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Abstract

Chemical space exploration is a major task of the hit-finding process during the pursuit of novel chemical
entities. Compared with other screening technologies, computational de novo design has become a popular
approach to overcome the limitation of current chemical libraries. Here, we reported a de novo design platform
named systemic evolutionary chemical space explorer (SECSE). The platform was conceptually inspired by
fragment-based drug design, that miniaturized a “lego-building” process within the pocket of a certain target.
The key of virtual hits generation was then turned into a computational search problem. To enhance search and
optimization, human intelligence and deep learning were integrated. Application of SECSE against PHGDH,
proved its potential in finding novel and diverse small molecules that are attractive starting points for further
validation. This platform is open-sourced and the code is available at http://github.com/KeenThera/SECSE.

Keywords Chemical space exploration · Fragment-based drug discovery · Deep learning · De novo drug design · PHGDH

1 Introduction

Developing a new drug is an enduring process that is estimated
to take 10-15 years with a cost of 1.5 billion US dollars or
more. At the early drug discovery stage, the hit-finding pro-
gram is crucial for a successful R&D campaign, especially
for the challenging targets, which usually yield meager hit
rates. There are many options for hit-finding, such as high-
throughput screening (HTS), affinity selection-mass spectrom-
etry (AS-MS), fragment-based drug design (FBDD), DNA en-
coded library techniques (DELT), and virtual screening (VS).
However, all the above approaches suffer from the require-
ment of a predefined (real or virtual) compound library. To
address the limitation, make-on-demand libraries [1–3] have
gained some recent popularity in expanding the chemical space.
Nevertheless, even the most extensive collection of compounds
claimed so far with the size of 1026 [4, 5] is still a very tiny
fraction of the estimated chemical space in the order of 1063

[6]. Therefore, a systemic chemical space searching strategy is
needed to provide optimal starting points against the target of
interest.

De novo design is one such strategy that is conceptually able to
overcome the limitation of existing compound libraries, which
produces novel compounds based on the 3D crystal structure of
a given target from scratch. A comprehensive summary [7–11]
of the recent development in de novo design is out of the scope
of this paper though, several seminal works that inspire us will
be briefly reviewed in the following section.

LUDI [12] was an example of early attempts, where fragments
from a predefined library were positioned into sub-pockets of
the target. Then the fitted fragments were bridged together
to form a new compound that better occupied the pocket. A

similar approach called LigBuilder [13] used module POCKET
to analyze and parameterize protein pockets and then applied
module GROW or LINK to build up new molecules. A genetic
algorithm was implemented in the growing and linking steps
to avoid the combinatorial explosion of the molecular generat-
ing process. Subsequently, module SCORE predicted the bind-
ing affinity of the molecules. Synthesis accessibility analysis
and more druglike filters were incorporated in the upgraded
program LigBuilder v2 [14]. While in the latest version Lig-
Builder v3 [15], the authors began to consider the flexibility of
pockets by including several samples from a particular target or
different targets with similar binding pockets in the generation
workflow. OpenGrowth [16] was an open-sourced de novo de-
sign program which also based on the fragment-based growing
strategy. The 3-mers screening method required that generated
molecules be made by defined fragments derived from the drug
library, which warranted druglike properties. Like LigBuilder
v3, different conformations of the target were considered to
address the protein flexibility issue. Durrant et al. developed
AutoGrow [17] to integrate fragment-based growing and dock-
ing with an evolutionary algorithm. The latest version is Auto-
Grow4 [18], which employed reaction-based rules for growing
as mutation operators in the genetic algorithm and merging two
molecules with maximum common substructure as crossover
operators. Substructure or property filters (like the rule of
5, PAINS [19]) were used to control the quality of generated
molecules. At the same time, open-source docking programs
were invoked to evaluate the binding affinity. Although Auto-
Grow4 performed well in some cases, reaction-based molecular
generation is intrinsically limited for constructing novel chem-
ical entities. Polishchuk published an open-sourced tool called
CReM [20] to produce highly diverse structures by fragment
manipulation (mutate, grow and link). Nigam et al. proposed

https://doi.org/
https://doi.org/
https://orcid.org/0000-0003-1045-1107
https://orcid.org/0000-0003-3843-9273
http://github.com/KeenThera/SECSE


Preprint – Systemic Evolutionary Chemical Space Exploration For Drug Discovery 2

Figure 1. The general workflow of SECSE. A, Fragment library or preferred structures can be used as starting point for molecule evolution.
Either binding pocket of 3D protein structures (structure-based) or a set of known active ligands (ligand-based) can be used for fitness evalua-
tion. B, SECSE has three basic modules, molecular generator, fitness evaluator, and genetic selector. C, Examples of generated structures and
binding poses can be analyzed for virtual candidate prioritization. Protein structure is shown in white cartoon. A selected candidate is shown
in cyan stick, while reference compound is shown in orange stick.

STONED for efficient search of chemical space using a SELF-
IES modification method [21]. Recently, Steinmann and Jensen
reported a non-fragment-based approach [22], which used a set
of reaction-like rules to build up chemical structures, yielding
molecules with acceptable glide docking scores and synthetic
feasibility by genetic algorithm.

In addition to rule-based generators, deep generative models
have also been extensively explored. MolAICal [23] used gen-
erative deep learning models for 2D structure construction and
classical methods for 3D evaluation and simulation. Recently,
Ma et al. [24] developed SBMolGen, which contained an
RNN based SMILES generator called ChemTS, a Monte Carlo
tree search, and docking simulations. Lai et al., the authors
of LigBuilder, developed DeepLigBuilder [25] to generate 3D
molecules directly from deep generative models. Several other
new approaches utilizing deep learning methods to generate 3D
molecules have been reported [26–29]. Compared with 1D/2D
generative models or rule-based methods [30, 31], the competi-
tive advantage of these 3D models is speed. However, it is not
easy to directly converge when training deep learning models
end to end. Researchers have to introduce some special treat-
ments for the data type and model architecture to terminate the
training process, which is usually difficult to interpret.

Inspired by previous attempts in the field, we present our work
setting up a platform to explore the chemical space against a
given target systemically. Analogous to other programs, the
SECSE platform consists of a molecular generator, a fitness
evaluator, and a genetic selector. In the molecular generator
module, we have created more than 3,000 rules for molecu-
lar transformations based on knowledge and expertise from the
literature domain and our internal medicinal chemists. These
rules are comprehensively curated and strategically categorized
for optimal output. In the fitness evaluator module, molecular
docking is utilized for compound assessment, which can also be
replaced by shape-/pharmacophore-based evaluation methods.

In the genetic selector module, genetic algorithm is used given
the similarity between the triage strategy of fragment growing
and the genetic rule “fitness to survive”.

The workflow of SECSE is described in Fig. 1. In the first
place, fragments/groups are docked/positioned into the pocket,
from which the ones with high docking scores or ligand effi-
ciency are picked as elites. It is noteworthy to point out that
fragments with less than 13 heavy atoms are exhaustively enu-
merated as initial input, yet any given structures or functional
groups can be used as starting points. Then all the elites are
applied the rules to generate new molecules. The daughter
molecules are clustered and sampled to represent the pool. The
sampled molecules are docked into the pocket again. Highly
scored molecules adopting hereditary or reasonable 3D orien-
tation are chosen as new elites. This process concludes one
cycle. After multiple cycles of iteration, a considerable number
of compounds are generated and accumulated. To comprehen-
sively evaluate all compounds, we introduced a graph-based
machine learning module to speed up elite selection in each
generation. Finally, hit compounds are visually inspected and
selected before wet lab synthesis.

PHGDH is chosen to demonstrate the potential of the SECSE
platform. Virtually generated molecules are shown, and the cor-
responding structure-activity relationship is analyzed for this
target. Their high docking scores and reasonable binding poses,
in addition to structural novelty and patentability, warrant fur-
ther exploration.

2 Methods

2.1 Fragments Collection

As starting points of the entire workflow, the quality of frag-
ments collection would determine the final output to some ex-
tent. Although fragments from co-crystal structures or based on
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hypothesis can be used as proprietary input whenever available,
it would inevitably be limited by the real fragment collection
around the size of 103 or human bias. To ensure the diversity
of the starting fragment library, we proposed an algorithm that
can potentially enumerate all possible molecules containing up
to 12 heavy atoms with MW ranging from 50 to 210. To the
best of our knowledge, it is the first attempt to systemically ex-
plore such fragment chemical space.

As described in Fig. S1, sequential carbon strings, such as “CC-
CCCC”, are the starting point of fragment generation with fixed
heavy atom numbers. The SMILES string is then modified to
construct aliphatic rings, which are subsequently submitted for
structure transformations (aromatic ring formation, sidechain
rearrangement, and atom/bond replacement, etc.). A series of
filters (the same filters rules in SECSE) are applied to remove
fragments with undesired architecture/topology or functional
groups. Final structures of 121,860,917 fragments are stored
in an SQLite database.

2.2 Input Preparation

In the workflow, chemical structures and protein structures are
the primary inputs. Depending on different purposes, the chem-
ical input can be an atom, a fragment structure, or a frag-
ment library in the format of a tab-split file containing struc-
ture SMILES and ID. If needed, the provided SMILES can be
converted into a 3D structure using ETKDG v2 built in RDKit.
Tautomer and spiro centers are also enumerated on demand. For
AutoDock Vina docking, the ligands are converted from SDF
format to PDBQT format using Open Babel v3.1.1. Fragment
libraries are recommended for hypothesis-driven hit discovery,
especially when limited binders against the target of interest
are reported. Protein 3D structures are prepared from crystal
structures from the Protein Data Bank (PDB). Homology mod-
els or predicted structures from AlaphFold2/RoseTTAFold are
also acceptable although with compromised accuracy and pre-
dicting power. In our demo case, protein structures are prepared
for docking with ADFR v1.2 [32, 33].

2.3 Molecular Generator

The molecular generator we have developed provides a rule-
based generation approach. There are four types of transforma-
tion rules (growing, mutation, bioisostere, and reaction) in our
database. Some representative cases of each class are shown in
Fig. 2.

1) In the grow rule, any of the replaceable hydrogen atoms on
the seed compound can be replaced with a new substructure,
such as an atom, a functional group, a ring, or a ring with a
linking spacer.

2) The mutation rule includes the following three categories:
atom replacing, insertion, and deletion; ring-closing, ring-
open, ring modification (expansion, reduction, contraction);
as well as aromatic-aliphatic exchange.

3) The bioisostere rule refers to classical or non-classical
bioisosteric replacements, which are commonly used by
medicinal chemists. Scaffold hopping is currently not in-
cluded.

4) The reaction-based rule contains common organic reactions
confined to one or two steps. A library of commercial build-
ing blocks is used as starting materials. Applying the chem-
ical reaction rule is beneficial to efficiently increase the scaf-
fold diversity of the resulting molecules, although they can
be generated from multiple rounds of rules from the previ-
ous three categories.

All the rules are represented in the reaction-like format using
the SMARTS definition in RDKit. A few examples from each
category are provided in the SQLite database.

Figure 2. Categories of rules in SECSE and illustrative examples.
A, The Growing rule means applicable hydrogen can be replaced by
a defined functional group. B, The Mutation rule contains a large
set of structural transformations commonly practiced by medicinal
chemists such as ring-closing-ring-opening, insertion or deletion of
atoms, and etc. C, The Bio-isostere rule allows the interconversion
of isosteric groups/atoms. D, The Reaction rule identifies functional
groups/moieties that can react with building blocks (BB) from a pre-
defined BB library and hypothetically generates all possible products.
Changed atoms are highlighted in dark blue color.

2.4 Property & Structure Filter

To ensure that the platform generates molecules with decent
chemical beauty [34], we construct several filters that define
molecular properties, ring system count, and substructures.

1) The default parameters of the molecular property filters are
shown as follows: molecular weight (MW) ∈ [81, 450];
LogP ∈ [0, 5]; the number of hydrogen bond donors (HBD)
≤ 5; the number of hydrogen bond acceptor (HBA) ≤
10; the number of rotatable bonds (RB) ≤ 4; and topo-
logical polar surface area (TPSA)≤ 200. All properties
here are calculated by RDKit v2021.03.5 [35]. The def-
inition of RB was rephrased as ’[C^3!D1;!$(C(F)(F)F)]-
!@[!Br!F!Cl!I!H3&!$(*#*)!D1;!$([!Br!F!Cl!I](F)(F)F)]’.

2) The default constraints for ring systems are: total ring sys-
tem count ≤ 4; the max ring members of one ring system
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≤ 3; the max size of a single ring ≤ 7; the max count of
fused rings ≤ 3; the max count of bridged rings ≤ 1; and
the max count of spiro ring ≤ 1.

3) Undesirable structures are also filtered by identity filters
(sulfur, phosphorus, or structure alert), and count filters
(e.g., max number of carboxylic acid or alkyne in one com-
pound). PAINS [19] filters are also included.

One thing worthy of note is that the filters are arbitrarily set de-
pending on project requirements, which can be adjusted if the
output is not ideal.

2.5 Fitness Evaluator

Structure-based virtual screening engines such as molecular
docking or pharmacophore-based screening methods are op-
tional for fitness evaluation. Docking is the first choice for fit-
ness evaluation. The default docking software in our platform is
AutoDock Vina v1.2.0 [36, 37]. We also provide a Glide inter-
face for users with commercial licenses. Additionally, we offer
shape-based screening and similarity scoring functions to eval-
uate fitness for ligand-based drug design (i.e., the initial input
is not a protein structure but one or more ligands with known
activity).

Several scoring functions are optimized to achieve the evaluator
function for different scenarios. If the docking mode is selected,
both docking score and ln ligand efficiency [38] are considered
as ranking criteria, where

ln LE =
Docking score

1 + ln (Num o f heavy atoms)
.

The docking score tends to favor larger molecules in our previ-
ous tests. In constrast, ln ligand can efficiency correct the issue
by preventing premature enrichment of large molecules before
reaching the upper molecular weight cutoff. Root Mean Square
Deviation (RMSD) of aligned atoms between docking poses of
the previous and current generation is calculated to determine
whether the binding mode has changed in the two consecutive
generations. If the similarity search mode is selected, the op-
tional scoring functions will be a Tanimoto index of different
molecular fingerprints from the generated molecules and refer-
ence compounds. In addition, the retrosynthesis module from
Chemical.AI [39] is invoked to assess the synthetic availability.

2.6 Seed Selector

After scoring, molecules with RMSD less than 2 Å or with sig-
nificantly decreased docking scores are selected as seeds for
the next generation. The purpose of the selector is to make
sure compounds with consistent binding modes are maintained
while compounds with much better binding modes won’t be
carved out. Then we apply a genetic algorithm [40–42] to se-
lect seeds from all eligible molecules. In our platform, the de-
fault GA operator is the tournament selection which is the most
widely used selection strategy. Consequently, it can quickly
converge to the optimal solution within noisy environments and
introduce some randomness to avoid the limitations caused by
local optimization.

Because of the limited computing resources, we sample data
from the molecules generated by all the rules. Likewise, we use

a partition clustering algorithm (see details in Fig. S2) before
sampling to ensure the diversity of the selected molecules. We
calculate the molecular fingerprint and Tanimoto index to eval-
uate the distance/dissimilarity between generated molecules,
based on which the sampling is executed.

2.7 Deep Learning-based Fitness Prediction

Although SECSE can generate a significant number of
molecules, most of them are not evaluated due to limitations
in computing and storage resources. Therefore, we apply deep
learning (DL) modeling to reduce computational costs and
make it possible to evaluate the fitness of all molecules. We
use the data generated after each generation to train the model
and then predicts the fitness of unsampled molecules. Docking
score or ligand efficiency can be considered as target for predic-
tion if the docking mode was selected. Fitness prediction mod-
els are constructed using package Chemprop v1.3.1. Chemprop
builds a directed message passing neural network and learns to
predict molecular properties directly from the graph represen-
tation of molecules. [43] Two strategies are provided here for
the integration of DL technology. One is the combined mode,
where top ranked molecules prioritized by predicted scores
were evaluated by the fitness module. These molecules were
applied for seed selection together with docked molecules from
sampling procedure. Moreover, in the combined mode deep
learning models will be updated with each round of molecular
generation. The other one is called clean mode. The DL model
is trained based on the docking results after a SECSE campaign
is finished. Data from each generation can be trained indepen-
dently or together. The model can then be applied on undocked
molecules for fitness prediction. Molecules with good perfor-
mance from DL models can be subjected for further inspection.
Additionally, these two modes can be used alone or in combina-
tion.

The platform uses some open-source packages: RDKit
v2021.03.5, OpenBabel v3.1.1, AutoDock Vina v1.2.0,
Chemprop v1.3.1, and GNU parallel v20190922 [44].

3 Results

3.1 Properties of Generated Molecules

We constructed a random library using SECSE without any
other evaluation constraint to estimate the molecular properties
of generated compounds. Benzene was assigned as the only
input fragment. During each iteration, one hundred molecules
that passed the filter were randomly selected as seeds for the
next iteration. The final random library after ten rounds of iter-
ation contains 2,042,863 molecules, which are included in the
GitHub repository.

We calculated the physicochemical properties of the random li-
brary, such as molecular weight (MW), LogP, and the fraction
of sp3 hybridized carbons (Fsp3), as well-illustrated in Fig. 3.
Despite the upper limitation of MW in the filters, we could find
that the peak falls around 450 Da. The distribution of LogP
showed that the majority of molecules have a value between
0 and 5. Molecules with a high Fsp3 tended to be more three-
dimensional in shape. The Fsp3 of the random library was well-
distributed from 0 to 0.8. In addition, five thousand molecules
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were randomly sampled to plot the principal moments of iner-
tia (PMI), a more direct descriptor for assessing the distribution
of molecular geometry (rod-shaped, disc-shaped, and sphere-
shaped). We used the MMFF94 force field in RDKit to opti-
mize the conformers of sampled molecules. To our surprise, as
presented in Fig. 3 D, the molecules scattered more towards the
top-right vertex (sphere-shaped) in comparison with traditional
HTS compounds that predominately dropped between the top-
left vertex (rod-shaped) and bottom vertex (disc-shaped) (data
not shown). The results presented here indicate that SECSE
can generate molecules with suitable druglike properties and
diverse geometry.

Figure 3. Properties of the randomly generated library. A-C,
shows the distribution of MW, Fsp3, and LogP of molecules in the
random library, respectively. D, The PMI plot illustrates the shape of
sampled molecules from the randomly generated library. The top-left
vertex represents rod-shaped, the top-right vertex represents sphere-
shaped, and the bottom vertex represents disc-shaped.

3.2 Case: 3-Phosphoglycerate Dehydrogenase (PHGDH)

Figure 4. Average docking scores of top N compounds in each gen-
eration. The unit of vina score is kcal/mol. The compound in genera-
tion 0 is the initial fragment. The vina score of reference compound is
-8.86 kcal/mol. The blue line represents the average vina score of top
1000 compounds. The orange line represents the average vina score of
top 100 compounds.

PHGDH is a crucial enzyme that catalyzes the first commit-
ted step of the de novo serine synthesis pathway. It con-

verts 3-phosphoglycerate to 3-phosphopyruvate in a reduced
nicotinamide adenine dinucleotide (NADH)/nicotinamide ade-
nine dinucleotide (NAD+)-dependent oxidation reaction. Many
reports [45, 46] have indicated that overexpression of PHGDH
is associated with short-term survival and aggressive disease
that are common in many patients. Inhibition of PHGDH may
be a promising strategy for cancer therapy [47–50].

AutoDock Vina was selected for molecular docking in this case.
The upper limitation of molecular weight was set to 500 Da,
and the starting fragment was benzene. The crystal structure
of PHGDH (PDB code:6RJ3) was prepared using previous de-
scriptions in Methods. Togehter, 502,226 poses were collected
after five generations. The docking scores were gradually de-
creased (Fig. 4). Not surprisingly, compared with the aver-
age docking score of the top 1,000 of each generation, that of
the top 100 molecules was improved more rapidly. After three
generations, the average docking scores of either the top 100
or top 1,000 compounds were better than that of the reference
compound (-8.8 kcal/mol). Additionally, it was observed that
the scores started to converge at later generations indicating the
pocket occupancy was quickly approaching its optimum. It is
plausible that the converging rate for different targets might be
different. More rounds of iteration can be performed. Yet in
this case, we stopped here for further analysis.

Finally, 14,413 poses with AutoDock Vina score less than -9
kcal/mol were obtained. Then, similarity distance cutoff was
set to 0.15 to cluster these molecules according to the RDKit
fingerprint. The one with the lowest docking score of each clus-
ter was chosen for further binding pose inspection. Afterwards,
we retrieved analogs of molecules of interest from the origi-
nal docking pose pool. To keep the long-range electrostatic
(LRE) interactions in the phosphate channel [50], the generated
molecules with electron-rich functional groups are preferably
selected. Table 1 below includes some selected examples.

All the molecules shared similar binding modes with the refer-
ence compound from 6RJ3. Compounds 1-7 share a common
topology. Similar to the phenylpyrazole-5-carboxamide part of
the reference compound, the phenylpyridopyrazin-5-one occu-
pies the same position of the adenine pocket. The nitrogen
atom in the pyrazine ring forms a polar interaction with the side
chain of D174 to stabilize the lipophilic aromatic fragment. The
cyclopropanecarboxylic acid motif, which mimics the benzoic
acid in the reference compound, has long-range VDW interac-
tions with the basic residues in the phosphate channel. The
hydroxy-pyrrol-2-yl acetic acid moiety of compounds 8 and 9
act as the same role for VDW interactions, as well as oxazolone
of compounds 11 and 12.

The step-by-step elaboration of compound 2 from the benzene
ring in the NADH/NAD+ binding pocket was presented in Fig.
5 A to F. The final pose of compound 2 was aligned to the
reference compound. The common structure between current
and previous generations showed nearly identical orientations.
The vina docking scores decreased from -4.3 kcal/mol to -10.8
kcal/mol, while the MW increased from 78 Da to 485 Da. De-
spite the decent docking scores, conformation of compounds in
D, E, F generated by AutoDock Vina may not be energetically
favorable. The oxygen atom of the carbonyl group is near the
nitrogen atom of pyrazine, whereas they should stay away in the
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Figure 5. Evolutionary path of compound 2. A-E, fragment binding poses of Compound 2 in generation 1-5. F, binding pose of compound 2
and reference compound in the NADH/NAD+ binding pocket. The protein structure is shown in white cartoon. Compound 2 is shown in cyan
stick. The reference compound is represented as white stick. Asp 174 is shown as lightblue stick. The adenine pocket is highlighted in a yellow
circle. Vina score, RMSD(Å) of shared structure between two consecutive generations, and MW(Da) are provided.

lowest energy conformations. More accurate docking programs
are needed for better outcomes.

Subsequently, the Synthetic Accessibility Module from Chem-
ical.AI was used to estimate accessibility of these proposed
molecules. The Synthetic Accessibility Module provides a pri-
mary estimation for many organic compounds under restricted
computing resources. The predicted routes may not be the best
choice, but it gives a quick estimate that can be used to assess
whether the compound is easy to make or not. Generally speak-
ing, majority of compounds can be made within 15 synthetic
steps with no more than 7 linear steps. Unfortunately, no syn-
thetic routes of compound 5 are suggested under the default set-
ting of Synthetic Accessibility Module. In such cases, or when
dealing with a short list of candidates that are of high interest,
more accurate predictions can be done using the Synthesis Plan
Module, which performs extensive search for all possible syn-
thetic routes.

To address the sampling limitation of generated molecules be-
fore fitness evaluation, a new selection protocol combined deep
learning method was developed. As described previously in
the Methods section, the clean mode was used to build the DL
model. Fig. S3 demonstrates the details of the model perfor-
mance of each generation (A-E) and combined set (F), which
includes data from all previous generations. The value of R
square from Generation 1 to Generation 5 was gradually im-
proved from 0.66 to 0.85. Furthermore, the R square of the
DL model from the combined set was 0.85, slightly better than
other models trained only by a single generation. It is reason-
able to believe the model performance is sufficient for predic-
tion [51–53]. The model F was then used for the prediction of
the 66,687,173 molecules and 2,094 molecules with predicted
scores less than -10.5 kcal/mol were subjected for redocking.
The structures, MW, LogP, and synthetic accessibility analy-
sis of representative molecules were listed in Table 2. It was
pleased to see compounds that share similar scaffold with com-
pound 2. Compounds that have completely different scaffolds

were also identified to provide diverse and valuable hypotheses
for further validation. The superior performance of the deep
learning model in the SECSE platform was speculated to re-
sult from the intrinsic logic. The 3D structural information of
the parent compound was inherited in its daughter compounds,
while the daughter generation would feedback rich SAR for
model training. It also explained the model performance was
improved in later generations while the combined set yielded
the best.

Figure 6. Time consumption. Running time of each generation
(GEN 1-5). DL represents the time cost of a final search by deep learn-
ing model. With 80 cores, a five-generation computing cost was 40.5
hours.

In this case, we used an 80-core computer, which took 40.5
hours in total. The Fig. 6 shows the calculation time of each
generation. As the molecules grow larger and their complexity
increases, the running time of each generation would gradually
increase. Deep learning modeling significantly reduces search
time and makes it possible to obtain estimated fitness scores for
all generated molecules.
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Table 1. List of selected candidates
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Table 2. List of selected candidates based on the evaluation of DL models

4 Discussion

As discussed earlier, the limitation in chemical space cover-
age of current chemical libraries is a common problem the
field is facing. Intensively expanding the chemical space via
brute-force exploration, which leads to ultra-large chemical li-
braries such as GDB [54–56] is explored. A more widespread
attempt is the make-on-demand library [4], which comprises
of structures from the enumeration of commercial building
blocks based on reliable reaction schemes. The commercial
providers also claim to have a relatively high synthesis success
rate (at least 30%). The success of ultra-large compounds vir-
tual screening contributes to the vigor of the make-on-demand
library [2, 3]. Furthermore, people train machine learning mod-
els to accelerate the speed of virtual screening to balance the
tradeoff between accuracy and speed [51]. However, it is still

a very tough task to do virtual screening of ultra-large libraries
directly on the present hardware.

All these factors are considered and balanced in our own plat-
form. It is probably unrealistic to enumerate all druglike
molecules, but exhaustive enumeration of fragments with less
than 13 heavy atoms is doable. Reaction rules are also included
in our molecular generator to enrich the diversity of structures.
To avoid the combinatorial explosion, protein pockets are con-
straints to direct the evolution. In addition, unexpected accu-
racy of the deep learning model allows us to evaluate large
amount of compounds with minimal false positives or false neg-
atives.

Recently, deep generative neural networks have become a
promising approach for molecular generation. Many seminal
reviews [10, 57] have summarized the development of these
deep generative models with different generative architectures
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(like recurrent neural networks, autoencoders, and generative
adversarial networks) based on various molecular representa-
tions (SMILES, molecular graph). Despite the limitations of
these generative models and the inaccuracy of current evalu-
ation techniques for these models [58], they are indeed one
choice for de novo molecular generation.

In parallel, rule-based molecular generation is also very popular
such as AbbVies project Drug Guru [30, 31], the abbreviation
of drug generation using rules. A data-driven method called
matched molecular pairs (MMPs) [59–61] is another way to
collect the experts knowledge from literature. Indeed, the rules
of Drug Guru and MMPs are essentially the same method and
nearly from the same source, that is molecular design thoughts
of human beings. They can be stored as lines of reaction
SMARTS code in RDKit. Scientists from SIMM constructed
DrugSpaceX [62], a virtual compound library, using rules Nova
and BIOSTER from StarDrop.

Scientists from GSK did a Turing test [63] for molecular gen-
erators by comparing three molecular generators in-house. The
first one is BioDig, an MMPs-based algorithm. The second one
is BRICS, a molecular generator by fragment recombination.
The last one is RG2Smi, a deep generative model for generating
molecules, which translates a molecule into a pharmacophore-
based graph representation, then generates smiles string by de-
convolution algorithm trained using natural language process-
ing architecture. BioDig performed better than the other two
methods across all tests in their report. Despite the fact that
rule-based methods are somewhat limited to human knowledge
or bias, we prefer rule-based methods for practical considera-
tions.

Another challenge in computational de novo drug design is that
compounds proposed by these tools are often hard to synthe-
size. Therefore, synthetic accessibility is a critical assessment
for meaningful output. Previous retrosynthesis analysis tools
were usually incapable of handling complex synthetic routes.
Recently, as the development of deep learning and the avail-
ability of large reaction database, several new algorithms [64,
65] have been developed with improved capability for synthetic
route planning. Yet increasing the evaluation throughput is chal-
lenging since it may take a few minutes to find practical routes
for a single molecule. A batch mode that can evaluate thou-
sands to millions of molecules at an affordable cost within a
given timeframe is urgently needed.

SECSE mainly relies on structure-based computational de-
sign tools. Different tools will lead to different search direc-
tions, which might result in different chemical structure out-
put. SECSE platforms are built to be compatible with various
tools as fitness evaluators, like molecular docking, shape-based
screening, and pharmacophore alignment, even ligand-based
screening methods. Until now, docking has been the primary
choice of SECSE because of its tradeoff between accuracy and
speed. Despite the excellent performance of SECSE docking
mode, there are still some inherent shortcomings in molecular
docking methods, such as simplistic scoring with empirical en-
ergy function, rigid protein structures, ill-modeled poses. To
enhance the prediction power, theoretically more accurate meth-
ods need to be introduced into the fitness assessment module.
Claudio et al. [66] proposed a new QM-based docking pro-
gram to replace the current docking methods based on molec-

ular mechanics (MM) force fields. The new scoring function
has achieved excellent performance in most cases. However,
their QM docking scoring function is ten times slower than tra-
ditional MM-based scoring functional per core. To explicitly
consider the dynamic nature of proteins, molecular dynamics
(MD) simulation is the best choice. Hugo Guterres et al. [67]
reported a high throughput molecular dynamics (HTMD) sim-
ulations method to refine the docking results from AutoDock
Vina. They calculated the RMSD of ligand by aligning protein
structure from the initial docking pose and all protein structures
in MD trajectory. They used a large set of 56 diverse target
proteins and 560 ligands from the DUD-E dataset. The results
show that shot time MD simulations increase the area under
the curve (AUC) of 0.8 from a value of 0.68 from AutoDock
Vina. Enabled by the increasing computational power, attempts
to add QM and MD concepts to the current docking program
will be a promising way to improve the fitness evaluation mod-
ule of SECSE.

5 Conclusion

We have developed a de novo design platform SECSE that in-
tegrates human intelligence for systemic evolutionary chemical
space exploration against a specific protein pocket. The plat-
form incorporated design rules of medicinal chemistry, compu-
tational evaluation methods, and deep learning models to effi-
ciently speed up the search process of virtual hit compounds.
The application in a demo target PHGDH proved its utility in
finding diverse novel drug-like chemotypes. Further optimiza-
tion considering high-precision evaluation methods and protein
dynamics is currently underway. SECSE is released as an open-
source project under the Apache License, Version 2.0. Any
efforts and suggestions to improve its performance are wel-
comed.
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Supplemental Materials

Fragment Library Generation

As is shown in Fig. S1, a carbon string can be systemically closed to form rings with the same heavy-atom count. Sidechain
replacement here means three connected non-aromatic atoms were rearranged to a center atom with two branches. The Enumerate
Heterocycles function in RDKit is applied for heterocyclic ring generation if a ring structure exists. Reaction rules are used to
achieve hetero atom replacement, bond replacement, and aromatic ring conversion. All the codes for fragment construction is
available at http://github.com/KeenThera/fragment_generation.

Figure S1. Examples of fragment construction rules.

Clustering Algorithms for Huge Dataset

Fig. S2 presents the algorithm of clustering used in SECSE for selection of representative molecules. Clustering is necessary
at this stage for efficiency considerations. In addition, a partition clustering method is introduced to reduce the computational
cost significantly. Fingerprints calculated by RDKit (e.g., Morgan/Circular, MACCS keys) of all the molecules in the dataset are
calculated as input features. Firstly, we randomly labeled one molecule in the dataset as the first cluster center C1. Then, we
calculated the distance/dissimilarity (1 − Tanimoto index) of all the rest molecules with the first cluster center C1. The molecule
with the largest distance is labeled as the second cluster center C2. At the same time, molecules that are pretty similar to the
first cluster center will be masked. Next, the molecule with the largest distances to C1 and C2 would be considered the third
cluster center C3; molecules close to C2 will be masked. Same iterations will continue until we find enough cluster centers or
convergence is reached. Finally, we calculated the distance between all non-cluster center molecules and cluster centers and then
assigned them based on the nearest cluster center id.

Deep LearningModels Performance

All the docking data are randomly split into three parts: training (80%), test (10%), and validation (10%) datasets. Fig. S3
presents the performance of deep learning models on the test dataset of PHGDH. A-E shows the performance of models using
docking data set from generation 1-5, respectively. F shows the performance of the aggregate dataset, including data from the
previous five generations.

https://doi.org/
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http://github.com/KeenThera/fragment_generation
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Figure S2. Details of clustering algorithms

Figure S3. Test data R2 of deep learning models. A-E shows the performance of models using docking data set from generation 1-5,
respectively. F shows the performance of the aggregate dataset, including data from the previous five generations.
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