
DrugEx v3: Scaffold-Constrained Drug Design with Graph 1

Transformer-based Reinforcement Learning 2

Xuhan Liu1, Kai Ye2, Herman W. T. van Vlijmen1,3, Adriaan P. IJzerman1, Gerard J. P. 3

van Westen1, * 4

 5

1Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 6

55, Leiden, The Netherlands 7

2School of Electrics and Information Engineering, Xi’an Jiaotong University, 28 8

XianningW Rd, Xi’an, China 9

3Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium 10

 11

*To whom correspondence should be addressed: Gerard J. P. van Westen, Drug 12

Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 13

Leiden, The Netherlands. Tel: +31-71-527-3511. Email: gerard@lacdr.leidenuniv.nl. 14

 15

Email Address of other authors: (1) Xuhan Liu: x.liu@lacdr.leidenuniv.nl; (2) Kai Ye: 16

kaiye@xjtu.edu.cn; (3) Herman W. T. van Vlijmen: hvvlijme@its.jnj.com; (4) Adriaan 17

P. IJzerman: ijzerman@lacdr.leidenuniv.nl.18

mailto:gerard@lacdr.leidenuniv.nl
mailto:x.liu@lacdr.leidenuniv.nl
mailto:kaiye@xjtu.edu.cn
mailto:hvvlijme@its.jnj.com
mailto:ijzerman@lacdr.leidenuniv.nl

Abstract 19

Due to the large drug-like chemical space available to search for feasible drug-like 20

molecules, rational drug design often starts from specific scaffolds to which side 21

chains/substituents are added or modified. With the rapid growth of the application of 22

deep learning in drug discovery, a variety of effective approaches have been developed 23

for de novo drug design. In previous work, we proposed a method named DrugEx, 24

which can be applied in polypharmacology based on multi-objective deep 25

reinforcement learning. However, the previous version is trained under fixed objectives 26

similar to other known methods and does not allow users to input any prior information 27

(i.e. a desired scaffold). In order to improve the general applicability, we updated 28

DrugEx to design drug molecules based on scaffolds which consist of multiple 29

fragments provided by users. In this work, the Transformer model was employed to 30

generate molecular structures. The Transformer is a multi-head self-attention deep 31

learning model containing an encoder to receive scaffolds as input and a decoder to 32

generate molecules as output. In order to deal with the graph representation of 33

molecules we proposed a novel positional encoding for each atom and bond based on 34

an adjacency matrix to extend the architecture of the Transformer. Each molecule was 35

generated by growing and connecting procedures for the fragments in the given scaffold 36

that were unified into one model. Moreover, we trained this generator under a 37

reinforcement learning framework to increase the number of desired ligands. As a proof 38

of concept, our proposed method was applied to design ligands for the adenosine A2A 39

receptor (A2AAR) and compared with SMILES-based methods. The results 40

demonstrated the effectiveness of our method in that 100% of the generated molecules 41

are valid and most of them had a high predicted affinity value towards A2AAR with 42

given scaffolds. 43

 44

Keywords: deep learning, reinforcement learning, policy gradient, drug design, 45

Transformer, multi-objective optimization 46

 47

Introduction 48

Due to the size of drug-like chemical space (i.e. estimated at 1033 - 1060 organic 49

molecules) 1 it is impossible to screen every corner of it to discover optimal drug 50

candidates. Commonly, the specific scaffolds derived from endogenous substances, 51

high throughput screening, or a phenotypic assay 2 are taken as a starting point to design 52

analogs while side chains/substituents are added or modified 3. These fragments are 53

used as “building blocks” to develop drug leads with e.g. combinatorial chemistry such 54

as growing, linking, and merging 4. After a promising drug lead has been discovered it 55

is further optimized by modifying side chains to improve potency towards the relevant 56

targets, selectivity over off-targets, and physicochemical properties which in turn can 57

improve safety and tolerability 5. 58

 59

In scaffold-based rational drug design, it is generally accepted that a chemical space 60

consisting of 109 diverse molecules can be sampled with only 103 fragments 6 . For 61

instance, one well known class of drug targets are G Protein-coupled receptors 62

(GPCRS), a family via which approximately 35% of drug exert their effect 7. The 63

adenosine receptors (ARs) form a family within rhodopsin-like GPCRs and include 64

four subtypes (A1, A2A, A2B and A3). Each of them has a unique pharmacological profile, 65

tissue distribution, and effector coupling 8, 9. ARs are ubiquitously distributed 66

throughout the human tissues, and involved in many biological processes and diseases 67

10. As adenosine is the endogenous agonist of ARs, a number of known ligands of the 68

ARs are adenosine analogs and have a common scaffold. Examples include purines, 69

xanthines, triazines, pyrimidines, and the inclusion of a ribose moiety 11. In this work, 70

we aim to design novel ligands for this family of receptors using a deep learning-based 71

drug design method. 72

 73

74

Deep learning based methods have been gaining ground in computational drug 75

discovery, including de novo design, based on rapid developments over the last decade 76

12. Deep learning has achieved breakthroughs in visual recognition, natural language 77

processing, and other data-rich fields 13. For distribution-directed issues, Gomez-78

Bombarelli et al. implemented variational autoencoders (VAE) to map molecules into 79

a latent space where each point can also be decoded into unique molecules inversely 14. 80

They used recurrent neural networks (RNNs) to successfully learn SMILES (simplified 81

molecular-input line-entry system) grammar and construct a distribution of molecular 82

libraries 15. For goal-directed issues, Sanchez-Lengeling et al. combined reinforcement 83

learning and generative adversarial networks (GANs) to develop an approach named 84

ORGANIC to design active compounds for a given target 16. Olivecrona et al. proposed 85

the REINVENT algorithm which updated the reinforcement learning with a Bayesian 86

approach and combined RNNs to generate SMILES-based desired molecules 17, 18. 87

Moreover, Lim et al. proposed a method for scaffold-based molecular design with a 88

graph generative model 19. Li et al. also used deep learning to develop a tool named 89

DeepScaffold for this issue 20. Arús‑Pous et al. employed RNNs to develop a SMILES-90

based scaffold decorator for de novo drug design 21. Yang et al. used the Transformer 91

model 22 to develop a tool named SyntaLinker for automatic fragment linking 23. Here 92

we continue to address on this issue further with different molecular representations 93

and deep learning architectures. 94

 95

In previous studies we investigated the performance of RNNs and proposed a method 96

named DrugEx by integrating reinforcement learning to balance distribution-directed 97

and goal-directed tasks 24. Furthermore, we updated DrugEx with multi-objective 98

reinforcement learning and applied it in polypharmacology 25. However, the well-99

trained model cannot receive any input data from users and can only reflect the 100

distribution of the desired molecules with fixed conditions. If the objectives are changed, 101

the model needs to be trained again. In this work, we compared different end-to-end 102

deep learning methods to update the DrugEx model to allow users to provide prior 103

information, e.g. fragments that should occur in the generated molecules. Based on the 104

extensive experience in our group with the A2AAR, we continue to take this target as an 105

example to evaluate the performance of our proposed methods. In the following context, 106

we will discuss the case of scaffold-constrained drug design, i.e. the model takes 107

scaffolds composed of multiple fragments as input to generate desired molecules which 108

are predicted to be active to A2AAR. All python code for this study is freely available 109

at http://gitlab.com/XuhanLiu/DrugEx. 110

 111

Materials and Methods 112

Data source 113

The ChEMBL set was reused from our work on DrugEx v2 25. This set consisted of 114

small molecule compounds downloaded from ChEMBL using a SMILES notation 115

(version 27) 26. There were ~1.7 million molecules remained for model pre-training 116

after data preprocessing implemented by RDKit. Preprocessing included neutralizing 117

charges, removing metals and small fragments. In addition, 10,828 ligands and 118

bioactivity data were extracted from ChEMBL to construct the LIGAND set, containing 119

structures and activities from bioassays towards the four human adenosine receptors. 120

The LIGAND set was used for fine-tuning the generative model. Molecules with 121

annotated A2AAR activity were used to train a bioactivity prediction model. If multiple 122

measurements for the same ligand existed, the average pChEMBL value (pX, including 123

pKi, pKd, pIC50 or pEC50) was calculated and duplicate items were removed. In order 124

to judge if the molecule is desired or not, the threshold of affinity was defined as pX = 125

6.5 to predict if the compound was active (>= 6.5) or inactive (< 6.5). 126

 127

The dataset was constructed with an input-output pair for each data point. Each 128

molecule was decomposed into a batch of fragments with the BRICS method 27 in 129

RDKit (Fig 1A). If a molecule contained more than four leaf fragments, the smaller 130

fragments were ignored and a maximum of four larger fragments were reserved to be 131

randomly combined at one time. Their SMILES sequences were joined with ‘.’ as input 132

data which were paired with the full SMILES of molecules. Here, the scaffold was 133

defined as the combination of different fragments which can be either continuous 134

(linked) or discrete (separated). The resulting scaffold-molecule pairs formed the input 135

and output data (Fig 1B). After completion of construction of the data pairs the set was 136

split into a training set and test set with the ratio 9:1 based on the input scaffolds. The 137

resulting ChEMBL set contained 10,418,681 and 1,083,271 pairs for training and test 138

set, respectively. The LIGAND set contained 61,413 pairs in the training set and 7,525 139

pairs in the test set. 140

 141
Fig. 1: scaffold-molecule pair dataset construction. (A) Each molecule in the dataset is decomposed hierarchically into a series of fragments with the BRICS 142

algorithm. (B) Subsequently data pairs between input and output are created. Combinations of leaf fragments form the scaffold as input, while the whole molecule 143

becomes the output. Each token in the SMILES sequences is separated by different colors. (C) After conversion to the adjacency matrix, each molecule was represented 144

as a graph matrix. The graph matrix contains five rows, standing for the atom, bond, previous and current positions, and fragment index. The columns are composed 145

with three parts to store the information of the scaffold, the growing section and the linking section. (D) All tokens are collected to construct the vocabularies for 146

SMILES-based and graph-based generators, respectively. (E) An example of the input and output matrices for the SMILES representation of scaffolds and molecules 147

 148

Molecular representations 149

In this study we tested two different molecular representations: SMILES and graph. For 150

SMILES representations each scaffold-molecule pair was transformed into two 151

SMILES sequences which were then split into different tokens to denote atoms, bonds, 152

or other tokens for grammar control (e.g. parentheses or numbers). All of these tokens 153

were put together to form a vocabulary which recorded the index of each token (Fig. 154

1D). Here, we used the same conversion procedure and vocabulary as in DrugEx v2 25. 155

In addition, a start token (GO) was put at the beginning of a batch of data as input and 156

an end token (END) at the end of the same batch of data as output. After sequence 157

padding with a blank token at empty positions, each SMILES sequence was rewritten 158

as a series of token indices with a fixed length. Subsequently all of these sequences for 159

both scaffolds and molecules were concatenated to construct the input and output 160

matrix (Fig. 1E). 161

 162

For the graph representation each molecule was represented as a five-row matrix, in 163

which the first two rows stand for the index of the atom and bond types, respectively. 164

The third and fourth rows represent the position of previous and current atoms 165

connected by a bond (Fig. 1C). The columns of this matrix contain three sections to 166

store the scaffold, growing part, and linking part. The scaffold section began with a start 167

token in the first row and the last row was labelled with the index of each scaffold 168

starting from one. The scaffolds of each molecule are put in the beginning of the matrix, 169

followed by the growing part for the scaffold, and the last part is the connecting bond 170

between these growing fragments with single bonds. For the growing and linking 171

sections the last row was always zero and these two sections were separated by the 172

column of the end token. It is worth noticing that the last row was not directly involved 173

in the training process. The vocabulary for graph representation was different from the 174

SMILES representation, contains 38 atom types (Table S1), and four bond types (single, 175

double, triple bonds and no bond). For each column, If an atom is the first occurrence 176

in a given scaffold the type of the bond will be empty (indexed as 0 with token ‘*’). In 177

addition, if the atom at the current position has occurred in the matrix, the type of the 178

atom in this column will be empty. In order to grasp more details of the graph 179

representation, we also provided the pseudocode for encoding (Table S2) and decoding 180

(Table S3). 181

 182

End-to-End Deep learning 183

In this work, we compared three different sequential end-to-end DL architectures to 184

deal with different molecular representations of either graph or SMILES (Fig. 2). These 185

methods included: (A) a Graph Transformer, (B) an LSTM-based encoder-decoder 186

model (LSTM-BASE), (C) an LSTM-based encoder-decoder model with an attention 187

mechanism (LSTM+ATTN) and (D) a Sequential Transformer model. All of these DL 188

models were constructed with PyTorch 28. 189

 190

 191

Fig. 2: Architectures of four different end-to-end deep learning models: (A) The Graph 192

Transformer; (B) The LSTM-based encoder-decoder model (LSTM-BASE); (C) The LSTM-based 193

encoder-decoder model with attention mechanisms (LSTM+ATTN); (D) The sequential 194

Transformer model. The Graph Transformer accepts a graph representation as input and SMILES 195

sequences are taken as input for the other three models. 196

 197

For the SMILES representation based models three different types were constructed as 198

follows (Fig. 2, right). The encoder and decoder in the LSTM-BASE model (Fig. 2B) 199

had the same architectures, containing one embedding layer, three recurrent layers, and 200

one output layer (as used in DrugEx v2). The number of neurons in the embedding and 201

hidden layers were 128 and 512, respectively. The hidden states of the recurrent layer 202

in the encoder are directly sent to the decoder as the initial states. On the basis of the 203

LSTM-BASE model an attention layer was added between the encoder and decoder to 204

form the LSTM+ATTN model (Fig. 2C). The attention layer calculates the weight for 205

each position of the input sequence to determine which position the decoder needs to 206

focus on during the decoding process. For each step the weighted sums of the output 207

calculated by the encoder are combined with the output of the embedding layer in the 208

decoder to form the input for the recurrent layers. The output of the recurrent layers is 209

dealt with by the output layer to generate the probability distribution of tokens in the 210

vocabulary in both of these two models. 211

 212

The sequential Transformer has a distinct architecture compared to the LSTM+ATTN 213

model although it also exploits an attention mechanism. For the embedding layers 214

“position encodings” are added into the typical embedding structure as the first layer of 215

the encoder and decoder. This ensures that the model no longer needs to encode the 216

input sequence token by token but can process all tokens in parallel. For the position 217

embedding, sine and cosine functions are used to define its formula as follows: 218

𝑃𝐸(𝑝,2𝑖) = sin(𝑝𝑜𝑠 100002𝑖 𝑑𝑚⁄⁄) 219

𝑃𝐸(𝑝,2𝑖+1) = cos(𝑝𝑜𝑠 100002𝑖 𝑑𝑚⁄⁄) 220

where PE(p, i) is the ith dimension of the position encoding at position p. It has the same 221

dimension dm = 512 as the typical embedding vectors so that the two can be summed. 222

 223

In addition, self-attention is used in the hidden layers to cope with long-range 224

dependencies. For each hidden layer in the encoder, it employs a residual connection 225

around a multi-head self-attention sublayer and feed-forward sublayer followed by 226

layer normalization. Besides these two sublayers in the decoder a third sublayer with 227

multi-head attention is inserted to capture the information from output of the encoder. 228

 229

This self-attention mechanism is defined as the scaled dot-product attention with three 230

vectors: queries (Q), keys (K) and values (V), of which the dimensions are dq, dk, dv, 231

respectively. The output matrix is computed as: 232

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊺

√𝑑𝑘
)𝑉 233

Instead of a single attention function, the Transformer adopts multi-head attention to 234

combine information from different representations at different positions which is 235

defined as: 236

MultiHead(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 237

where h is the number of heads. For each head, the attention values were calculated by 238

different and learned linear projections with Q, K and V as follows: 239

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 240

where WO, WQ, WK and WV are metrics of learned weights and we set h = 8 as the number 241

of heads and dk = dv = 64 in this work. 242

 243

For the graph representation of the molecules we updated the sequential Transformer 244

structure to propose a Graph Transformer (Fig. 2A). Similar to the sequential 245

Transformer the Graph Transformer also requires the encodings of both word and 246

position as the input. For the input word, the atom and bond cannot be processed 247

simultaneously; therefore we combined the index of atom and bond together and 248

defined it as follows: 249

𝐼 = 𝐼𝑎𝑡𝑜𝑚 × 4 + 𝐼𝑏𝑜𝑛𝑑 250

The index of the input word (I) for calculating word vectors is obtained by multiplying 251

the atom index (Iatom) by four (the total number of bond types defined) and subsequently 252

add the bond index (Ibond). Similarly, the position of each step cannot be used to 253

calculate the position encoding directly. Faced with more complex data structure than 254

sequential data, Dosovitskiy et al. proposed a new positional encoding scheme to define 255

the position for each patch in image data for image recognition 29. Inspired by their 256

work the position encoding at each step was defined as: 257

𝑃 = 𝑃𝑐𝑢𝑟𝑟 × 𝐿𝑚𝑎𝑥 + 𝑃𝑝𝑟𝑒𝑣 258

The input position (P) for calculating the position encoding was obtained by 259

multiplying the current position (Pcurr) by the max length (Lmax) and then adding the 260

previous position (Pprev), which was then processed with the same positional encoding 261

method as with the sequential Transformer. For the decoder, the hidden vector from the 262

transformer was taken as the starting point to be decoded by a GRU-based recurrent 263

layer; and the probability of atom, bond, previous and current position was decoded one 264

by one sequentially. 265

 266

When graph-based molecules are generated, the chemical valence rule is checked in 267

every step. Invalid values of atom and bond types will be masked and an incorrect 268

previous or current position will be removed ensuring the validity of all generated 269

molecules. It is worth noticing that before being encoded, each molecule will be 270

kekulized, meaning that the aromatic rings will be inferred to transform into either 271

single or double bonds. The reason for this is that aromatic bonds interfere with the 272

calculation of the valence value for each atom. 273

 274

During the training process of SMILES-based models, a negative log likelihood 275

function was used to construct the loss function to guarantee that the probability of the 276

token at each step in the output sequence became large enough in the probability 277

distribution of the vocabulary calculated by the deep learning model. In comparison, 278

the loss function used by the Graph Transformer model also contains four parts for atom, 279

bond, previous and current sites. Here the sum of these negative log probability values 280

is minimized to optimize the parameters in the model. For this, the Adam algorithm 281

was used for the optimization of the loss function. Here, the learning rate was set as 10-282

4, the batch size was 256, and training steps were set to 20 epochs for pre-training and 283

1,000 epochs for fine-tuning. 284

 285

286

Multi-objective optimization 287

In order to combine multiple objectives we exploited a Pareto-based ranking algorithm 288

with GPU acceleration as mentioned in DrugEx v2 25. Given two solutions m1 and m2 289

with their scores (x1, x2, ..., xn) and (y1, y2, …, yn), then m1 is said to Pareto dominate m2 290

if and only if: 291

∀ j ∈ {1, … , n}: 𝑥𝑗 ≥ 𝑦𝑗 𝑎𝑛𝑑 ∃ j ∈ {1, … , n}: 𝑥𝑗 > 𝑦𝑗 292

otherwise, m1 and m2 are non-dominated with each other. After the dominance between 293

all pair of solutions being determined, the non-dominated scoring algorithm is exploited 294

to obtain a rank of Pareto frontiers which consist of a set of solutions. After obtaining 295

frontiers between dominant solutions, molecules were ranked based on the average 296

Tanimoto-distance to other molecules instead of the commonly used crowding distance 297

in the same frontier. Subsequently molecules with smaller average distances were 298

ranked on the top. The final reward R* is defined as: 299

𝑅∗ =

{

 0.5 +
𝑘 − 𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
2𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 𝑖𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑘

2𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
, 𝑖𝑓 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 300

here k is the index of the solution in the Pareto rank. Rewards of undesired and desired 301

solutions will be evenly distributed in (0, 0.5] and (0.5, 0.1], respectively. 302

 303

In this work, we took two objectives into consideration: 1) the QED score 30 as 304

implemented by RDKit (from 0 to 1) to evaluate the drug-likeness of each molecule (a 305

larger value means more drug-like) ; 2) an affinity score towards the A2AAR which was 306

implemented by a random forest regression model with Scikit-Learn 31 like in DrugEx 307

v2 25. The input descriptors consisted of 2048D ECFP6 fingerprints and 19D physico-308

chemical descriptors (PhysChem). PhysChem included: molecular weight, logP, 309

number of H bond acceptors and donors, number of rotatable bonds, number of amide 310

bonds, number of bridge head atoms, number of hetero atoms, number of spiro atoms, 311

number of heavy atoms, the fraction of SP3 hybridized carbon atoms, number of 312

aliphatic rings, number of saturated rings, number of total rings, number of aromatic 313

rings, number of heterocycles, number of valence electrons, polar surface area, and 314

Wildman-Crippen MR value. Again it was determined if generated molecules are 315

desired based on the Affinity score (larger than the threshold = 6.5). In addition, the SA 316

score was also exploited an independent measurement to evaluate the synthesizability 317

of generated molecules, which is also calculated by RDKit 32. 318

 319

Reinforcement learning 320

In this work we constructed a reinforcement learning framework based on the interplay 321

between a Graph Transformer (agent) and two scoring functions (environment). A 322

policy gradient method was implemented to train the reinforcement learning model, the 323

objective function is designated as follows: 324

𝐽(𝜃) = 𝔼[𝑅∗(𝑦1:𝑇)|𝜃] =∑𝑙𝑜𝑔𝐺(𝑦𝑡|𝑦1:𝑡−1) ∙ 𝑅
∗(𝑦1:𝑇)

𝑇

𝑡=1

 325

For each step t during the generation process the generator (G) determines the 326

probability of each token (yt) from the vocabulary to be chosen based on the generated 327

sequence in previous steps (y1:t-1). In the sequence-based models yt can only be a token 328

in the vocabulary to construct SMILES while it can be different type of atoms or bonds 329

or the previous or current position in the graph-based model. The parameters in the 330

objective function are updated by employing a policy gradient based on the expected 331

end reward (R*) received from the predictor. By maximizing this function the parameter 332

𝜃 in the generator can be optimized to ensure that the generator designs desired 333

molecules which obtain a high reward score. 334

 335

In order to improve the diversity and reliability of generated molecules, we 336

implemented our exploration strategy for molecule generation during the training loops. 337

In the training loop our generator is trained to produce the chemical space as defined 338

by the target of interest. In this strategy there are two networks with the same 339

architectures, an exploitation net (Gθ) and an exploration net (Gφ). Gφ did not need to 340

be trained and its parameters are always fixed and it is based on the general drug-like 341

chemical space for diverse targets obtained from ChEMBL. The parameters in Gθ on 342

the other hand were updated for each epoch based on the policy gradient. Again an 343

exploring rate (ε) was defined with a range of [0.0, 1.0] to determine the percentage of 344

scaffolds being randomly selected as input by Gφ to generate molecules. Conversely Gθ 345

generated molecules with other input scaffolds. After the training process was finished 346

Gφ was removed and only Gθ was left as the final model for molecule generation. 347

 348

Performance evaluation 349

In order to evaluate the performance of the generators, four coefficients were calculated 350

from the population of generated molecules (validity, accuracy, desirability, and 351

uniqueness) which are defined as: 352

Validity =
𝑁𝑣𝑎𝑙𝑖𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 353

Accuracy =
𝑁𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒
𝑁𝑡𝑜𝑡𝑎𝑙

 354

Desirability =
𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 355

Uniqueness =
𝑁𝑢𝑛𝑖𝑞𝑢𝑒

𝑁𝑡𝑜𝑡𝑎𝑙
 356

here Ntotal is the total number of molecules, Nvalid is the number of molecules parsed as 357

valid SMILES sequences, Naccurate is the number of molecules that contained all given 358

scaffolds, Ndesired is the number of desired molecules that reach all required objectives, 359

and Nunique is the number of molecules which are different from others in the dataset. 360

 361

To measure molecular diversity, we adopted the Solow Polasky measurement as in the 362

previous work. This approach was proposed by Solow and Polasky in 1994 to estimate 363

the diversity of a biological population in an eco-system 33. The formula to calculate 364

diversity was redefined to normalize the range of values from [1, m] to (0, m] as follows: 365

𝐼(𝐴) =
1

|𝐴|
𝒆⊺𝐹(𝒔)−1𝒆 366

where A is a set of drug molecules with a size of |A| equal to m, e is an m-vector of 1’s 367

and F(s) = [f(dij))] is a non-singular m × m distance matrix, in which f(dij) stands for 368

the distance function of each pair of molecule provided as follows: 369

𝑓(𝑑) = 𝑒−𝜃𝑑𝑖𝑗 370

here we defined the distance dij of molecules si and sj by using the Tanimoto-distance 371

with ECFP6 fingerprints as follows: 372

𝑑𝑖𝑗 = 𝑑(𝑠𝑖, 𝑠𝑗) = 1 −
|𝑠𝑖 ∩ 𝑠𝑗|

|𝑠𝑖 ∪ 𝑠𝑗|
 , 373

where | si ∩ sj | represents the number of common fingerprint bits, and | si ∪ sj | is the 374

number of union fingerprint bits. 375

Results and Discussion 376

Fragmentation of molecule 377

As stated we decomposed each molecule into a series of fragments with the BRICS 378

algorithm to construct a fragment-molecule pair. Each organic compound can be split 379

into retrosynthetically interesting chemical substructures with a compiled elaborate set 380

of rules. For the ChEMBL and LIGAND sets, we respectively obtained 194,782 and 381

2,223 fragments. We further split the LIGAND set into three parts: active ligands 382

(LIGAND+, 2,638), inactive ligands (LIGAND-, 2710) and undetermined ligands 383

(LIGAND0, 5480) based on the pX of bioactivity for A2AAR. The number of fragments 384

in these four datasets have a similar distribution (Fig. 3A) and there are approximately 385

five fragments on average for each molecule with a 95% confidence between [0, 11] 386

(Fig. 3A). 387

 388

In the LIGAND set the three subsets have a similar molecular weight distribution of the 389

fragments (Fig. 3B) with an average of 164.3 Da, smaller than in the ChEMBL set 390

(247.3 Da). In order to check the similarity of these fragments we used the Tanimoto 391

similarity calculation with ECFP4 fingerprints between each pair of fragments in the 392

same dataset. We found that most of them were smaller than 0.5 indicating that they are 393

dissimilar to each other (Fig. 3C). Especially, the fragments in the LIGAND+ set have 394

the largest diversity. Moreover, the distribution of different fragments in these three 395

subsets of the LIGAND set are shown in Fig. 3D. The molecules in these three subsets 396

have their unique fragments and share some common substructures. 397

 398

 399

Fig 3: Analysis of some properties of fragments in the ChEMBL set and three LIGAND subsets. 400

(A) Violin plot for the distribution of the number of fragments per molecules; (B) Distribution of 401

molecular weight of these fragments; (C) Distribution of the similarity of the fragments measured 402

by the Tanimoto-similarity with ECFP4 fingerprints; (D) Venn diagram for the intersection of the 403

fragments existing in the three subsets of the LIGAND set. 404

 405

406

Pre-training & Fine-tuning 407

After finishing the dataset construction four models were pre-trained on the ChEMBL 408

set and fine-tuned on the LIGAND set. Here, these models were benchmarked on a 409

server with four GTX1080Ti GPUs. After the training process converged, each 410

fragment in the test set was presented as input for 10 times to generate molecules. The 411

performance is shown in Table 1. The training of Transformer models was faster but 412

consumed more computational resources than LSTM-based methods. In addition, 413

Transformer methods outperformed LSTM-based methods using SMILES. Although 414

the three SMILES-based models improved after being fine-tuned they were still 415

outperformed by the Graph Transformer because of the advantages of a graph 416

representation. To further check the accuracy of generated molecules we also compared 417

the chemical space between the generated molecules and the compounds in the training 418

set with three different representations 1) MW ~ logP; 2) PCA with 19D PhysChem 419

descriptors; 3) tSNE with 2048D ECFP6 fingerprints (Fig. 4). The region occupied by 420

molecules generated by the Graph Transformer overlapped completely with the 421

compounds in both the ChEMBL and LIGAND sets. 422

 423

Table 1: The performance of four different generators for pre-training and fine-tuning 424

processes. 425

Methods
Pre-trained Model Fine-tuned Model

Time Memory
Validity Accuracy Validity Accuracy

Graph

Transformer
100% 99.3% 100% 99.2% 453.8 s 14.5 GB

Sequential

Transformer
96.7% 72.0% 99.3% 87.3% 832.3 s 31.7 GB

LSTM-BASE 93.9% 44.1% 98.7% 77.9% 834.6 s 5.5 GB

LSTM+ATTN 89.7% 52.2% 96.4% 84.2% 1212.5 s 15.9 GB

 426

 427

Fig. 4: The chemical space of generated molecules by the Graph Transformer pre-trained on the 428

ChEMBL set (A, C and E) and being fine-tuned on the LIGAND set (B, D and F). Chemical space 429

was represented by either logP ~ MW (A, B) and first two components in PCA on PhysChem 430

descriptors (C, D) and t-SNE on ECFP6 fingerprints (E, F). 431

 432

The graph representation for molecules has more advantages over the SMILES 433

representation when dealing with fragment-based molecule design: 1) Invariance in 434

the local scale: During the process of molecule generation, multiple fragments in a 435

given scaffold can be put into any position in the output matrix without changing the 436

order of atoms and bonds in that scaffold. 2) Extendibility in the global scale: When 437

fragments in the scaffold are growing or being linked, they can be flexibly appended in 438

the end column of the graph matrix while the original data structure does not need 439

changing. 3) Free of grammar: Unlike in SMILES sequences there is no explicit 440

grammar to constrain the generation of molecules, such as the parentheses for branches 441

and the numbers for rings in SMILES; 4) Accessibility of chemical rules: For each 442

added atom or bond the algorithm can detect if the valence of atoms is valid or not and 443

mask invalid atoms or bonds in the vocabulary to guarantee the whole generated matrix 444

can be successfully parsed into a molecule. With these advantages the Graph 445

Transformer generates molecules faster while using less computational resources. 446

 447

However, after examining the QED scores and SA scores we found that although the 448

distribution of QED scores was similar between the methods (Figure 5A,C), the 449

synthesizability of the molecules generated by the Graph Transformer were not better 450

than the SMILES-based generators. This was especially true when fine-tuning on the 451

LIGAND set. A possible reason is that molecules generated by the Graph Transformer 452

contain uncommon rings when the model dealt with long-distance dependencies. In 453

addition, because of more complicated data structure and presence of more parameters 454

in the model, Graph Transformer did not outperform for the synthesizability of 455

generated molecules when being trained on the small dataset (e.g. the LIGAND set). It 456

is also worth noticing that there still was a small fraction of generated molecules that 457

did not contain the required scaffolds which is caused by a kekulization problem. For 458

example, a scaffold ‘CCC’ can be grown into ‘C1=C(C)C=CC=C1’. After being 459

sanitized, it can be transformed into ‘c1c(C)cccc1’. In this process one single bond in 460

the scaffold is changed to an aromatic bond, which causes a mismatch between the 461

scaffold and the molecule. Currently our algorithm cannot solve this problem because 462

if the aromatic bond is taken into consideration, the valence of aromatic atoms is 463

difficult to be calculated accurately. This would lead to the generation of invalid 464

molecules. Therefore, there is no aromatic bond provided in the vocabulary and all of 465

the aromatic rings are inferred automatically through the molecule sanitization method 466

in RDKit. 467

 468

Fig. 5: the distribution of the QED score (A, C) and SA score (B, D) of desired ligands in the 469

ChEMBL set and LIGAND set and of molecules generated by four different generators. For 470

the QED score, four generators had the same performance as the molecules in both ChEMBL set (A) 471

and the LIGAND set (C). For the SA score, Graph Transformer did not outperform three other 472

SMILES-based generators in ChEMBL set (B) and even worse in the LIGAND set (D). 473

 474

Policy gradient 475

Because the Graph Transformer generates molecules accurately and fast it was chosen 476

as the agent in the RL framework. Two objectives were tested in the training process of 477

this work. The first one was affinity towards A2AAR, which is predicted by the random 478

forest-based regression model from DrugEx v2; the second one was the QED score 479

calculated with RDKit to measure how similar the generated molecule is to known 480

approved drugs. With the policy gradient method as the reinforcement learning 481

framework two cases were tested. On the one hand, predicted affinity for A2AAR was 482

considered without the QED score. On the other hand, both objectives were used to 483

optimize the model with Pareto ranking. In the first case 86.1% of the generated 484

molecules were predicted active, while the percentage of predicted active molecules in 485

the second case was 74.6%. Although the generator generated more active ligands 486

without the QED score constraint most of them are not drug-like as they always have a 487

molecular weight larger than 500Da. However, when we checked the chemical space 488

represented by tSNE with ECFP6 fingerprints the overlap region between generated 489

molecules and ligands in the training set was not complete implying that they fall out 490

of the applicability domain of the regression model. 491

 492

In DrugEx v2, we provided an exploration strategy which simulated the idea of 493

evolutionary algorithms such as crossover and mutation manipulations. However, when 494

coupled to the Graph Transformer there were some difficulties and we had to give up 495

this strategy. Firstly, the mutation strategy did not improve with different mutation rates. 496

A possible reason is that before being generated, part the molecule was fixed with a 497

given scaffold counteracting the effect of mutation caused by the mutation net. 498

Secondly, the crossover strategy is computationally very expensive in this context. This 499

strategy needs the convergence of model training and iteratively updates the parameters 500

in the agent. With multiple iterations, it takes a long period of time beyond the 501

computational resources we can currently access. As a result, we updated the 502

exploration strategy as mentioned in the Methods section with six different exploration 503

rates: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]. 504

 505

Table 2: the performance of the Graph Transformer with different exploration rates in the RL 506

framework. 507

Changes to the exploration rate do not influence accuracy and have a low effect on diversity. 508

However, desirability (finding active ligands) and uniqueness can be influenced significantly. 509

Empirically determining an optimal value for a given chemical space is recommended. 510

 511

 512

After training of the models, multiple scaffolds were input 10 times to generate 513

molecules. The results for accuracy, desirability, uniqueness, and diversity with 514

different exploration rates are shown in Table 2. With a low ε the model generates more 515

desired molecules, but the uniqueness of the generated molecules can be improved. At 516

ε = 0.3 the model generated the highest percentage of unique desired molecules (56.8%). 517

Diversity was always larger than 0.84 and the model achieved the largest value (0.88) 518

with ε = 0.0 or ε = 0.2. The chemical space represented by tSNE with ECFP6 519

fingerprints confirms that our exploration strategy produces a set of generated 520

molecules completely covering the region occupied by the LIGAND set (Fig. 6). 521

 522

ε Accuracy Desirability Uniqueness Diversity

0.0 99.7% 74.6% 60.7% 0.879

0.1 99.7% 66.8% 75.0% 0.842

0.2 99.8% 61.6% 80.2% 0.879

0.3 99.7% 56.8% 89.8% 0.874

0.4 99.7% 54.8% 88.8% 0.859

0.5 99.7% 46.8% 88.5% 0.875

 523
Fig. 6: The chemical space of generated molecules by the Graph Transformer trained with 524

different exploration rates in the RL framework. The chemical space was represented by t-SNE on 525

ECFP6 fingerprints. 526

 527

Generated Molecules 528

In the chemical space making up antagonists of A2AAR there are several well-known 529

scaffolds. Examples include furan, triazine, aminotriazole, and purine derivatives such 530

as xanthine and azapurine. The Graph Transformer model produced active ligands for 531

A2AAR (inferred from the predictors) with different combinations of these fragments as 532

scaffolds. Taking these molecules generated by the Graph Transformer as an example, 533

we filtered out the molecules with potentially reactive groups (such as aldehydes) and 534

uncommon ring systems and listed 30 desired molecules as putative A2AAR 535

ligands/antagonists (Fig. 7). For each scaffold five molecules were selected and 536

assigned in the same row. These molecules are considered a valid starting point for 537

further considerations and work (e.g. molecular docking or simulation). 538

 539

 540

Fig. 7: Sample of generated molecules with the Graph Transformer with different scaffolds. 541

These scaffolds include: furan, triazine, aminotriazole, xanthine, and azapurine. The generated 542

molecules based on the same scaffolds are aligned in the same row. 543

 544

Conclusions and Future Perspectives 545

In this study, DrugEx was updated with the ability to design novel molecules based on 546

scaffolds consisting of multiple fragments as input. In this version (v3), a new positional 547

encoding scheme for atoms and bonds was proposed to make the Transformer model 548

deal with a molecular graph representation. With one model, multiple fragments in a 549

given scaffold can be grown at the same time and connected to generate a new molecule. 550

In addition, chemical rules on valence are enforced at each step of the process of 551

molecule generation to ensure that all generated molecules are valid. These advantages 552

are impossible to be embodied in SMILES-based generation, as SMILES-based 553

molecules are constrained by grammar that allows a 2D topology to be represented in 554

a sequential way. With multi-objective reinforcement learning the model generates 555

drug-like ligands, in our case for the A2AAR target. 556

 557

In future work, the Graph Transformer will be extended to include other information as 558

input to design drugs conditionally. For example, proteochemometric modelling (PCM) 559

can take information for both ligands and targets as input to predict the affinity of their 560

interactions, which allows generation of compounds that are promiscuous (useful for 561

e.g., viral mutants) or selective (useful for e.g., kinase inhibitors) 34. The Transformer 562

can then be used to construct inverse PCM models which take the protein information 563

as input (e.g. sequences, structures, or descriptors) to design active ligands for a given 564

protein target without known ligands. Moreover, the Transformer can also be used for 565

lead optimization. For instance, the input can be a “hit” already, generating “optimized” 566

ligands, or a “lead” with side effects to produce ligands with a better ADME/tox profile. 567

 568

Authors’ Contributions 569

XL and GJPvW conceived the study and performed the experimental work and analysis. 570

KY, APIJ nd HWTvV provided feedback and critical input. All authors read, 571

commented on and approved the final manuscript. 572

 573

Acknowledgements 574

XL thanks Chinese Scholarship Council (CSC) for funding, GJPvW thanks the Dutch 575

Research Council and Stichting Technologie Wetenschappen (STW) for financial 576

support (STW-Veni #14410). Thanks go to Dr. Xue Yang for verifying Table S1 and Dr. 577

Anthe Janssen checking the convergence of t-SNE. We also acknowledge Bert 578

Beerkens for providing the common scaffolds used to generate molecules as an example. 579

 580

Competing Interests 581

The authors declare that they have no competing interests 582

References 583

1. P. G. Polishchuk, T. I. Madzhidov and A. Varnek, J Comput Aided Mol Des, 2013, 27, 675-679. 584

2. P. J. Hajduk and J. Greer, Nat Rev Drug Discov, 2007, 6, 211-219. 585

3. G. L. Card, L. Blasdel, B. P. England, C. Zhang, Y. Suzuki, S. Gillette, D. Fong, P. N. Ibrahim, D. R. 586

Artis, G. Bollag, M. V. Milburn, S. H. Kim, J. Schlessinger and K. Y. Zhang, Nat Biotechnol, 2005, 587

23, 201-207. 588

4. Y. Bian and X. S. Xie, AAPS J, 2018, 20, 59. 589

5. J. P. Hughes, S. Rees, S. B. Kalindjian and K. L. Philpott, Br J Pharmacol, 2011, 162, 1239-1249. 590

6. C. Sheng and W. Zhang, Med Res Rev, 2013, 33, 554-598. 591

7. R. Santos, O. Ursu, A. Gaulton, A. P. Bento, R. S. Donadi, C. G. Bologa, A. Karlsson, B. Al-Lazikani, 592

A. Hersey, T. I. Oprea and J. P. Overington, Nat Rev Drug Discov, 2017, 16, 19-34. 593

8. B. B. Fredholm, Exp Cell Res, 2010, 316, 1284-1288. 594

9. J. F. Chen, H. K. Eltzschig and B. B. Fredholm, Nat Rev Drug Discov, 2013, 12, 265-286. 595

10. S. Moro, Z. G. Gao, K. A. Jacobson and G. Spalluto, Med Res Rev, 2006, 26, 131-159. 596

11. W. Jespers, A. Oliveira, R. Prieto-Diaz, M. Majellaro, J. Aqvist, E. Sotelo and H. Gutierrez-de-597

Teran, Molecules, 2017, 22. 598

12. X. Liu, A. P. IJzerman and G. J. P. van Westen, Methods Mol Biol, 2021, 2190, 139-165. 599

13. Y. LeCun, Y. Bengio and G. Hinton, Nature, 2015, 521, 436-444. 600

14. R. Gomez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernandez-Lobato, B. Sanchez-Lengeling, 601

D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams and A. Aspuru-Guzik, ACS Cent Sci, 602

2018, 4, 268-276. 603

15. M. H. S. Segler, T. Kogej, C. Tyrchan and M. P. Waller, ACS Cent Sci, 2018, 4, 120-131. 604

16. S.-L. Benjamin, O. Carlos, G. Gabriel L. and A.-G. Alan, Optimizing distributions over molecular 605

space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry 606

(ORGANIC), 2017. 607

17. M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen, Journal of cheminformatics, 2017, 9, 48. 608

18. T. Blaschke, J. Arus-Pous, H. Chen, C. Margreitter, C. Tyrchan, O. Engkvist, K. Papadopoulos and 609

A. Patronov, Journal of chemical information and modeling, 2020, 60, 5918-5922. 610

19. J. Lim, S. Y. Hwang, S. Moon, S. Kim and W. Y. Kim, Chem Sci, 2019, 11, 1153-1164. 611

20. Y. Li, J. Hu, Y. Wang, J. Zhou, L. Zhang and Z. Liu, Journal of chemical information and modeling, 612

2020, 60, 77-91. 613

21. J. Arus-Pous, A. Patronov, E. J. Bjerrum, C. Tyrchan, J. L. Reymond, H. Chen and O. Engkvist, 614

Journal of cheminformatics, 2020, 12, 38. 615

22. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and I. J. a. e.-p. 616

Polosukhin, Journal, 2017, arXiv:1706.03762. 617

23. Y. Yang, S. Zheng, S. Su, C. Zhao, J. Xu and H. Chen, Chem Sci, 2020, 11, 8312-8322. 618

24. X. Liu, K. Ye, H. W. T. van Vlijmen, A. P. IJzerman and G. J. P. van Westen, Journal of 619

cheminformatics, 2019, 11, 35. 620

25. X. Liu, K. Ye, H. W. T. van Vlijmen, M. T. M. Emmerich, I. A. P. and G. J. P. van Westen, Journal of 621

cheminformatics, 2021, 13, 85. 622

26. A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light, S. McGlinchey, D. 623

Michalovich, B. Al-Lazikani and J. P. Overington, Nucleic Acids Res, 2012, 40, D1100-1107. 624

27. J. Degen, C. Wegscheid-Gerlach, A. Zaliani and M. Rarey, ChemMedChem, 2008, 3, 1503-1507. 625

28. PyTorch, https://pytorch.org/). 626

29. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. 627

Minderer, G. Heigold, S. Gelly, J. Uszkoreit and N. J. a. e.-p. Houlsby, Journal, 2020, 628

arXiv:2010.11929. 629

30. G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan and A. L. Hopkins, Nat Chem, 2012, 4, 90-630

98. 631

31. Scikit-Learn: machine learning in Python, http://www.scikit-learn.org/). 632

32. P. Ertl and A. Schuffenhauer, Journal of cheminformatics, 2009, 1, 8. 633

33. A. R. Solow and S. Polasky, Environmental and Ecological Statistics, 1994, 1, 95-103. 634

34. G. J. van Westen, J. K. Wegner, P. Geluykens, L. Kwanten, I. Vereycken, A. Peeters, A. P. Ijzerman, 635

H. W. van Vlijmen and A. Bender, PLoS One, 2011, 6, e27518. 636

637

https://pytorch.org/
http://www.scikit-learn.org/

Table S1: Atoms in vocabulary for graph-based molecule generation. The column of “Symbol” 638

is the symbol of the atom and its charge; the column of “Valence” is the value of valence of the state 639

of each chemical element; the “Number” column stands for the index of each element in the periodic 640

table, the last row is the unique word for each state of these elements, a combination of its valence 641

and symbol. 642

Symbol Valence Charge Number Word

O 2 0 8 2O

O+ 3 1 8 3O+

O- 1 -1 8 1O-

C 4 0 6 4C

C+ 3 1 6 3C+

C- 3 -1 6 3C-

N 3 0 7 3N

N+ 4 1 7 4N+

N- 2 -1 7 2N-

Cl 1 0 17 1Cl

S 2 0 16 2S

S 6 0 16 6S

S 4 0 16 4S

S+ 3 1 16 3S+

S+ 5 1 16 5S+

S- 1 -1 16 1S-

F 1 0 9 1F

I 1 0 53 1I

I 5 0 53 5I

I+ 2 1 53 2I+

Br 1 0 35 1Br

P 5 0 15 5P

P 3 0 15 3P

P+ 4 1 15 4P+

Se 2 0 34 2Se

Se 6 0 34 6Se

Se 4 0 34 4Se

Se+ 3 1 34 3Se+

Si 4 0 14 4Si

B 3 0 5 3B

B- 4 -1 5 4B-

As 5 0 33 5As

As 3 0 33 3As

As+ 4 1 33 4As+

Te 2 0 52 2Te

Te 4 0 52 4Te

Te+ 3 1 52 3Te+

* 0 0 0 *

Table S2: The pseudo code for encoding the graph representation of molecules in DrugEx v3 643

Algorithm encoding:

 Input:

mol: structure of the kekulized molecule

subs: structure of the scaffolds

vocab: vocabulary of tokens which is consisted of graph matrix

Output:

 matrix: the n x 5 matrix to represents the molecular graph.

Ensure the atom of the subs are put at the start in the molecule

mol ← RANK_ATOM_BY_SUB(mol, subs)

sub_atoms ← GET_ATOMS (subs)

sub_bonds ← GET_BONDS (subs)

mol_atoms ← GET_ATOMS (mol)

frag, grow, link ← [('GO', 0, 0, 0, 1)], [], [(0, 0, 0, 0, 0)]

For atom in mol_atoms:

 # The bonds which connect to the atom having the index before this atom

bonds ← GET_LEFT_BONDS (mol, atom)

For bond in bonds:

 tk_bond ← GET_TOKEN (vocab, bond)

 other ← GET_OTHER_ATOM(mol, atom, bond)

 If IS_FIRST (bonds, bond):

 tk_atom ← GET_TOKEN (vocab, atom)

 Else:

 tk_atom ← GET_TOKEN (vocab, None)

 # The index of the scaffold in which the current atom locates

Its value starts from 1. If it is not in the scaffold, it will be 0

 scf ← GET_FRAG_ID (subs, atom)

 column ← (tk_atom, tk_bond, GET_INDEX (other), GET_INDEX (atom), scf)

If other in sub_atoms and atom in sub_atoms and bond not in sub_bonds:

 Insert column to link

 Else if bond in sub_bonds:

 Insert column to frag

 Else:

 Insert column to grow

 End

End

Insert ('EOS', 0, 0, 0, 0) to grow

matrix ← CONCATENATE_BY_COLUMN (frag, grow, link)

Return matrix

 644

 645

Table S3: The pseudo code for decoding the graph representation of molecules in DrugEx v3 646

Algorithm decoding:

 Input:

 matrix: the n x 5 matrix to represents the molecular graph

vocab: vocabulary of tokens which is consisted of graph matrix

Output:

mol: structure of the kekulized molecule

subs: structure of the scaffolds

mol ← new MOL ()

subs ← new SUB ()

For atom, bond, prev, curr, scf in matrix:

 If atom == 'EOS' or atom == 'GO':

continue

 If atom != '*':

 a ← new Atom (GET_ATOM_SYMBOL(vocab, atom))

 SET_FORMAL_CHARGE (a, GET_CHARGE(vocab, atom))

 ADD_ATOM (mol, a)

 If scf != 0: ADD_ATOM (subs, a)

 If bond != 0:

 b ← new Bond (bond)

 ADD_BOND(mol, b)

 If frag != 0:

ADD_BOND (subs, b)

End

automatically determine the aromatic rings

mol ← SANITIZE (mol)

subs ← SANITIZE (subs)

Return mol, subs

 647

 648

