≤
all the minor automorphisms.

Figure 3. Two graphs with example flowers.

A flower is a maximal set of leaves with the same neighbour. In the left graph of Figure 3, the
flowers are {1,2,3}, {6,10} and {9,11}. The minor subgroup M consists of all automorphisms that

5

preserve the flowers, such as (1 2 3)(9 11). The order of M is . In addition to3! × 2! × 2! = 24
M, the automorphism group may contain automorphisms that do not preserve the flowers, such
as (6 11)(7 8)(9 10). To capture such automorphisms, we colour the graph as in the right side of
Figure 3. Vertices not in flowers are coloured black. Within each flower, vertices are coloured
red, blue, green, … in order of vertex number, using a fixed list of colours that does not include
black. Now let N be the group of automorphisms that respect the vertex colours. In the example,
N has only the identity and (6 9)(7 8)(10 11).
An arbitrary automorphism of G can be obtained by first applying an element of N to capture
how the flowers are mapped to each other, and then applying an element of M to capture the
movement of leaves within each flower. In both steps the choice is unique, so we have a
factorization

Aut(G) = NM = { | in N, in M }.γδ γ δ
(In the language of group theory, M is a normal subgroup and N is a complete set of coset
representatives.) In the example, consider (1 2)(6 11)(7 8)(9 10). It swaps the flowers {6,10}
and {9,11} so we choose the element of N which does that, namely = (6 9)(7 8)(10 11). Thenγ
we have to arrange the leaves within the flowers with an element of M, namely =(1 2)(6 10)(9δ
11). This achieves = (1 2)(6 11)(7 8)(9 10).γδ

The main advantage of factoring Aut(G) = NM is the following.

Theorem. For any list L, L = canon(L) if and only if L = max { (L) | in M } and L = max { (L) |δ δ γ
in N }.γ

Proof. The “only if” direction is obvious since M and N are subsets of Aut(G). Suppose in the
other direction that L = max { (L) | in M } and L = max { (L) | in N }. From the factorizationδ δ γ γ
of Aut(G) we know that L* = ((L)) for some in N and in M. Note that in both L and L* theδ γ γ δ
elements are in nonincreasing order within each flower, as they are maximized with respect to
M. Also recall that the automorphisms in N preserve the order of vertex numbers within the
flowers, by virtue of the fact that we coloured the vertices in order of vertex number when we
computed N. This means that we can take to be identity, and so L* = (L). This proves that L*δ γ
= L, since L = max { (L) | in N }.γ γ
In order to implement the condition L = max { (L) | in M }, we don’t need to compute Mγ γ
explicitly. Instead, since M is generated by transpositions, it suffices that within each flower the
elements are in decreasing order relative to vertex number. Using the ordering of elements that
we have chosen, in the example we just need to enforce the inequalities element(1) ≥
element(2) ≥ element(3), element(6) ≥ element(10) and element(9) ≥ element(11). The program
recursively assigns elements to vertices in order of vertex number and enforces these
inequalities as they become active rather than at the end.

To implement the condition L = max { (L) | in N }, we compute N using nauty and test thatγ γ γ
(L) L for each in N. This is efficient in practice because N is very small most of the time.≤ γ
We can also partly enforce N by means of inequalities: since vertex 6 is the least vertex in a
non-trivial orbit {6, 9} of N, we can assume element(6) ≥ element(9). This is not necessary but it
gives a small time improvement.

6

Third stage

After the assignment of elements to vertices is complete, the program moves to the next stage
of selecting a bond multiplicity for each edge. This is the same type of problem as in the second
stage. Instead of a list of elements for each vertex, we have a list of multiplicities for each edge.
Instead of Aut(G), we use the subgroup of Aut(G) that preserves the element assignment.
Otherwise M and N are defined as before. In the implementation, we don’t use nauty to
compute N but instead filter the N subgroup from the second stage, rejecting those
automorphisms which don’t preserve elements and converting the others to their action on the
edges.
As an example, geng makes 534,493 unlabelled simple graphs in 1.3 seconds for Lysopine
C9H18N2O4. For these graphs, the second stage subgroup N is trivial 58% of the time and never
larger than 72. Assignment of elements to vertices produces 3,012,069,151 vertex-labelled
graphs in 90 seconds.The N subgroup for the third stage is trivial 98% of the time and never
larger than 24. Finally, the assignment of bond multiplicities produces 5,979,199,394 completed
molecules in an additional 100 seconds.
As demonstrated by our examples, surge can generate molecular structures very quickly,
allowing for the inspection of extremely large sets of isomers. The generation speed is several
times faster than even the fastest output format (SMILES). On the other hand, any particular
application will likely have stronger restrictions on the structure than just a molecular formula.
For example, some substructures may make the molecule unstable or give it chemical
properties undesirable in the application. Or, experimental investigation of an unknown
compound may have determined some features of the structure, so that only molecules with
those features are of interest.
For these reasons, surge provides a number of filters to limit the output. The 3-stage generation
method allows some of them to be implemented almost for free, and all of them are much more
efficient than filtering the output through an external program. For example, restrictions on the
number of short rings and the planarity of the molecule can be enforced at Stage 1. Surge also
provides some "badlists" of forbidden substructures (many of them inspired by the
corresponding feature of MOLGEN).
The open-source nature of surge allows for a more advanced feature. By writing small code
snippets, the user can insert custom filters into any of the three stages, and also perform such
tasks as adding extra elements and command-line options. Several worked examples are
provided with the program.

Results
Surge is available under a liberal open-source License (Apache 2.0) on GitHub at
https://structuregenerator.github.io as well as from https://users.cecs.anu.edu.au/~bdm/surge/.
The system can be built with the standard Unix Configure/Make scheme and the resulting
stand-alone executable is then run from the command line. By default, surge generates all
constitutional isomers of a given molecular formula. Surge can write output in either SDfile [24]

7

https://structuregenerator.github.io
https://users.cecs.anu.edu.au/~bdm/surge/
https://paperpile.com/c/I6jrVj/kOT9

or SMILES [25] format. SMILES output is produced very efficiently by constructing a template
for each simple graph at the first stage, so that only atom types and bond multiplicity must be
filled in before output.
We benchmarked surge with the set of molecular formulae given in Table 1. Since our
motivation for developing structure generators is for the generation of large molecules, Table 1
consists of natural products, randomly selected from the natural products database COCONUT
[20]. For the list of molecular formulae, surge outperformed MOLGEN by orders of magnitude
(Figure 4) and MOLGEN terminated at a built-in limit of 231-1 structures. Reported computation
times were linearly extrapolated based on the MOLGEN timing for 231-1 structures and the
actual number of isomers reported by surge. Note that surge generates between 7 million and
22 million molecules per second for all of these examples.
Surge has a tiny memory footprint irrespective of the molecule size or the number of isomers.
All of the examples in this paper run in at most 5 MB of RAM on Linux.

Table 1: Execution time (seconds) for selected MF of natural products on a compute-optimized
c2-standard-4 Google cloud VM. Times for MOLGEN 5.0 were determined with the
-noaromaticity flag to achieve comparability. Both MOLGEN and surge were instructed to
generate but not to output structures.

Name of notable
isomer

Molecular
Formula

Species #Isomers SURGE
time (s)

MOLGEN
time (s)

Bassianolone C10H16O5 Beauveria
bassiana 1092378303 69 5146

Pantothenate C9H17NO5 Arabidopsis
thaliana 1652346465 165 11122

Lysopine C9H18N2O4 Parthenocissus
tricuspidata 5979199394 289 27250

Cribronic Acid C6H11NO7S Cribrochalina
olemda 2375932807 323 13445

Antibiotic CV-1 C7H14N2O6 Streptomyces
CO-1 4193416397 448 24030

Thr-Thr C8H16N2O5 Trypanosoma
brucei 5955022220 575 37103

O-Succinyl-L-Ho
moserine

C8H13NO6 Escherichia coli
K12 5639328954 629 35128

Etrogol C13H18O2 Stachylidium 6316260274 746 44395

Indoleacetamide C10H10N2O Pseudomonas
savastanoi

13290477420 1187
59910

8

https://paperpile.com/c/I6jrVj/BLgw
https://paperpile.com/c/I6jrVj/7boS

Colletotricole A C9H13NO3S Colletotrichum
gloeosporioides
A12 20902484656 1765 88151

Nigerapyrone E C11H12O4 Aspergillusniger
MA-132 31627481929 2179 181725

Siastatin B C8H14N2O5 Streptomyces
verticillus var.
quintum 27692853176 2628 183167

P-Hydroxyhippuri
c Acid

C9H9NO4 Homo sapiens 21964168804 2731
121362

Deacetyldemethyl
anisomycin

C11H15NO3 Streptomyces sp.
strain SA3097 95541477841 4229 580772

Isoleucylisoleucyl
Anhydride

C12H22N2O2 Cordyceps
bassiana 59576199503 4782 516950

Hydantocidin C7H10N2O6 Streptomyces
hygroscopicus

40946033849 5238
262323

Aerugine C10H11NO2S Pseudomonas
aeruginosa 93330898027 8124 533440

Flavensomycinoic
Acid

C9H9NO5 N/A
113165341837 8870 793389

Dopamine
4-O-Sulfate

C8H11NO5S Homo sapiens
89694168554 9880 606333

Pestalactam C C10H10ClNO3 pestalotiopsis sp. 232824605597 14830 1700022

Glugaba C9H16N2O5 Escherichia coli 176162377006 16265 1315301

Shihunine C12H13NO2 Dendrobium
loddigesii 427207647324 19769 2504164

Gostatin C8H10N2O5 sumanensis 187389585693 21781 1422863

Elaiomycin C13H26N2O3 N/A 303023674167 29288 2729280

Oryzoxymycin C10H13NO5 Streptomyces
venezuelae var.
oryzoxymyceticus 552024644350 54372 6325646

Gammaglucys C8H14N2O5S Mus musculus 699785343381 69844 4989287

Phyllurine C10H10N2O3 Phyllanthus
urinaria 1511861775412 83186 8292585

9

Vanilloylglycine C10H11NO5 Homo sapiens 1182104108010 133136 21426660

Deoxyuridine C9H12N2O5 Phakellia
mauritiana 1795817811706 180727 13983652

Sulphostin C5H13N4O5PS N/A 2029911211739 226830 11893149

Figure 4: Comparison of the run times of surge v1.0 vs MOLGEN 5.0 for long-running
molecular formulae from selected natural products, plotted on a logarithmic time scale. In the
majority of cases, MOLGEN terminated at a built-in limit of 231-1 structures. Reported
computation times were linearly extrapolated based on the MOLGEN timing for 231-1 structures
and the actual number of isomers reported by surge.

For randomly selected 10 molecular formulae, 4 options of surge were tested and results are
given in Table 2. These options are

-p0:1 At most one cycle of length 5
-P The molecule is planar
-B5 No atom has two double bonds and otherwise only hydrogen neighbours
-B9 No atom lies on more than one cycle of length 3 or 4

10

11

Table 2: Execution time (seconds) for selected MF of natural products on a compute-optimized
c2-standard-4 Google cloud VM. Surge was run with its options and instructed to generate but
not to output structures.

Molecular
Formula

- p0:1 - P - B5 - B9

#Iso Time #Iso Time #Iso Time #Iso Time

C11H19N3O 58175540
999

3746 72486967073 5046 69648876936 4978 51275365737 3048

C11H18N2O
2

539257253
34

3648 67177819545 4914 64367528959 4838 47278714772 2946

C11H15NO3 64661412
269

4759 94361334994 7682 89131725467 7512 54627135057 3595

C9H18N2O4 58104096
23

519 5979199394 541 5918503858 538 5583717596 484

C11H12O4 172164980
94

1894 30438650047 4485 28660902856 3777 14044693099 1256

C10H16O5 98927353
0

107 1092378303 122 1060206152 122 895109814 88

C13H20O2 12114813
07

147 1514909702 203 1443691541 197 1038843543 101

C8H11NO6 12795251
232

1511 15771433061 1953 15035794185 1942 11169581507 1217

C9H9NO5 624711257
88

8244 109135601623 16008 102826808386 15645 51607646947 6062

C12H13NO2 17727444
6997

13639 382246449331 34476 381333513411 34285 147423365942 9700

Limitations
Release 1.0 of surge does not perform a Hückel aromaticity test and therefore generates
duplicate structures for Kekulé versions of aromatic rings that are graph-theoretically different.
Benchmarking against MOLGEN 5.0 was therefore performed with the -noaromaticity switch of
MOLGEN.

12

Conclusion
We have presented surge, a structure generator for constitutional isomers based on the
canonical generation path method. To the best of our knowledge, surge is the fastest chemical
structure generator available. A number of badlist options are available to avoid the generation
of potentially unlikely structures. Current limitations include the lack of an aromaticity detection.
Surge is hosted as an open-source package on GitHub, inviting the scientific community to use
and extend it. Surge offers a plug-in mechanism for community-driven extensions. Plugins can
hook into the various stages of the surge generation process, thereby offering efficient means
to prune the generation tree.

Availability and Requirements
● Project name: surge
● Project home page: https://structuregenerator.github.io
● Operating system(s): Platform independent
● Programming language: C
● License: Apache 2.0

Competing Interests
All authors declare no competing interests.

Funding
MAY and CS acknowledge funding by the Carl-Zeiss-Foundation.

Acknowledgements

Author contributions
BDM wrote the code and developed the underlying nauty package. BDM, CS and MAY
conceived the project. BDM and CS guided the development. MAY contributed to the conceptual
development and performed the evaluation and testing.
All authors wrote, read and approved the manuscript.

13

https://structuregenerator.github.io

Author information

Affiliations
School of Computing, Australian National University, ACT 2601, Australia
Brendan D. McKay

Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University, Jena, Germany
Mehmet Aziz Yirik & Christoph Steinbeck

References
1. Elyashberg M, Argyropoulos D. Computer Assisted Structure Elucidation (CASE): Current
and future perspectives. Magn Reson Chem [Internet]. Wiley; 2020; Available from:
https://onlinelibrary.wiley.com/doi/10.1002/mrc.5115

2. Miyao T, Kaneko H, Funatsu K. Ring system-based chemical graph generation for de novo
molecular design. J Comput Aided Mol Des. 2016;30:425–46.

3. Saldívar-González FI, Huerta-García CS, Medina-Franco JL. Chemoinformatics-based
enumeration of chemical libraries: a tutorial. J Cheminform. 2020;12:64.

4. Blum LC, Reymond J-L. 970 Million Druglike Small Molecules for Virtual Screening in the
Chemical Universe Database GDB-13. J Am Chem Soc. American Chemical Society;
2009;131:8732–3.

5. Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J. DENDRAL: A case study of the
first expert system for scientific hypothesis formation. Artif Intell. 1993;61:209–61.

6. Gulyaeva KA, Artemieva IL. The ontological approach in organic chemistry intelligent system
development. Advances in Intelligent Systems and Computing. Singapore: Springer Singapore;
2020. p. 69–78.

7. Badertscher M, Korytko A, Schulz KP, Madison M, Munk ME, Portmann P, et al. Assemble
2.0: a structure generator. Chemometrics Intellig Lab Syst. 2000;51:73–9.

8. Holt DF, Eick B, O’Brien EA. Handbook of Computational Group Theory. CRC Press; 2005.

9. Kreher DL, Stinson DR. Combinatorial algorithms: generation, enumeration, and search. CRC
press; 2020.

10. Serov VV, Elyashberg ME, Gribov LA. Mathematical synthesis and analysis of molecular
structures. J Mol Struct. 1976;31:381–97.

11. Molchanova MS, Shcherbukhin VV, Zefirov NS. Computer Generation of Molecular
Structures by the SMOG Program. J Chem Inf Comput Sci. 1996;36:888–99.

12. Yirik MA, Steinbeck C. Chemical graph generators. PLoS Comput Biol. 2021;17:e1008504.

14

http://paperpile.com/b/I6jrVj/6D26
http://paperpile.com/b/I6jrVj/6D26
https://onlinelibrary.wiley.com/doi/10.1002/mrc.5115
http://paperpile.com/b/I6jrVj/Ml94
http://paperpile.com/b/I6jrVj/Ml94
http://paperpile.com/b/I6jrVj/bbb0
http://paperpile.com/b/I6jrVj/bbb0
http://paperpile.com/b/I6jrVj/utfH
http://paperpile.com/b/I6jrVj/utfH
http://paperpile.com/b/I6jrVj/utfH
http://paperpile.com/b/I6jrVj/CBfA
http://paperpile.com/b/I6jrVj/CBfA
http://paperpile.com/b/I6jrVj/EpMt
http://paperpile.com/b/I6jrVj/EpMt
http://paperpile.com/b/I6jrVj/EpMt
http://paperpile.com/b/I6jrVj/bTgn
http://paperpile.com/b/I6jrVj/bTgn
http://paperpile.com/b/I6jrVj/c64Z
http://paperpile.com/b/I6jrVj/Y6Py
http://paperpile.com/b/I6jrVj/Y6Py
http://paperpile.com/b/I6jrVj/hl09
http://paperpile.com/b/I6jrVj/hl09
http://paperpile.com/b/I6jrVj/XugC
http://paperpile.com/b/I6jrVj/XugC
http://paperpile.com/b/I6jrVj/0bIo

13. Junker J. Theoretical NMR correlations based Structure Discussion. J Cheminform.
2011;3:27.

14. Nuzillard J-M, Georges M. Logic for structure determination. Tetrahedron. 1991;47:3655–64.

15. Gugisch R, Kerber A, Kohnert A, Laue R, Meringer M, Rücker C, et al. MOLGEN 5.0, a
Molecular Structure Generator in Advances in Mathematical Chemistry. Advances in
Mathematical Chemistry; Basak, SC, Restrepo, G , Villaveces, JL, Eds.

16. Grund R, Kerber A, Laue R. Construction of discrete structures, especially isomers. Discrete
Appl Math. 1996;67:115–26.

17. Grüner T, Laue R, Meringer M. Algorithms for group actions: homomorphism principle and
orderly generation applied to graphs. DIMACS Ser Discrete Math Theoret Comput Sci.
1997;28:113–22.

18. Yirik MA, Sorokina M, Steinbeck C. MAYGEN: an open-source chemical structure generator
for constitutional isomers based on the orderly generation principle [Internet]. Journal of
Cheminformatics. 2021. Available from: http://dx.doi.org/10.1186/s13321-021-00529-9

19. Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L. Enumeration of 166 billion organic
small molecules in the chemical universe database GDB-17. J Chem Inf Model.
2012;52:2864–75.

20. Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. COCONUT online: Collection
of Open Natural Products database. J Cheminform. 2021;13:2.

21. McKay BD, Piperno A. Practical graph isomorphism, II. J Symbolic Comput.
2014;60:94–112.

22. McKay B, Piperno A. nauty and Traces User’s Guide [Internet]. 2019 Sep. Available from:
https://pallini.di.uniroma1.it/Guide.html

23. McKay BD. Isomorph-Free Exhaustive Generation. J Algorithms. 1998;26:306–24.

24. CTFILE FORMATS BIOVIA DATABASES 2016 [Internet]. 2016. Available from:
https://help.accelrysonline.com/ulm/onelab/1.0/content/ulm_pdfs/direct/reference/ctfileformats20
16.pdf

25. Weininger D. SMILES, a Chemical Language and Information System. 1. Introduction to
Methodology and Encoding Rules. J Chem Inf Comput Sci. ACS AMERICAN CHEMICAL
SOCIETY; 1988;28:31–6.

15

http://paperpile.com/b/I6jrVj/nPM1
http://paperpile.com/b/I6jrVj/nPM1
http://paperpile.com/b/I6jrVj/Z2Jy
http://paperpile.com/b/I6jrVj/zAfC
http://paperpile.com/b/I6jrVj/zAfC
http://paperpile.com/b/I6jrVj/zAfC
http://paperpile.com/b/I6jrVj/BEVF
http://paperpile.com/b/I6jrVj/BEVF
http://paperpile.com/b/I6jrVj/rBW1
http://paperpile.com/b/I6jrVj/rBW1
http://paperpile.com/b/I6jrVj/rBW1
http://paperpile.com/b/I6jrVj/0f3o
http://paperpile.com/b/I6jrVj/0f3o
http://paperpile.com/b/I6jrVj/0f3o
http://dx.doi.org/10.1186/s13321-021-00529-9
http://paperpile.com/b/I6jrVj/430L
http://paperpile.com/b/I6jrVj/430L
http://paperpile.com/b/I6jrVj/430L
http://paperpile.com/b/I6jrVj/7boS
http://paperpile.com/b/I6jrVj/7boS
http://paperpile.com/b/I6jrVj/piex
http://paperpile.com/b/I6jrVj/piex
http://paperpile.com/b/I6jrVj/GIck
https://pallini.di.uniroma1.it/Guide.html
http://paperpile.com/b/I6jrVj/cLF7
http://paperpile.com/b/I6jrVj/kOT9
https://help.accelrysonline.com/ulm/onelab/1.0/content/ulm_pdfs/direct/reference/ctfileformats2016.pdf
https://help.accelrysonline.com/ulm/onelab/1.0/content/ulm_pdfs/direct/reference/ctfileformats2016.pdf
http://paperpile.com/b/I6jrVj/BLgw
http://paperpile.com/b/I6jrVj/BLgw
http://paperpile.com/b/I6jrVj/BLgw

