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Abstract 

Electrochemical impedance spectroscopy (EIS) is a tool widely used to study the properties of 

electrochemical systems. The distribution of relaxation times (DRT) has emerged as one of the 

main methods for the analysis of EIS spectra. Gaussian processes can be used to regress EIS data, 

quantify uncertainty, and deconvolve the DRT, but current implementations do not constrain the 

DRT to be positive and can only use the imaginary part of EIS spectra. Herein, we overcome both 

issues by using a finite Gaussian process approximation to develop a new framework called the 

finite Gaussian process distribution of relaxation times (fGP-DRT). The analysis on artificial EIS 

data shows that the fGP-DRT method consistently recovers exact DRT from noise-corrupted EIS 

spectra while accurately regressing experimental data. Furthermore, the fGP-DRT framework is 

used as a machine learning tool to provide probabilistic estimates of the impedance at unmeasured 

frequencies. The method is further validated against experimental data from fuel cells and 

batteries. In short, this work develops a novel probabilistic approach for the analysis of EIS data 

based on Gaussian process, opening a new stream of research for the deconvolution of DRT.  

Keywords: Electrochemical Impedance Spectroscopy, Distribution of Relaxation Times, 

Gaussian Processes, Fuel Cells, Lithium-ion Batteries 
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1 Introduction 

Electrochemical impedance spectroscopy (EIS) is commonly used to analyze electrochemical 

systems [1–10], including sensors [10–12], supercapacitors [13–16], batteries [6,7,15–17] and fuel 

cells [1,18–23]. Despite the tremendous usefulness of this technique, obtaining meaningful 

insights from EIS data is difficult. Equivalent circuit models (ECMs) are usually used to analyze 

EIS data [16,24–27], but ECMs are not unique as several circuits can fit EIS data equally well 

[1,28–30]. Physical models can provide more insight than ECMs [1,30]. However, physical models 

are system-specific and difficult to implement. EIS analysis can also be carried out using the 

distribution of relaxation times (DRT) [2,8,22,23,26,31–35]. The DRT framework assumes that 

EIS spectra result from relaxations, implying that the impedance can be modeled as [1,36–38] 

𝑍DRT(𝑓) = 2𝑖𝜋𝑓𝐿0 + 𝑅∞ + ∫
𝛾(log 𝜏) 

1 + 2𝑖𝜋𝑓𝜏
𝑑log 𝜏

+∞

−∞

 
(1) 

where 𝐿0, 𝑅∞, f, and 𝛾(log 𝜏) are the inductance, ohmic resistance, frequency, and DRT, 

respectively [1,11]. 

Deconvolving 𝛾(log 𝜏) from EIS measurements is challenging because an ill-posed inverse 

problem needs to be solved [1,39–48]. Several approaches, including maximum entropy, genetic 

algorithms, ridge regression, evolutionary algorithms, elastic net, Ridge and Lasso regression, and 

Bayesian methods have been used [4,41,43,45–47,49–53]. Among them, probabilistic methods 

have emerged as the method of choice for DRT deconvolution due to their ability to quantify 

uncertainty. In that context, our research group recently developed the Gaussian process 

distribution of relaxation times (GP-DRT) method, which assumes the DRT to be a Gaussian 
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process (GP) [1]. The GP-DRT was shown to effectively deconvolve the DRT, fitting both 

synthetic and real EIS data. One particularly appealing trait of the GP-DRT method is that its 

hyperparameters can be obtained by maximizing the evidence, ensuring maximal consistency with 

experiments. The GP-DRT method has, however, two limitations. First, the 𝛾(log 𝜏) estimated 

using the GP-DRT is unconstrained and, therefore, can be negative (which is unphysical). Second, 

the current implementation assumes that only the imaginary part of the impedance spectrum can 

be used [54]. To overcome these limitations, we developed a new model based on a finite 

approximation of GPs [55]. Herein, this method will be called the finite Gaussian process 

distribution of relaxation times (fGP-DRT). The fGP-DRT was set up so that it can recover both 

the real and imaginary parts of the impedance under the constraint that the DRT is non negative, 

i.e., 𝛾(log 𝜏) ≥ 0. The fGP-DRT method was successfully validated against artificial and real EIS 

data. Furthermore, like the GP-DRT, the fGP-DRT was used as a machine learning toolbox, 

allowing the prediction of EIS spectra at unmeasured frequencies. This work extends the 

interpretation of EIS data through the lens of probabilistic modeling, and will likely inspire more 

research works that leverage GPs for DRT deconvolution. 
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Figure 1: Schematic illustration of the fGP-DRT framework 

2 Theory 

2.1 Gaussian Process 

A Gaussian process (GP) can be loosely understood as an infinite collection of random variables 

such that any finite subset of these random variables has a joint Gaussian distribution [1,56,57]. 

We will take the DRT, 𝛾(𝜉), where 𝜉 = log 𝜏, to be a GP with mean 𝑚(𝜉) and kernel 𝑘(𝜉, 𝜉′), 

i.e., [56,57]  

𝛾(𝜉) ∼ 𝒢𝒫(𝑚(𝜉), 𝑘(𝜉, 𝜉′)) (2) 

A finite-dimensional approximation, 𝛾𝑁(𝜉), of 𝛾(𝜉) can be defined as follows: 

𝛾𝑁(𝜉) = ∑ 𝛾(𝜉𝑛)𝜙𝑛(

𝑁

𝑛=1

𝜉) 

(3) 
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where 𝜉1 ≤ 𝜉2 ≤ ... ≤ 𝜉𝑁 are equispaced collocation points with 𝜉𝑛+1 − 𝜉𝑛 = ∆ for 𝑛 =

1, 2, … , 𝑁 − 1, and 𝜙𝑛(𝜉) is the following triangular function 

𝜙𝑛(𝜉) = {1 −
|𝜉 − 𝜉𝑛|

∆
 if |𝜉 − 𝜉𝑛| < ∆

0                   otherwise

           
(4) 

By defining 𝜸 = (𝛾(𝜉1), 𝛾(𝜉2), … , 𝛾(𝜉𝑁))
⊤

 and 𝝃 = (𝜉1, 𝜉2, … , 𝜉𝑁)⊤, and setting 𝑚(𝜉𝑛) = 0 for 

𝑛 = 1, 2, … , 𝑁 (or in short-hand notation 𝑚(𝝃) = 𝟎), it follows that 

𝜸 ∼ 𝒩(𝟎, 𝑲) (5) 

where (𝑲)𝑚𝑛 = 𝑘(𝜉𝑚, 𝜉𝑛) for 𝑚, 𝑛 = 1, 2, … , 𝑁 (or in short-hand notation 𝑲 = 𝑘(𝝃, 𝝃)). The 

DRT model (1) can be written as 

𝑍re(𝑓) = 𝑅∞ + ∫
1

1 + (2𝜋𝑓𝑒𝜉)2
𝛾(𝜉)𝑑𝜉

+∞

−∞

 
(6a) 

𝑍im(𝑓) = 2𝜋𝐿0𝑓 − ∫
2𝜋𝑓𝑒𝜉

1 + (2𝜋𝑓𝑒𝜉)2
𝛾(𝜉)𝑑𝜉

+∞

−∞

 
(6b) 

By replacing 𝛾(𝜉) with the 𝛾𝑁(𝜉) given in (3), we can rewrite (6) as 

𝑍re(𝑓) = 𝑅∞ + 𝐚re(𝑓)⊤𝜸 (7a) 

𝑍im(𝑓) = 2𝜋𝐿0𝑓 + 𝐚im(𝑓)⊤𝜸 (7b) 

where 

(𝐚re(𝑓))𝑛 = ∫
1

1 + (2π𝑓𝑒𝜉)2
𝜙𝑛(𝜉)𝑑𝜉

+∞

−∞

 
(8a) 

(𝐚im(𝑓))𝑛 = − ∫
2𝜋𝑓𝑒𝜉

1 + (2𝜋𝑓𝑒𝜉)2
𝜙𝑛(𝜉)𝑑𝜉

+∞

−∞

 
(8b) 
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From (7) and (8), the real and imaginary parts of the impedance can be computed at frequencies 

𝒇 = (𝑓1, 𝑓2, … , 𝑓𝑀)⊤ as 

𝒁re(𝒇) = R∞𝟏 + 𝐀re𝜸 (9a) 

𝒁im(𝒇) = 2𝜋𝐿0𝒇 + 𝐀im𝜸 (9b) 

where 𝐀re and 𝐀im are built by stacking the vectors 𝐚re(𝑓) and 𝐚im(𝑓), respectively, i.e., 

(𝐀re)𝑚,⋅ = 𝐚re(𝑓𝑚)⊤ and (𝐀im)𝑚,⋅ = 𝐚im(𝑓𝑚)⊤ for 𝑚 = 1, 2, … , 𝑀.  

After defining 𝒁 = (𝒁re
𝒁im

) and 𝑨 = (
𝟎 𝟏 𝐀re

2𝜋𝒇 𝟎 𝐀im
), we assume that the experimental 

impedance is given by 

𝒁 = 𝑨𝒙 + 𝜺 (10) 

where 𝒙 = (𝐿0, 𝑅∞, 𝛾(𝝃)⊤)⊤, 𝜺 ∼ 𝒩(𝟎, 𝜎𝑛
2𝐈), 𝜎𝑛 is the standard deviation of the random error, 

and 𝐈 is the 2𝑀 × 2𝑀 identity matrix. We now suppose that 

𝒙 ∼ 𝒩(0, 𝚪) (11) 

with 

𝚪 = (
𝜎𝐿

2 0 0

0 𝜎𝑅
2 0

0 0 𝑲

) 

(12) 

where 𝜎𝐿 and 𝜎𝑅 are the standard deviations of 𝐿0 and 𝑅∞, respectively (𝐿0 ∼ 𝒩(0, 𝜎𝐿
2) and 𝑅∞ ∼

𝒩(0, 𝜎𝑅
2)). It follows from (10) and (11) that the joint distribution of 𝒙 and 𝒁 is the following 

multivariate Gaussian: 
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(
𝒙

𝒁
) ∼ 𝒩 (𝟎, (

𝚪 𝚪𝑨⊤

𝑨𝚪 𝑨𝚪𝑨⊤ + 𝜎n
2𝐈

)) 
(13) 

Using (13), we can compute the distribution of 𝒙 conditioned to the experimental data 𝒁exp [1,56]: 

𝒙|𝒁 = 𝒁exp ∼ 𝒩(𝝁x, 𝚺x) (14) 

where 

𝝁x = 𝚪𝑨⊤(𝑨𝚪𝑨⊤ + 𝜎𝑛
2𝐈)−1𝒁exp (15a) 

𝚺x = 𝚪 − 𝚪𝑨⊤(𝑨𝚪𝑨⊤ + 𝜎𝑛
2𝐈)−1𝑨𝚪 (15b) 

2.2 Positivity Constraint 

As outlined in the introduction, the current GP-DRT model does not impose any constraint on 𝒙 

[1]. 

However, starting from (14), it is straightforward to impose a constraint on 𝒙|𝒁 by taking that 𝒙|𝒁 

is a truncated multinormal distribution bound by zero from below, i.e.,  

𝒙|𝒁 = 𝒁exp ∼ 𝒯𝒩(𝝁x, 𝚺x, 0, ∞) (16) 

To sample 𝒙 from the truncated multinormal distribution (14), Hamiltonian Monte Carlo sampling 

can be used [58]. We generated 10,000 samples and discarded the first 1,000 as burn-in. The 

impedance can then be obtained from the sampled 𝒙 by matrix multiplication, i.e., 𝒁 = 𝑨𝒙. In the 

figures in the remainder of the article, the means of DRT and impedance are shown as a black line, 

while the 3 × σ credible intervals are shown as gray regions. 

2.3 Kernel and Hyperparameter Selection 

To compute the matrix 𝑲 reported in (5) , we used the squared-exponential kernel, 𝑘(𝜉, 𝜉′), defined 

as [1,59] 
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𝑘(𝜉, 𝜉′) = 𝜎𝑓
2exp (−

1

2ℓ2
(𝜉 − 𝜉′)2) 

(17) 

where 𝜎𝑓 and ℓ are two scalars. Therefore, the vector of hyperparameters is 𝜽 = (𝜎𝑛 , 𝜎𝐿 , 𝜎𝑅 , 𝜎𝑓 , ℓ)
⊤

. 

Unless otherwise specified, the values of 𝜽 were obtained by maximizing the experimental 

evidence [60], i.e., 𝑝(𝒁 = 𝒁exp|𝜽), given by 

log (𝑝(𝒁 = 𝒁exp|𝜽))

= −
1

2
𝒁exp

⊤ (𝑨𝚪𝑨⊤ + 𝜎𝑛
2𝐈)−1𝒁exp −

1

2
log(|𝑨𝚪𝑨⊤ + 𝜎𝑛

2𝐈|)

−
(𝑁 + 2)

2
log(2𝜋) 

(18) 

In the actual implementation, 𝐿(𝜽) = − log (𝑝(𝒁 = 𝒁exp|𝜽)) −
(𝑁+2)

2
log(2𝜋) was minimized.  

3 Results 

We first validated the consistency of the fGP-DRT model against artificial experiments generated 

by corrupting exact EIS spectra characterized by known DRTs. Then, the model was tested against 

real EIS data of fuel cells and batteries. 

3.1 Artificial experiments 

All artificial EIS data were generated, unless otherwise specified, using log-spaced frequencies in 

the 10−4 − 104 Hz range with 10 points per decade. We first considered a single ZARC model, 

for which we analyzed the influence of the experimental error, the number of collocation points 

(N as defined in equation (3)), and truncated spectra. After that, we studied models with 

overlapping (2×ZARC) and discontinuous timescales (piecewise constant and fractal elements).  
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3.1.1 Single ZARC Model 

A single ZARC circuit is an ohmic resistor (𝑅∞) in series with a parallel circuit consisting of a 

resistor (𝑅ct) and a constant phase element (CPE), with characteristic time 𝜏0 and parameter 𝜙. 

The impedance, 𝑍exact(𝑓), and its corresponding DRT are given by [1,4] 

𝑍exact(𝑓) =  𝑅∞ +  
𝑅ct

1 +  (𝑖2𝜋𝑓𝜏0)𝜙
 

(19a) 

𝛾(log 𝜏) =  
𝑅ct

2𝜋

sin ((1 − 𝜙)𝜋)

cosh(𝜙 log(𝜏/𝜏0)) − cos(𝜋(1 − 𝜙))
 

(19b) 

and the parameters used in the model are reported in Table 1. For the synthetic experiments, we 

generated data using (12) where the error standard deviation is given by 𝜎𝑛
exp

= 0.5 Ω 1.  The 

Nyquist plots of the exact and noise-corrupted impedance spectra are shown in Figure 2(a). The 

DRT was recovered with the fGP-DRT without and with non-negativity constraint (Figure 2(b) 

and (c), respectively). As expected, the non-negativity constraint has the effect of narrowing the 

credible bands. The real and imaginary parts of the impedance are also shown for the fGP-DRT 

model under non-negativity constraint (Figure 2(d)), highlighting the excellent recovery of the EIS 

data. 

Table 1– Parameters used for the exact impedance of the single ZARC model. 

Parameter Value 

𝑅∞ 10 Ω 

𝑅ct 50 Ω 

𝜏0 1 s 

𝜙 0.8 

𝐿0 5.0 ×  10−4 H 

 
1 Note that 𝜎𝑛

exp
 is the standard deviation of the noise in the artificial experiments while 𝜎𝑛 is a hyperparameter of the 

fGP-DRT method. 
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We also considered a single ZARC plus an inductor (values of the parameters in Table 1), whose 

Nyquist and Bode plots for both unconstrained and constrained DRT are reported in Figure S1 of 

the SI. We observe that the unconstrained fGP-DRT oscillates about the exact DRT with widening 

error bands for 𝜏 >  103 s (Figure S1(b)). Instead, the constrained fGP-DRT model exhibits a 

better recovery of 𝛾(log 𝜏). The real and imaginary components of the impedance obtained using 

the constrained fGP-DRT match well with the exact impedance spectrum.  

(a) (b) 

  
(c) (d) 

  

Figure 2: (a) Nyquist plot of a single ZARC with experimental noise standard deviation 𝜎𝑛
exp

=

 0.5 Ω. Recovered (b) unconstrained, and (c) constrained DRT. (d) Regressed real and imaginary 

parts of the impedance under non-negativity constraint. 
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3.1.1.1 Hyperparameter Selection 

The hyperparameters (which are stored in the vector 𝜽) have a remarkable impact on the recovery 

of DRT and impedance. To illustrate their influence, we applied the fGP-DRT method for specific 

values. We first set 𝜎𝑓 = 𝜎𝐿 = 1.0, 𝜎𝑅 = 2.0, 𝜎𝑛 = 0.5, and varied ℓ (10−2, 0.5, 1.0, and 2.0). The 

estimated DRT (with its credible bands included) and recovered impedance are given in the left 

and right panels of Figure 3, respectively. For ℓ = 10−2 (Figure 3 (a)), the estimated DRT displays 

a large variance, as shown by the shaded region around the mean. The credible bands reduce, and 

the peak values of the recovered impedance become closer to the exact values as ℓ increases to 

1.0, as shown in Figure 3(d) and (f). To understand why this happens, 𝑲 was plotted as a function 

of ℓ as shown in Figure S2. The matrix 𝑲 is nearly diagonal for ℓ = 10−2, indicating that a value 

of 𝛾(log 𝜏) at a particular log 𝜏 is only influenced by adjacent log timescales. In contrast, we note 

in Figure S2 a strong dependency across a broader ranges of timescales as ℓ increases. The results 

reported in Figure S3, which shows the recovered real and imaginary components of the 

impedance, the estimated DRT and the values of the entries in the matrix 𝑲 for small (ℓ =  10−5) 

and moderately high (ℓ = 2.5 and 5.0) length scales, also support these conclusions and highlight 

the strong influence of the kernel and, in particular, the correlation log-timescale ℓ on the recovered 

DRT. In the remainder of the article, the hyperparameters are obtained by optimizing the 

experimental evidence, that is the probability of the experimental data given the model. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure 3: The recovered DRT under the non-negatively constrained fGP-DRT model for ℓ equal 

to (a) 10−2, (b) 0.5, and (c) 1.0 with 𝜎𝑓 = 𝜎𝐿 = 1.0 and 𝜎𝑅 = 2.0. The corresponding real and 

imaginary components of the impedance are shown in panels in (b), (d), and (f), respectively. 
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3.1.1.2 Influence of the Experimental Errors 

We now illustrate the influence of the experimental noise on the predictions produced by the fGP-

DRT model. The hyperparameters were obtained by maximizing the experimental evidence at 

specified noise levels, 𝜎𝑛
exp

. Panels (a), (d), and (g) of Figure 4 show the Nyquist plots 

corresponding to 𝜎𝑛
exp

= 1.0, 2.0, and 3.0 Ω, respectively. As 𝜎𝑛
exp

 increases, the recovered DRT 

has larger credible bands around the mean, indicating greater uncertainty, see panels (b), (e), and 

(h) of Figure 4. There is, in particular, a significant widening of the credible band at high timescales 

(𝜏 >  104 s).  

Using equation (10), 1,000 synthetic experiments for each 𝜎𝑛
exp

=  0.2, … , 2.0 Ω, were generated; 

the optimal 𝜽 was obtained for each synthetic experiment. The obtained 𝜎𝑛 and 𝜎𝑅 are shown in 

Figure 5 as a boxplot, where the notch indicates the median, the box the 25-75% interquartile 

range, the whiskers 1.5 times that interquartile, and the circles the outliers. The upper and lower 

quantiles increase with increasing 𝜎𝑛
exp

, meaning an increase uncertainty consistent with 

expectations. Unsurprisingly, the mean of 𝜎𝑛 is very close to 𝜎𝑛
exp

 and the mean of 𝜎𝑅 is 

independent of 𝜎𝑛
exp

. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   

Figure 4: Nyquist plot for a single ZARC with 𝜎𝑛
exp

= 1.0, 2.0, and 3.0 Ω, (a), (d), and (g), 

respectively. Corresponding recovered DRT under the non-negativiy constraint (b), (e), and (h), 

and real and imaginary parts of the impedance (c), (f), and (i). 
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(a) (b) 

  
Figure 5: Boxplot of the hyperparameter (a) 𝜎𝑛 and (b) 𝜎𝑅 obtained by minimizing 𝐿(𝜽) for 10,000 

artificial experiments (1,000 for each 𝜎𝑛
exp

). 

3.1.1.3 Data Truncation 

We tested how well the constrained fGP-DRT model deconvolves the DRT when the EIS data is 

truncated relative to those used in Sections 3.1.1.1 and 3.1.1.2. In particular, the artificial 

impedance shown in Figure 2 was restricted to frequencies above 10−3, 10−2, and 10−1 Hz with 

identical number of points per decade, as shown in Figure 6(a), (b), and (c), respectively. The fGP-

DRT model successfully recovers both the DRT and the impedance. As expected, the credible 

bands of the estimated DRT increase for timescales smaller than the truncation threshold, see 

Figure 6(d), (e), and (f).  

For further validation, we considered the ECM described in [61] with the data being truncated 

below 10−3 Hz. The specific parameters of this ECM are reported in Table S2. Our model 

successfully recovers the real and imaginary components of the impedance. Additionally, the DRT 

is estimated in a satisfactory manner together with its error bands (Figure S5). 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
Figure 6: Nyquist plot of the artificial EIS data truncated below (a) 10−3, (b) 10−2, and (c) 10−1 

Hz (𝜎𝑛
exp

=  0.5 Ω) relative to the data presented in Figure 2 with the corresponding recovered 

DRT in (d), (e), and (f), and real and imaginary parts of the impedance in (g), (h), and (i). 
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3.1.1.4 Error of Estimation and Discrepancies 

We also explored the influence of the number of collocation points, N in (3), on the mean of the 

recovered DRT. To that end, we computed the normalized squared residuals against the mean, 𝑟2, 

[49,62] defined as 

𝑟2 =  
‖𝛾exact − �̂�𝛾‖

2

‖𝛾exact‖2
 

(20) 

 where �̂�𝛾 is the value of the mean DRT obtained by sampling (16) using a synthetic EIS spectrum. 

We generated 100 artificial experiments, 10 each for N = 20, 40, 60, …, 200, and computed the 

normalized squared residuals 𝑟2 for each. Figure 7(a) shows the boxplot of 𝑟2 as a function of N. 

As N increases, the descrepancies significantly reduce, evidenced by the smaller box for higher 

values of N, leading to an improved DRT recovery (Figure 7(b)). Specifically, the curve of the 

recovered DRT becomes smoother as N increases (Figure S6). A representative recovered DRT 

for N = 200 (𝑟2 = 8.25 × 10−5) is shown in Figure 7(b). 

(a) (b) 

  
Figure 7: (a) Residual 𝑟2 against the mean as a function of N; (b) recovered DRT using the fGP-

DRT model for N = 200.  

N = 200 
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3.1.2 2×ZARC Model 

In many electrochemical systems, numerous physical processes take place concurrently. 

Therefore, we investigated the capability of the fGP-DRT model to capture overlapping features 

by studying a 2×ZARC model. The DRT and impedance response are given by [1,5,49] 

𝑍exact(𝑓) =  𝑅∞ +  
𝑅ct,1

1 +  (𝑖2𝜋𝑓𝜏1)𝜙1
+ 

𝑅ct,2

1 +  (𝑖2𝜋𝑓𝜏2)𝜙2
 

(21a) 

𝛾(log 𝜏) =  
𝑅ct,1

2𝜋

sin ((1 − 𝜙1)𝜋)

cosh(𝜙1 log(𝜏/𝜏1)) − cos(𝜋(1 − 𝜙1))

+  
𝑅ct,2

2𝜋

sin ((1 − 𝜙2)𝜋)

cosh(𝜙2 log(𝜏/𝜏2)) − cos(𝜋(1 − 𝜙2))
 

(21b) 

where the specific parameters used are reported in Table S1. We set the value 𝜏1 = 0.1 s and 

investigated two values for 𝜏2, namely 𝜏2 = 1 and 10 s. Figure 8 shows the DRT, real, and 

imaginary parts of the impedance. For separated timescales with 𝜏1 =  0.1 s and 𝜏2 = 10 s, the 

Nyquist plot consists in two semicircles (Figure 8(a)). The DRT recovered using the fGP-DRT 

method correctly shows two distinct peaks (Figure 8(c)). Similarly, for 𝜏1 = 0.1 s and 𝜏2 = 1.0 s, 

the Nyquist plot of the impedance resembles a single semicircle with close peaks in the DRT as 

shown in Figure 8(b) and (d), respectively. The impedance is well regressed as shown in Figure 

8(a), (b), (e) and (f). As for the DRT, the location of the peaks is accurately identified, but the 

credible bands widen as the timescales grow closer (Figure 8(c) and (d)) 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 8: Nyquist plot of the 2×ZARC model with 𝜎𝑛

exp
= 0.5 Ω for (a) 𝜏1 = 0.1 s  and 𝜏2 = 10 s 

and (b) 𝜏1 = 0.1 s  and 𝜏2 = 1 s. Corresponding DRT recovered using the fGP-DRT method under 

the non-negativity constraint are shown in panels (c) and (d), and real and imaginary parts of the 

impedance are reported in panels (e) and (f).  
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3.1.3 Piecewise Constant and Fractal Models 

We tested how the fGP-DRT model handles discontinuities in the DRT. To that end, the piecewise 

constant (PWC) [36,63] and the fractal [3,31,36,63] models were used. The exact impedance and 

the corresponding DRT of the PWC model are given by [36,63] 

𝑍exact(𝑓) =  𝑅∞ + 
𝑅ct

log (
𝜏1

𝜏0
)

 [log (1 −
𝑖

2𝜋𝑓𝜏0
) − log (1 −  

𝑖

2𝜋𝑓𝜏1
)] 

(22a) 

𝛾(log 𝜏) =  
𝑅ct

log (
𝜏1

𝜏0
)

(𝐻(𝜏 − 𝜏0) − 𝐻(𝜏 − 𝜏1)) 
(22b) 

where 𝐻(𝜏) is the Heaviside function. For the fractal model [3,31,36,63] 

𝑍exact(𝑓) =  𝑅∞ +  
𝑅ct

(1 + 𝑖2𝜋𝑓𝜏0)𝜙
  

(23a) 

𝛾(log 𝜏) =  {
𝑅ct

𝜋
sin(𝜙𝜋) (

𝜏

𝜏0 − 𝜏
)

𝜙

 if 𝜏 <  𝜏0

0                          otherwise

           

(23b) 

Panels (a), (c), and (e) of Figure 9 show the Nyquist plot, recovered DRT (under non-negativity 

constraint), and real and imaginary parts of the recovered impedance for the PWC model, 

respectively. Panels (b), (d), and (f) of Figure 9 depict the Nyquist plot, recovered DRT, and real 

and imaginary components of the impedance, respectively, for the fractal model. For both cases, 

the fGP-DRT model satisfactorily regresses the EIS data and is able to capture approximately the 

location of the discontinuities.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 9: Nyquist plot of the (a) PWC model and (b) the fractal model (𝜎𝑛

exp
= 0.5 Ω). 

Corresponding DRT recovered using the fGP-DRT method under the non-negativity constraint (c) 

and (d), and real and imaginary parts of the impedance (e) and (f). 
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3.2 Real Experiments    

Having tested the consistency of the fGP-DRT model with synthetic experiments, we evaluated its 

performance against real data from three symmetric solid oxide fuel cells and two batteries. 

3.2.1 Fuel Cells 

3.2.1.1 Ba0.95La0.05FeO3--based Symmetric Solid Oxide Cells  

EIS data was obtained from symmetric cells with Ba0.95La0.05FeO3- (BLF) [64] as the electrode 

material and samarium-doped ceria as the electrolyte. The tests were performed in the frequency 

range from 100 mHz to 20 kHz with five points per decade using a VSP potentiostat (BioLogic). 

The symmetric cell was tested at 500 and 550 °C in an atmosphere consisting of N2 and O2 with 

an oxygen partial pressure pO2 = 60%. The experimental data for each temperature was regressed 

against a 2×ZARC (the best-fitting parameters are reported in Table S3). The regressed ECM and 

deconvolved fGP-DRT model match closely, as shown in Figure 10(a) and (b). Figure 10(c) and 

(d) present the DRT recovered using the fGP-DRT model and the ECM at 500 and 550 °C, 

respectively. The two models appear to be consistent with small deviations in the DRT for 𝜏 >

100 s.  

Additionally, we considered the EIS of a symmetric cell with samarium-doped ceria as the 

electrolyte and the electrode consisting of a composite containing BLF and Ag2O (molar ratio 

20:1) [65]. EIS data was collected at 550 and 700 °C in a mixture of N2 and O2 with pO2 = 60%. 

We found that the fGP-DRT is consistent with the ECM model (Figure S7), except for a small 

deviation for 𝜏 > 10 s (Figure S7(d)). 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

  
Figure 10: Nyquist plot of the BLF for pO2 = 60% at (a) 500 °C and (b) 550 °C with the 

deconvolved fGP-DRT model and the regressed ECM. Corresponding (c) & (d) DRT and (e) & 

(f) real and imaginary parts of the impedance recovered using fGP-DRT method. Results of the 

regressed ECM are also shown for comparison.  
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3.2.1.2 Sr0.9Ce0.1Fe0.8Ni0.2O3--based Symmetric Protonic Ceramic Cells 

We analyzed the EIS data from a symmetric cell with Sr0.9Ce0.1Fe0.8Ni0.2O3- (SCFN) as the 

electrode material and BaZr0.1Ce0.7Y0.2-x O3- as the electrolyte. The cell was tested at 500 °C in 

two atmospheres, namely 97% Air-3% H2O and 94% Air-6% H2O [67]. The data was obtained for 

frequencies ranging from 0.01 Hz to 200 kHz and a 10 mV amplitude of the input voltage. The 

measured EIS data was regressed against a 2×ZARC ECM whose parameters are reported in Table 

S4. The Nyquist plots of the SCFN with the deconvolved fGP-DRT model and the regressed ECM 

are presented in Figure 11(a) and (b), respectively. The two models match closely for both 

atmospheric conditions.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 11: Nyquist plot of the SCFN-based cell at 500 °C at (a) 3% H2O  and (b) 6% H2O with the 

deconvolved fGP-DRT model and the regressed ECM. Corresponding (c) and (d) DRT and real 

and imaginary parts of the impedance (e) and (f) recovered using the fGP-DRT method under non-

negativity constraint. Results using the regressed ECM are also shown for comparison. 
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3.2.2 Lithium-Ion Batteries 

3.2.2.1 Composite Polymer Electrolytes 

We analyzed batteries with Li-metal as the anode, a composite polymer electrolyte, and LiFePO4 

as the cathode [68,69]. The EIS spectrum was regressed using the fGP-DRT model and a 3×ZARC 

ECM (the obtained ECM parameters are reported in Table S5). The Nyquist plot, recovered DRT 

with the regressed ECM, and real and imaginary parts of the impedance are displayed in the left 

panel of Figure S8. We observe that the DRT from the fGP-DRT and the ECM are consistent and 

that the fGP-DRT matches closely the experimental impedance. 

3.2.2.2 Solid-like Dual-salt Polymer Electrolytes 

We used experimental data obtained from a battery with the same anode and cathode as used in 

composite polymer electrolyte (see Section 3.2.2.1 above), and a solid-like dual-salt polymer 

electrolyte [67–70]. EIS experiments were carried out for frequencies between 1 Hz and 7 MHz. 

We repeated the same procedure as described Section 3.2.2.1, the results are displayed in the right 

panel of Figure S8. As above, the DRT obtained using the ECM and fGP-DRT method are 

consistent and the experimental impedance is closely regressed by the fGP-DRT method.  
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4 Conclusion 

In this work, we developed a novel fGP-DRT model based on a finite GP approximation that 

accurately deconvolves the DRT from EIS data. The new model inherits several traits of the 

previously developed GP-DRT since: 1) it assumes that the DRT is a GP; 2) analysis of synthetic 

and real experiments shows that this method is consistent; 3) its hyperparameters can be selected 

by maximizing the experimental evidence; and 4) the fGP-DRT is robust against experimental 

noise and data truncation. In addition, the fGP-DRT model outperforms the GP-DRT as it can: 1) 

be constrained to produce only non-negative DRTs; and 2) use both the real and imaginary parts 

of the impedance. In short, this article develops a new method for the probabilistic analysis of EIS 

spectra, opening up new research avenues that leverage finite GPs for DRT deconvolution. 
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List of Symbols 

𝚪 Covariance matrix  

ε Vector of random experimental errors 

𝜽 Vector of hyperparameters  

𝝁x Mean vector  

𝚺x Covariance matrix  

𝛾(log 𝜏) Distribution of relaxation times 

∆ Difference between any two collocation points 

𝜉 Logarithm of the relaxation time 

𝜎𝑓 Variance of the squared-exponential kernel 

𝜎𝐿 Standard deviation of the inductance  

𝜎𝑛 Standard deviation of the random error 

𝜎𝑛
exp

 Standard deviation of the experimental noise 

𝜎𝑅 Standard deviation of the resistance  

𝜏 Relaxation time 

𝜏0 Characteristic time of the constant phase element 

𝜙 Parameter of the constant phase element 

𝜙𝑛 N-th triangular function for n = 1, 2, …, N 

 

𝑰 2𝑀 × 2𝑀 identity matrix 

𝑲 GP covariance matrix 

𝒙 DRT vector  

Z Impedance vector 
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𝒁exp Vector of the experimental impedance 

𝑓 Frequency 

𝑔(𝜏) Distribution function 

H(𝜏) Heaviside function 

𝑘(𝜉, 𝜉′) Kernel function 

ℓ Length scale of the squared-exponential kernel 

𝐿(𝜽) Negative marginal log-likelihood 

𝐿0 Inductance 

𝑚(𝜉) GP mean function 

𝑀 Number of frequencies 

𝑁 Number of collocation points 

𝑟2 Normalized squared residuals 

𝑅ct Charge transfer resistance 

𝑅∞ Ohmic resistance 

 

List of Abbreviations   

BLF Ba0.95La0.05FeO3- 

DRT Distribution of relaxation times 

ECM Equivalent circuit model 

EIS Electrochemical impedance spectroscopy 

fGP-DRT Finite Gaussian process distribution of relaxation times 

GP Gaussian process 

GP-DRT Gaussian process distribution of relaxation times 

PWC Piecewise constant 

SCFN Sr0.9Ce0.1Fe0.8Ni0.2O3- 
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