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Abstract

Protein-drug interactions play important roles in many biological processes and ther-

apeutics. Predicting the binding sites of a protein helps to discover such interactions.

New drugs can be designed to optimise these interactions, improving protein func-

tion. The tertiary structure of a protein decides the binding sites available to the drug

molecule, but the determination of the 3D structure is slow and expensive. Conversely,

the determination of the amino acid sequence is swift and economical. Although quick

and accurate prediction of the binding site using just the sequence is challenging, the

application of Deep Learning, which has been hugely successful in several biochemi-

cal tasks, makes it feasible. BiRDS is a Residual Neural Network that predicts the

protein's most active binding site using sequence information. SC-PDB, an annotated

database of druggable binding sites, is used for training the network. Multiple Se-

quence Alignments of the proteins in the database are generated using DeepMSA, and

features such as Position-Speci�c Scoring Matrix, Secondary Structure, and Relative

Solvent Accessibility are extracted. During training, a weighted binary cross-entropy

loss function is used to counter the substantial imbalance in the two classes of binding
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and non-binding residues. A novel test set SC6K is introduced to compare binding-site

prediction methods. BiRDS achieves an AUROC score of 0.87, and the centre of 25%

of its predicted binding sites lie within 4Å of the centre of the actual binding site.

Introduction

Protein-ligand complexes are functionally important in crucial mechanisms such as DNA

replication, metabolism, catalysis, defence against viruses, and signal transduction. A ligand

can be any molecule that binds to the protein with high a�nity where the interaction site

is the active binding site of the protein. In drug design, a new drug is modelled to improve

protein function after identifying a potential active binding site, thus aiding in these crucial

mechanisms.

Ligand binding site prediction methods are broadly categorised into geometry-based,

energy-based, template-similarity-based, traditional machine-learning-based and deep-learning-

based prediction methods.1 Geometry-based and energy-based methods maintain that most

small ligand bindings occur in cavities on protein surfaces since large interfaces have a high

a�nity to small molecules. These methods locate the binding site by searching for spatial

geometry or energy features by placing probes in protein structures. SITEHOUND2 uses

a carbon and phosphate probe inside a grid covering the entire protein. The grid points

with higher interaction energies are clustered to determine the binding residues. A spa-

tial geometric measurement method CURPOCKET3 computes the curvature distribution of

the protein surface and identi�es clusters of concave regions. Other methods in this cate-

gory include CASTp,4 LIGSITE,5 VISCANA,6 Fpocket,7 and Patch-Surfer2.0.8 While these

methods are widely used, they are invalid in certain cases due to their dependence on various

factors, such as the resolution of the structure determination method and the presence of

both ligand groups and external molecules.
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Template-similarity-based methods consider that proteins evolved from structurally, func-

tionally, or sequentially similar proteins, not as independent entities. S-SITE and TM-SITE9

employ the Needleman-Wunsch algorithm to align the query protein to sequentially-similar

proteins in the BioLip10 database, a curated database for biologically relevant ligand-protein

binding interactions. The frequently-occurring binding residues in the aligned proteins form

the binding residues of the query protein. Methods such as ConSurf,11 FINDSITE,12 3DLi-

gandSite,13 FunFOLD,14 and COFACTOR15 also employ similarity searching.

3D-structure-based and template-similarity-based methods complement each other very

well. Traditional machine-learning-based methods build an analytical model based on pro-

tein data to identify patterns and structural similarities. Machine learning integrates the

information of both the methods and applies mathematical functions to improve prediction

accuracy. P2RANK16 17 uses a random forest algorithm to predict ligandibility scores across

the entire protein surface. Ligandibility score is the score given to a ligand for its ability to

bind to speci�c points on the protein. The points with high scores are then clustered into

a single binding pocket. SCRIBER18 is a fast, sequence-based, two-layer architecture, ma-

chine learning predictor which predicts propensities of protein-binding, RNA-binding, DNA-

binding, and ligand-binding residues. ConCavity,19 MetaPocket,20 RF-Score,21 NsitePred,22

NNSCORE23,24 LigandRFs,25 COACH-D,26 and Taba27 employ di�erent machine learning

models to predict the protein binding site.

Deep Learning is a sub�eld of machine learning based on arti�cial neural networks with

feature learning. When a deep learning network is fed large amounts of data, it can auto-

matically discover the representations needed for feature detection or classi�cation. Deep

learning has been hugely successful in the general areas of drug design, such as binding

a�nity predictions,28,29 protein contact map predictions,30,31 and protein-structure predic-

tions.32�34 Deep learning-based methods like DeepSite35 and Kalasanty36 model binding site

prediction as an image processing problem. The protein 3D structure is divided into small

grids, called voxels, through a process known as voxelisation. Each voxel's speci�c calcu-
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lated properties are used to train a deep convolutional neural network that predicts whether

a voxel belongs to a binding site. DeepPocket37 is a structure-based method that uses 3D

Convolutional Neural Networks to generate a list of pocket probabilities. A segmentation

model then elucidates shapes for the top-ranked pockets.

The tertiary structure of a protein can provide essential clues about the binding sites of a

protein. Even though there have been improvements in techniques such as X-ray Crystallog-

raphy, NMR Spectroscopy, and Cryo-Electron Microscopy, the determination of the three-

dimensional protein structure is time-consuming and expensive. Modern DNA sequencing

technologies have sped up complete DNA sequencing, and in turn, protein sequencing. The

gap between the number of known protein sequences (214,406,399 UniProt sequences as

of May 2021)38 and the number of known structures (177,910 PDBs as of May 2021)39 40

is enormous. Predicting the binding site based on amino acid sequence alone is challeng-

ing. However, it helps to identify potential binding residues before the three-dimensional

structure becomes available.

In this paper, a deep residual neural network (ResNet)41 is trained to predict whether

an amino acid residue in the sequence belongs to the most active binding site or not. The

sc-PDB database identi�es this site as the binding site most suitable for docking a drug-like

ligand. Features are extracted from the MSAs generated by DeepMSA,42 whose robustness

and usefulness have been studied extensively. BiRDS is trained on these features for all

proteins in the training dataset. A weighted binary cross-entropy loss function is used for

handling the severe class imbalance. The network outputs the �nal probabilities, which are

converted to binary outputs. Most sequence-based prediction methods predict the binding

site of a protein for speci�c ligands, while most popular 3D structure-based methods predict

the ligandable binding sites of a protein. This paper bridges the gap between the two by

providing a reliable method for predicting a protein's most active binding site from sequence

information alone. SC6K, a novel test set, is used for comparing BiRDS with Kalasanty (a

3D structure-based method) and SCRIBER (a sequence-based method).

4



Methods

Dataset

An annotated database of druggable binding sites from the Protein Data Bank, known as

sc-PDB (v.2017),43 is used to train and validate BiRDS. The database takes samples from the

Protein Data Bank,39,44 creates prepared protein structures of biologically relevant protein-

ligand complexes by �ltering based on Uniprot annotations and prepared ligand templates.

The most buried ligand, peptide or cofactor is found in the prepared structure, and the site

of interaction is considered the most ligandable binding site. Thus each sample in the dataset

contains the three-dimensional structure of one ligand, one protein, and one site.

The sc-PDB (v.2017) database is generally used to predict binding sites based on the

available protein-ligand 3D structures. However, this paper deals with predicting the most

active binding site using sequence information alone, for which the complete amino acid

sequence of all the protein chains is required. The complete 3D structure is typically un-

available because some of the protein regions in the crystal under study are disordered and

mobile. Hence the whole sequence cannot be extracted from the structure. Fortunately, the

entire protein sequence is always available, and for this paper, it has been downloaded from

the RCSB40 website in FASTA �le format*. A one-to-one mapping of the amino acids in the

downloaded sequence to the amino acids in the protein's 3D structure is required to know

which amino acid is a binding residue. This mapping is done by �rst extracting the protein

sequence from the 3D structure. Next, the Needleman-Wunsch dynamic programming algo-

rithm45 (implemented by Zhanglab's NW-Align program46) is utilised to align the sequence

extracted from the structure �le to the downloaded sequence. The protein structure �le is

reindexed based on this alignment to match the indices of the residues in the downloaded

sequence. This reindexing allows for the labelling of binding residues in the downloaded

sequence. Note that the protein sequence is the concatenation of all its chain sequences.
*Some obsolete PDBs were manually tracked on RCSB, and the new PDBs that had supplanted the

obsoleted PDBs were used. A list of obsoleted PDBs is provided in Supporting information
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The training set consists of the downloaded sequence and the generated binding residue

labels of every protein in the sc-PDB database, which has 17,594 PDB structures with 28,959

chain sequences, of which 9,419 are unique. For training using k-fold cross-validation, we

must ensure that no two folds have proteins with sequence similarity greater than 25% to

avoid data leakage between the training and validation set during network training. Hence,

the pairwise sequence similarity of the 9,419 unique chain sequences was calculated using

BLASTP (part of the BLAST+ 47 package from NCBI). SiLiX48 package clustered these

unique sequences into families with greater than 25% sequence similarity and over 80%

overlap, leading to the creation of 2,039 clusters of chain sequences. Since BiRDS predicts

the most active binding site of the complete protein, the protein sequence must also be

clustered. The Union-Find algorithm49 using a disjoint-set data structure was employed

to make this clustering, where all the chains of a protein and their corresponding cluster

were put in a single set, creating 1,744 sets. Protein sequences longer than 4,096 residues

were removed. An equal sum K-partition algorithm put these sets into ten folds for cross-

validation. One set had 2,009 proteins and was reduced to 1,642 to split the sets into ten

even folds. Finally, this gave 16,450 proteins belonging to the training set, with each fold

containing 1,645 proteins.

A separate test set SC6K was constructed using the PDB structures from January 2018

to February 2020. All PDBs with at least one ligand were run through pdbconv program

from the IChem Toolkit.50 The program used the exact �ltering mechanism and site selection

method as the sc-PDB43 database. The entire test set consists of 2,274 PDB structures with

3,434 chain sequences, of which 1,889 are unique. However, there should be no data leakage

between the test and training sets. Hence, the pairwise sequence similarity of the 1,889

test chain sequences with the 9,419 training chain sequences was calculated using BLASTP.

Sequences with greater than 25% similarity and over 80% overlap were removed from the

test set, giving a set of 576 chain sequences. Proteins with all their chain sequences in this

set were considered for the reduced test set, leading to a �nal count of 530 protein sequences.
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MSA Generation

Collections of multiple homologous sequences (called Multiple Sequence Alignments or

MSAs) can provide critical information for modelling the structure and function of unknown

proteins. DeepMSA42 is an open-source method for sensitive MSA construction, which has

homologous sequences and alignments created from multiple sources of databases through

complementary hidden Markov model algorithms. DeepMSA pro�les provided statistically

signi�cant improvements in residue-level contact prediction, homologous structure identi-

�cation and secondary structure prediction. These improvements were achieved without

retraining the parameters and neural-network models.

The search for alignments is done in 2 stages. In stage 1, the query sequence is searched

against the UniClust3051 database using HHBlits from HH-suite52 (v2.0.16). If the number

of e�ective sequences is < 128, Stage 2 is performed where the query sequence is searched

against the Uniref5053 database using JackHMMER from HMMER54 (v3.1b2). Full-length

sequences are extracted from the JackHMMER raw hits and converted into a custom HHBlits

format database. HHBlits is applied to jump-start the search from the Stage 1 sequence

MSAs against this custom database.

Features

The MSAs were generated for the unique chain sequences in the training(9,419), and

test(1,889) sets using the method described in MSA Generation and stored in PSICOV55

.aln format. The most commonly used features in sequence-based predictions were used.

Token embeddings, Positional embeddings, and Segment embeddings were extracted from the

sequence, while Position Speci�c Scoring Matrix, Information Content, Secondary Structure,

and Solvent Accessibility were extracted from the generated, high-quality MSAs. The process

for creating the feature map is shown in Figure 1
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Figure 1: The process used for generating the feature map of BiRDS framework. Token,
positional and segment embeddings are generated using just the sequence information. The
features extracted from the MSAs of the individual protein chains created using DeepMSA,

are concatenated to form the protein feature map
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Token Embedding, Positional Embedding and Segment Embedding

There are 21 amino acids in the protein vocabulary of BiRDS, with the 20 standard amino

acids labelled in alphabetical order from 1 to 20 and X, representing all non-standard amino

acids, labelled as 0. Token embeddings help the model di�erentiate between the di�erent

types of amino acids. It is generated by an Encoding layer that uses the vocabulary label of

each amino acid in the sequence. Positional Embeddings (PE) carry information about the

absolute position of the amino acids in the sequence. Using the positional encoding layer of

a Transformer network,56 these embeddings were unique for each position and generalised

to long sequences without extra e�ort. A segment embedding was generated by using the

chain number to which an amino acid belongs, to allow the model to di�erentiate between

the multiple chains of a protein.

Position-Speci�c Scoring Matrix and Information Content

Position-Speci�c Scoring Matrix (PSSM) is a commonly used representation of patterns in

biological sequences, derived as the log-likelihood of the probability that a particular amino

acid occurs at a speci�c position. The PSSMs were derived from MSAs using Easel57 and

Heiniko� position-based weights so that similar sequences collectively contributed less to

PSSM probabilities than diverse sequences. The information content (IC) of a PSSM gives

an idea about how di�erent the PSSM is from a uniform distribution. IC was also derived

using Easel.

Secondary Structure and Solvent Accessibility

The secondary structure is de�ned by the pattern of hydrogen bonds formed between the

amino hydrogen and carboxyl oxygen atoms in the peptide backbone. It gives an idea of

the three-dimensional structure of the protein. The secondary structural elements are alpha

helices, beta sheets and turns. PSIPRED (v4.0)58 was used to predict the probability of each

state of the 3-state secondary structure (SS3) for every amino acid in the sequence. The
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solvent-accessible surface area is the surface area of a biomolecule accessible to a solvent.

SOLVPRED from MetaPSICOV 2.059 was used to predict the every amino acid's relative

solvent accessibility (RSA). RSA can be calculated as

RSA = ASA/MaxASA, where ASA is the solvent-accessible surface area, and MaxASA is

the maximum possible solvent accessible surface area for the amino acid residue.

Model

BiRDS Architecture

A Convolutional Neural Network (CNN) is a Deep Learning algorithm that can take an

image as input, assign importance (learnable weights and biases) to various aspects/objects

in the image, and di�erentiate one from the other. When multiple CNN layers are stacked

on top of each other, Deep Neural Networks (DNNs) are formed. DNNs are challenging to

train because of the vanishing gradient problem where the gradients become so small that

the network's weights do not change, preventing further training. With the introduction

of skip connections (shortcuts to jump over some layers) in CNNs, the vanishing gradient

problem is avoided. CNNs with skip connections are known as Residual Neural Networks or

ResNets.41 ResNets use representation learning to extract the most important features for

classi�cation. They can also model long-range interactions and have been hugely successful

in Computational Natural Sciences.32 The architecture of the deep Residual Neural Network

used here is shown in Figure 2.

Each sample protein in the dataset consists of one or more protein sequences. Let the

length of the sequences be l1, ..., ln. Features are generated for each sequence in the protein

(ordered by chain ID in PDB), leading to multiple vectors of shape [li, 47] for the ith sequence.

These generated features are combined through simple concatenation, giving a �nal feature

vector of shape [L, 47] as input to the model, where L = l1 + ...+ ln.
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Figure 2: Architecture of the deep learning model, BiRDS

The feature vector is passed through the �rst level, consisting of a 1D convolutional

layer with 128 �lters of size 7, batch normalisation layer and ReLU (Recti�ed Linear Unit)

activation function. The input is padded with zeroes to ensure that the length of the output

vector remains the same. The �lters of this layer stride along the length of the protein,

considering the features of the three prior amino acids, the current amino acid, and the

three subsequent amino acids (totalling 7). This stride allows for the extraction of the

required information of the current amino acid based on the features of nearby amino acids.

The following �ve levels contain an up(down)sampling layer and two basic blocks. A ba-

sic block consists of a 1D convolutional layer, a batch normalisation layer, a ReLU activation

function, a second 1D convolutional layer, a second batch normalisation layer, and a �nal

ReLU activation function. The ResNet skip connection is made after the �nal ReLU activa-

tion, where the initial input to the �rst basic block is added to the output of the �nal ReLU

activation. Usually, the input received by the �rst basic block will not match its required

input size. Hence, an up(down)sampling layer ensures that the input to the �rst block has

the required shape. The output of size L × d from the �rst level runs through e �lters of

size 1 × d of the up(down)sampling layer to generate a vector of size L × e. This vector is
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passed to the �rst basic block, which follows a similar stride policy as the �rst level but with

a window size of 5. The process is repeated with the second basic block, and its output is

sent back to the up(down)sampling layer. This process is repeated �ve times, with d going

from 128 → 128 → 256 → 128 → 64 and e going from 128 → 256 → 128 → 64 → 32.

The multiple levels capture the long-range dependencies of amino acids since the �lters help

propagate information of one amino acid through its neighbours.

The last two levels contain simple, linear, fully connected arti�cial neural networks.

The penultimate level has a LeakyReLU activation function with dropout to prevent sparse

gradients. A sigmoid function at the end ensures that the model outputs values between

[0, 1], resulting in a vector of size L (length of the protein), denoting the probabilities of a

residue being a part of the binding site.

Loss Function

There is a substantial imbalance in the two classes of binding and non-binding residues in

this classi�cation problem, where the percentage of binding residues is only 6%. Hence, a

weighted binary cross-entropy loss function was used to train the model.

L(ŷ, y) = −(αŷ log(y) + (1− ŷ) log(1− y))

ŷ is the vector of true labels, y is the model output probabilities, and α is the weight

assigned to the rare class.

α heavily penalises the model if it incorrectly predicts binding residues as non-binding.

α is calculated on the �y for every batch of inputs using α = nnbr

nbr
, where nnbr is the total

number of non-binding residues in the batch and nbr is the total number of binding residues

in the batch.

12



Implementation

The model is implemented using PyTorch Lightning,60 a wrapper on the popular open-

source deep-learning library, PyTorch.61 The model is trained in batches using an Adam

Optimiser with the ReduceLROnPlateau scheduler and a learning rate warm-up where the

learning rate is gradually increased to the actual learning rate. The implementation can be

found at https://github.com/devalab/BiRDS.

Results and Discussion

Ten models with the architecture described in BiRDS Architecture were trained through

ten-fold cross-validation, where one fold formed the validation set while the remaining folds

formed the training set in each iteration. The validation results are provided in Table 1

and the sum of confusion matrices in Figure 3a. The Receiver Operating Characteristics

(ROC) curve and the Precision-Recall (PR) curve of the models on their validation sets is

provided in Figure 4. The description of the various metrics is provided in Supplementary

Information.

Table 1: Validation and test results

Dataset MCC ACC F1 IoU PPV TPR
Fold 1 0.354 0.920 0.394 0.582 0.359 0.437
Fold 2 0.606 0.931 0.633 0.695 0.545 0.755
Fold 3 0.521 0.896 0.565 0.641 0.474 0.700
Fold 4 0.270 0.898 0.323 0.544 0.296 0.355
Fold 5 0.324 0.892 0.367 0.556 0.293 0.490
Fold 6 0.338 0.884 0.373 0.555 0.282 0.550
Fold 7 0.324 0.902 0.368 0.562 0.309 0.456
Fold 8 0.340 0.924 0.380 0.578 0.355 0.407
Fold 9 0.380 0.918 0.421 0.591 0.378 0.475
Fold 10 0.355 0.917 0.391 0.579 0.332 0.476

Test (Full) 0.568 0.940 0.589 0.677 0.502 0.713
Test (Reduced) 0.440 0.951 0.464 0.626 0.497 0.436
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The model predictions were also mapped back to the available 3D structures of proteins

for DCC calculation. DCC is the distance between the centre of the predicted binding pocket

and the centre of the actual binding pocket. It is commonly used for evaluating 3D-structure

based models. The success rate of DCC is de�ned as the fraction of predictions below a given

threshold. Pockets with DCC below 4Å are considered to be correctly predicted. Figure 3b

denotes the success rate plot of the models' predictions on their validation set for various

thresholds of the DCC metric. The success rate ranges from 15% to 75% when the threshold

is 4Å. Fold 2 and Fold 3 models performed well on their validation sets since they contained

only 1 to 5 protein families with similar sequence patterns. The presence of only a few

families in these folds is due to the equal sum partition algorithm used to create these folds.

It is a greedy algorithm that combines as many large clusters as possible, thus causing large

families to appear in a single fold.

(a) Sum of confusion matrices (b) Success rate plot for various DCC thresholds

Figure 3: Results of the ten models on their corresponding validation sets

The ten trained models are run on the full and reduced test sets for testing. The models

come to a consensus if �ve or more models predict a residue as belonging to the most active

binding site of the proteins in a set. The test results, both full and reduced, are provided in

Table 1 and the confusion matrices in Figure 5.
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Figure 4: ROC and PR curves of the ten models on their corresponding validation sets

(a) Reduced test set (b) Full test set

Figure 5: Confusion matrix on the test sets after consensus among models
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The performance of BiRDS on the novel SC6K test set was compared against Kalasanty36

and SCRIBER.18 Kalasanty is a 3D-structure-based method that uses a U-Net architecture62

capable of protein binding site segmentation. The full test set was run on Kalasanty using

their open-source code, and the DCC metric was calculated for the predicted pocket. The

success rate plot of DCC is shown in Figure 6. BiRDS performs on par with Kalasanty on

the full test set, which will have a lot of sequences similar to the training data. However, the

performance on the reduced test set shows Kalasanty outperforming BiRDS. Nevertheless,

BiRDS still performs well on the reduced test set for a sequence-based predictor, achieving

a success rate of 25% at a 4Å cuto� for DCC. In other words, for 25% of the test data,

the model has predicted the binding site such that the centre of the predicted binding site

is within 4Å of the centre of the most ligandable binding site. As the threshold of DCC

increases, the success rate also naturally increases. It should be noted that if the model

predicts the whole binding site correctly and misses out on a couple of residues or predicts

more residues, the centre of the predicted binding site may shift signi�cantly.

Figure 6: Success rate plot for various DCC thresholds on the test set after averaging the
predictions of the 10 models
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SCRIBER is a sequence-based, two-layer architecture, machine learning predictor which

predicts propensities of protein-binding, RNA-binding, DNA-binding, and ligand-binding

residues. The predictor was trained on individual chain sequences of a protein, based on

their Uniprot IDs. For a fair comparison with BiRDS and to speed up prediction time on

their webserver, the 1,889 unique chain sequences of the test set were �ltered; sequences with

length greater than 1,024 and sequences with sequence similarity greater than 25% and over

80% overlap with the SCRIBER training set and SC6K test set were removed. SCRIBER

predictions of RNA-binding, DNA-binding and ligand-binding residue propensities on the

�nal 521 sequences were averaged and considered for comparison. The Receiver Operating

Characteristic (ROC) curve and the Precision-Recall (PR) curve of BiRDS on the full and

reduced test set, and SCRIBER on the 521 sequences, is shown in Figure 7.

Figure 7: ROC and PR curve of BiRDS and SCRIBER on the test sets
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A variety of more complex deep-learning models were trained to improve predictions.

As described in the paper by Cui et al., a Complementary Generative Adversarial Network

(CGAN) was implemented to mitigate the substantial imbalance in the prediction classes.

However, a simple weighted binary cross-entropy loss function worked better than a CGAN

with focal loss. A Deep Bidirectional Encoder Representations from Transformers (BERT),64

a state-of-the-art model for token classi�cation problems in NLP, was also implemented. It

performed on par with the current BiRDS model but led to longer training times. Several dif-

ferent features to improve performance were also tried. Task Assessing Protein Embeddings

(TAPE)65 provided trained deep learning models which produced an embedding representa-

tion of the protein sequence input. The trained TAPE transformer model was added along

with BiRDS architecture, but the training could not proceed due to a large-sized feature

map and insu�cient GPU memory. SPOT-1D66 is a sequence-based predictor for predict-

ing secondary structure, backbone angles, solvent accessibility and contact numbers by using

predicted contact maps. These predictions were used as inputs to BiRDS but did not provide

any improvement over the features extracted from Deep MSAs. An ablation study to iden-

tify the importance of the features currently used by BiRDS can be found in Supplementary

Information.

Some case studies were undertaken to show that the model's performance is good, but

the metrics do not rate it well due to the limitations of the dataset. The aggregated predic-

tions of the ten models on the test set were mapped back to the three-dimensional structure

of the protein-ligand complex. 3Dmol.js,67 a modern, object-oriented Javascript library for

visualising molecular data, was used to visualise the protein's surface, with coloured residues

representing the predicted and actual binding residues. In the following examples, red indi-

cates an incorrect prediction of a non-binding residue as binding, blue indicates a binding

residue that was not predicted as binding, and green indicates a correct prediction.
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In Figure 8, BiRDS seems to incorrectly predict all the binding residues for 6FAD.68

However, it is predicting another binding site of the protein. The sc-PDB43 dataset was

generated through a series of �lters, and the residues surrounding the most buried ligand

was selected to be the most ligandable binding site. This selection, unfortunately, is a �aw

of the dataset and the method used for predictions. There is no right way to cover cases

like these where the model needs to be penalised less when it predicts a binding site that is

not the most ligandable binding site. Hence, the evaluation metrics will generally give an

abysmal score for such cases.

Figure 8: 6FAD - BiRDS seems to be incorrectly predicting the actual binding site (in
blue), when in reality, it is predicting another binding site of the protein (in red)

Figure 9 shows 6ISP,69 where BiRDS predicts individual binding sites of two same se-

quence chains of the protein. However, the model �nds it challenging to predict the binding

site created due to the interaction between the two chains. This may likely be due to the

way the input features are generated. A simple concatenation of the features of individual

chains to generate the protein sequence features is insu�cient as it does not provide any

information about the interaction among the multiple chains. These interactions scarcely

occur in the training set, making it hard for BiRDS to learn.
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Figure 9: 6ISP - BiRDS is able to predict the binding site of individual chains (in red), but
not the binding site formed due to the interaction between chains (in blue)

Figure 10: 6S2J - BiRDS predicts the binding site correctly, but due to the presence of
same sequence protein chains, it predicts both the binding sites (in green and red)
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Figure 10 shows 6S2J,70 where BiRDS predicts the binding site of a protein chain with

high precision. It predicts most of the binding residues surrounding the ligand and a couple

of outliers. However, the two protein chains have the same sequence, causing BiRDS to

predict similar binding sites for both. Since sc-PDB selects only one active binding site

during its selection process, the model predictions are compared against a single site for

metrics calculation. The metrics do not do justice to these types of predictions, penalising

BiRDS with a poor score.

Conclusion

In this study, a deep ResNet was implemented to predict a protein's most active binding

site. A training set of ten folds was derived from the sc-PDB(v. 2017)43 database containing

data of a protein's most ligandable binding site. A novel test set SC6K was constructed

from protein-ligand complexes of the PDB from January 2018 to February 2020. MSAs were

generated for all unique protein chains in both the datasets using DeepMSA, and features

such as Position-Speci�c Scoring Matrix, Secondary Structure and Solvent Accessibility were

extracted. The individual features of the chains were concatenated to form the protein

feature map, and BiRDS was trained using 10-fold cross-validation and a weighted binary

cross-entropy loss function. BiRDS can accurately predict the most active binding site of

a protein using only sequence information. It outperforms SCRIBER, a sequence-based

protein-binding site predictor and performs on par with Kalasanty, a 3D-structure-based

method. It becomes crucial to determine the pocket where the drug molecule binds with the

protein in drug design. BiRDS can be used for early and quick determination of the binding

site before the availability of the protein structure.
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Data and Software Availability

The source code has been written in a modular fashion using PyTorch Lightning.60 The

method implementation, data and pretrained models can be found at

https://github.com/devalab/BiRDS.
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