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Abstract 19 

Due to the large drug-like chemical space available to search for feasible drug-like 20 

molecules, rational drug design often starts from specific scaffolds to which side 21 

chains/substituents are added or modified. With the rapid growth of the application of 22 

deep learning in drug discovery, a variety of effective approaches have been developed 23 

for de novo drug design. In previous work, we proposed a method named DrugEx, 24 

which can be applied in polypharmacology based on multi-objective deep 25 

reinforcement learning. However, the previous version is trained under fixed objectives 26 

similar to other known methods and does not allow users to input any prior information 27 

(i.e. a desired scaffold). In order to improve the general applicability, we updated 28 

DrugEx to design drug molecules based on scaffolds which consist of multiple 29 

fragments provided by users. In this work, the Transformer model was employed to 30 

generate molecular structures. The Transformer is a multi-head self-attention deep 31 

learning model containing an encoder to receive scaffolds as input and a decoder to 32 

generate molecules as output. In order to deal with the graph representation of 33 

molecules we proposed a novel positional encoding for each atom and bond based on 34 

an adjacency matrix to extend the architecture of the Transformer. Each molecule was 35 

generated by growing and connecting procedures for the fragments in the given scaffold 36 

that were unified into one model. Moreover, we trained this generator under a 37 

reinforcement learning framework to increase the number of desired ligands. As a proof 38 

of concept, our proposed method was applied to design ligands for the adenosine A2A 39 

receptor (A2AAR) and compared with SMILES-based methods. The results 40 

demonstrated the effectiveness of our method in that 100% of the generated molecules 41 

are valid and most of them had a high predicted affinity value towards A2AAR with 42 

given scaffolds.  43 

 44 

Keywords: deep learning, reinforcement learning, policy gradient, drug design, 45 

Transformer, multi-objective optimization 46 

  47 



Introduction 48 

Due to the size of drug-like chemical space (i.e. estimated at 1033 - 1060 organic 49 

molecules) 1 it is impossible to screen every corner of it to discover optimal drug 50 

candidates. Commonly, the specific scaffolds derived from endogenous substances, 51 

high throughput screening, or a phenotypic assay 2 are taken as a starting point to design 52 

analogs while side chains/substituents are added or modified 3. These fragments are 53 

used as “building blocks” to develop drug leads with e.g. combinatorial chemistry such 54 

as growing, linking, and merging 4. After a promising drug lead has been discovered it 55 

is further optimized by modifying side chains to improve potency towards the relevant 56 

targets, selectivity over off-targets, and physicochemical properties which in turn can 57 

improve safety and tolerability 5. 58 

 59 

In scaffold-based rational drug design, it is generally accepted that a chemical space 60 

consisting of 109 diverse molecules can be sampled with only 103 fragments 6 . For 61 

instance, one well known class of drug targets are G Protein-coupled receptors 62 

(GPCRS), a family via which approximately 35% of drug exert their effect 7. The 63 

adenosine receptors (ARs) form a family within rhodopsin-like GPCRs and include 64 

four subtypes (A1, A2A, A2B and A3). Each of them has a unique pharmacological profile, 65 

tissue distribution, and effector coupling 8, 9. ARs are ubiquitously distributed 66 

throughout the human tissues, and involved in many biological processes and diseases 67 

10. As adenosine is the endogenous agonist of ARs, a number of known ligands of the 68 

ARs are adenosine analogs and have a common scaffold. Examples include purines, 69 

xanthines, triazines, pyrimidines, and the inclusion of a ribose moiety 11. In this work, 70 

we aim to design novel ligands for this family of receptors using a deep learning-based 71 

drug design method.  72 

 73 

74 



Deep learning based methods have been gaining ground in computational drug 75 

discovery, including de novo design, based on rapid developments over the last decade 76 

12. Deep learning has achieved breakthroughs in visual recognition, natural language 77 

processing, and other data-rich fields 13. For distribution-directed issues, Gomez-78 

Bombarelli et al. implemented variational autoencoders (VAE) to map molecules into 79 

a latent space where each point can also be decoded into unique molecules inversely 14. 80 

They used recurrent neural networks (RNNs) to successfully learn SMILES (simplified 81 

molecular-input line-entry system) grammar and construct a distribution of molecular 82 

libraries 15. For goal-directed issues, Sanchez-Lengeling et al. combined reinforcement 83 

learning and generative adversarial networks (GANs) to develop an approach named 84 

ORGANIC to design active compounds for a given target 16. Olivecrona et al. proposed 85 

the REINVENT algorithm which updated the reinforcement learning with a Bayesian 86 

approach and combined RNNs to generate SMILES-based desired molecules 17, 18. 87 

Moreover, Lim et al. proposed a method for scaffold-based molecular design with a 88 

graph generative model 19. Li et al. also used deep learning to develop a tool named 89 

DeepScaffold for this issue 20. Arús‑Pous et al. employed RNNs to develop a SMILES-90 

based scaffold decorator for de novo drug design 21. Yang et al. used the Transformer 91 

model 22 to develop a tool named SyntaLinker for automatic fragment linking 23. Here 92 

we continue to address on this issue further with different molecular representations 93 

and deep learning architectures. 94 

 95 

In previous studies we investigated the performance of RNNs and proposed a method 96 

named DrugEx by integrating reinforcement learning to balance distribution-directed 97 

and goal-directed tasks 24. Furthermore, we updated DrugEx with multi-objective 98 

reinforcement learning and applied it in polypharmacology 25. However, the well-99 

trained model cannot receive any input data from users and can only reflect the 100 

distribution of the desired molecules with fixed conditions. If the objectives are changed, 101 

the model needs to be trained again. In this work, we compared different end-to-end 102 

deep learning methods to update the DrugEx model to allow users to provide prior 103 

information, e.g. fragments that should occur in the generated molecules. Based on the 104 



extensive experience in our group with the A2AAR, we continue to take this target as an 105 

example to evaluate the performance of our proposed methods. In the following context, 106 

we will discuss the case of scaffold-constrained drug design, i.e. the model takes 107 

scaffolds composed of multiple fragments as input to generate desired molecules which 108 

are predicted to be active to A2AAR. All python code for this study is freely available 109 

at http://gitlab.com/XuhanLiu/DrugEx. 110 

  111 



Materials and Methods 112 

Data source 113 

The ChEMBL set was reused from our work on DrugEx v2 25. This set consisted of 114 

small molecule compounds downloaded from ChEMBL using a SMILES notation 115 

(version 27) 26. There were ~1.7 million molecules remained for model pre-training 116 

after data preprocessing implemented by RDKit. Preprocessing included neutralizing 117 

charges, removing metals and small fragments. In addition, 10,828 ligands and 118 

bioactivity data were extracted from ChEMBL to construct the LIGAND set, containing 119 

structures and activities from bioassays towards the four human adenosine receptors. 120 

The LIGAND set was used for fine-tuning the generative model. Molecules with 121 

annotated A2AAR activity were used to train a bioactivity prediction model. If multiple 122 

measurements for the same ligand existed, the average pChEMBL value (pX, including 123 

pKi, pKd, pIC50 or pEC50) was calculated and duplicate items were removed. In order 124 

to judge if the molecule is desired or not, the threshold of affinity was defined as pX = 125 

6.5 to predict if the compound was active (>= 6.5) or inactive (< 6.5).  126 

 127 

The dataset was constructed with an input-output pair for each data point. Each 128 

molecule was decomposed into a batch of fragments with the BRICS method 27 in 129 

RDKit (Fig 1A). If a molecule contained more than four leaf fragments, the smaller 130 

fragments were ignored and a maximum of four larger fragments were reserved to be 131 

randomly combined at one time. Their SMILES sequences were joined with ‘.’ as input 132 

data which were paired with the full SMILES of molecules. Here, the scaffold was 133 

defined as the combination of different fragments which can be either continuous 134 

(linked) or discrete (separated). The resulting scaffold-molecule pairs formed the input 135 

and output data (Fig 1B). After completion of construction of the data pairs the set was 136 

split into a training set and test set with the ratio 9:1 based on the input scaffolds. The 137 

resulting ChEMBL set contained 10,418,681 and 1,083,271 pairs for training and test 138 

set, respectively. The LIGAND set contained 61,413 pairs in the training set and 7,525 139 

pairs in the test set.  140 



 141 
Fig. 1: scaffold-molecule pair dataset construction. (A) Each molecule in the dataset is decomposed hierarchically into a series of fragments with the BRICS 142 

algorithm. (B) Subsequently data pairs between input and output are created. Combinations of leaf fragments form the scaffold as input,  while the whole molecule 143 

becomes the output. Each token in the SMILES sequences is separated by different colors. (C) After conversion to the adjacency matrix, each molecule was represented 144 

as a graph matrix. The graph matrix contains five rows, standing for the atom, bond, previous and current positions, and fragment index. The columns are composed 145 

with three parts to store the information of the scaffold, the growing section and the linking section. (D) All tokens are collected to construct the vocabularies for 146 

SMILES-based and graph-based generators, respectively. (E) An example of the input and output matrices for the SMILES representation of scaffolds and molecules  147 

 148 



Molecular representations 149 

In this study we tested two different molecular representations: SMILES and graph. For 150 

SMILES representations each scaffold-molecule pair was transformed into two 151 

SMILES sequences which were then split into different tokens to denote atoms, bonds, 152 

or other tokens for grammar control (e.g. parentheses or numbers). All of these tokens 153 

were put together to form a vocabulary which recorded the index of each token (Fig. 154 

1D). Here, we used the same conversion procedure and vocabulary as in DrugEx v2 25. 155 

In addition, a start token (GO) was put at the beginning of a batch of data as input and 156 

an end token (END) at the end of the same batch of data as output. After sequence 157 

padding with a blank token at empty positions, each SMILES sequence was rewritten 158 

as a series of token indices with a fixed length. Subsequently all of these sequences for 159 

both scaffolds and molecules were concatenated to construct the input and output 160 

matrix (Fig. 1E).  161 

 162 

For the graph representation each molecule was represented as a five-row matrix, in 163 

which the first two rows stand for the index of the atom and bond types, respectively. 164 

The third and fourth rows represent the position of previous and current atoms 165 

connected by a bond (Fig. 1C). The columns of this matrix contain three sections to 166 

store the scaffold, growing part, and linking part. The scaffold section began with a start 167 

token in the first row and the last row was labelled with the index of each scaffold 168 

starting from one. The scaffolds of each molecule are put in the beginning of the matrix, 169 

followed by the growing part for the scaffold, and the last part is the connecting bond 170 

between these growing fragments with single bonds. For the growing and linking 171 

sections the last row was always zero and these two sections were separated by the 172 

column of the end token. It is worth noticing that the last row was not directly involved 173 

in the training process. The vocabulary for graph representation was different from the 174 

SMILES representation, contains 38 atom types (Table S1), and four bond types (single, 175 

double, triple bonds and no bond). For each column, If an atom is the first occurrence 176 

in a given scaffold the type of the bond will be empty (indexed as 0 with token ‘*’). In 177 

addition, if the atom at the current position has occurred in the matrix, the type of the 178 



atom in this column will be empty. In order to grasp more details of the graph 179 

representation, we also provided the pseudocode for encoding (Table S2) and decoding 180 

(Table S3). 181 

 182 

End-to-End Deep learning 183 

In this work, we compared three different sequential end-to-end DL architectures to 184 

deal with different molecular representations of either graph or SMILES (Fig. 2). These 185 

methods included: (A) a Graph Transformer, (B) an LSTM-based encoder-decoder 186 

model (LSTM-BASE), (C) an LSTM-based encoder-decoder model with an attention 187 

mechanism (LSTM+ATTN) and (D) a Sequential Transformer model. All of these DL 188 

models were constructed with PyTorch 28. 189 

 190 

 191 

Fig. 2: Architectures of four different end-to-end deep learning models: (A) The Graph 192 

Transformer; (B) The LSTM-based encoder-decoder model (LSTM-BASE); (C) The LSTM-based 193 

encoder-decoder model with attention mechanisms (LSTM+ATTN); (D) The sequential 194 

Transformer model. The Graph Transformer accepts a graph representation as input and SMILES 195 

sequences are taken as input for the other three models. 196 

 197 

For the SMILES representation based models three different types were constructed as 198 

follows (Fig. 2, right). The encoder and decoder in the LSTM-BASE model (Fig. 2B) 199 



had the same architectures, containing one embedding layer, three recurrent layers, and 200 

one output layer (as used in DrugEx v2). The number of neurons in the embedding and 201 

hidden layers were 128 and 512, respectively. The hidden states of the recurrent layer 202 

in the encoder are directly sent to the decoder as the initial states. On the basis of the 203 

LSTM-BASE model an attention layer was added between the encoder and decoder to 204 

form the LSTM+ATTN model (Fig. 2C). The attention layer calculates the weight for 205 

each position of the input sequence to determine which position the decoder needs to 206 

focus on during the decoding process. For each step the weighted sums of the output 207 

calculated by the encoder are combined with the output of the embedding layer in the 208 

decoder to form the input for the recurrent layers. The output of the recurrent layers is 209 

dealt with by the output layer to generate the probability distribution of tokens in the 210 

vocabulary in both of these two models.  211 

 212 

The sequential Transformer has a distinct architecture compared to the LSTM+ATTN 213 

model although it also exploits an attention mechanism. For the embedding layers 214 

“position encodings” are added into the typical embedding structure as the first layer of 215 

the encoder and decoder. This ensures that the model no longer needs to encode the 216 

input sequence token by token but can process all tokens in parallel. For the position 217 

embedding, sine and cosine functions are used to define its formula as follows: 218 

𝑃𝐸(𝑝,2𝑖) = sin(𝑝𝑜𝑠 100002𝑖 𝑑𝑚⁄⁄ ) 219 

𝑃𝐸(𝑝,2𝑖+1) = cos(𝑝𝑜𝑠 100002𝑖 𝑑𝑚⁄⁄ ) 220 

where PE(p, i) is the ith dimension of the position encoding at position p. It has the same 221 

dimension dm = 512 as the typical embedding vectors so that the two can be summed.  222 

 223 

In addition, self-attention is used in the hidden layers to cope with long-range 224 

dependencies. For each hidden layer in the encoder, it employs a residual connection 225 

around a multi-head self-attention sublayer and feed-forward sublayer followed by 226 

layer normalization. Besides these two sublayers in the decoder a third sublayer with 227 

multi-head attention is inserted to capture the information from output of the encoder.  228 



 229 

This self-attention mechanism is defined as the scaled dot-product attention with three 230 

vectors: queries (Q), keys (K) and values (V), of which the dimensions are dq, dk, dv, 231 

respectively. The output matrix is computed as: 232 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊺

√𝑑𝑘
)𝑉 233 

Instead of a single attention function, the Transformer adopts multi-head attention to 234 

combine information from different representations at different positions which is 235 

defined as: 236 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 237 

where h is the number of heads. For each head, the attention values were calculated by 238 

different and learned linear projections with Q, K and V as follows:  239 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 240 

where WO, WQ, WK and WV are metrics of learned weights and we set h = 8 as the number 241 

of heads and dk = dv = 64 in this work.  242 

 243 

For the graph representation of the molecules we updated the sequential Transformer 244 

structure to propose a Graph Transformer (Fig. 2A). Similar to the sequential 245 

Transformer the Graph Transformer also requires the encodings of both word and 246 

position as the input. For the input word, the atom and bond cannot be processed 247 

simultaneously; therefore we combined the index of atom and bond together and 248 

defined it as follows: 249 

𝐼 = 𝐼𝑎𝑡𝑜𝑚 × 4 + 𝐼𝑏𝑜𝑛𝑑 250 

The index of the input word (I) for calculating word vectors is obtained by multiplying 251 

the atom index (Iatom) by four (the total number of bond types defined) and subsequently 252 

add the bond index (Ibond). Similarly, the position of each step cannot be used to 253 

calculate the position encoding directly. Faced with more complex data structure than 254 

sequential data, Dosovitskiy et al. proposed a new positional encoding scheme to define 255 

the position for each patch in image data for image recognition 29. Inspired by their 256 



work the position encoding at each step was defined as: 257 

𝑃 = 𝑃𝑐𝑢𝑟𝑟 × 𝐿𝑚𝑎𝑥 + 𝑃𝑝𝑟𝑒𝑣 258 

The input position (P) for calculating the position encoding was obtained by 259 

multiplying the current position (Pcurr) by the max length (Lmax) and then adding the 260 

previous position (Pprev), which was then processed with the same positional encoding 261 

method as with the sequential Transformer. For the decoder, the hidden vector from the 262 

transformer was taken as the starting point to be decoded by a GRU-based recurrent 263 

layer; and the probability of atom, bond, previous and current position was decoded one 264 

by one sequentially.  265 

 266 

When graph-based molecules are generated, the chemical valence rule is checked in 267 

every step. Invalid values of atom and bond types will be masked and an incorrect 268 

previous or current position will be removed ensuring the validity of all generated 269 

molecules. It is worth noticing that before being encoded, each molecule will be 270 

kekulized, meaning that the aromatic rings will be inferred to transform into either 271 

single or double bonds. The reason for this is that aromatic bonds interfere with the 272 

calculation of the valence value for each atom.  273 

 274 

During the training process of SMILES-based models, a negative log likelihood 275 

function was used to construct the loss function to guarantee that the probability of the 276 

token at each step in the output sequence became large enough in the probability 277 

distribution of the vocabulary calculated by the deep learning model. In comparison, 278 

the loss function used by the Graph Transformer model also contains four parts for atom, 279 

bond, previous and current sites. Here the sum of these negative log probability values 280 

is minimized to optimize the parameters in the model. For this, the Adam algorithm 281 

was used for the optimization of the loss function. Here, the learning rate was set as 10-282 

4, the batch size was 256, and training steps were set to 20 epochs for pre-training and 283 

1,000 epochs for fine-tuning.  284 

 285 

286 



Multi-objective optimization 287 

In order to combine multiple objectives we exploited a Pareto-based ranking algorithm 288 

with GPU acceleration as mentioned in DrugEx v2 25. Given two solutions m1 and m2 289 

with their scores (x1, x2, ..., xn) and (y1, y2, …, yn), then m1 is said to Pareto dominate m2 290 

if and only if: 291 

∀ j ∈ {1, … , n}: 𝑥𝑗  ≥ 𝑦𝑗  𝑎𝑛𝑑 ∃ j ∈ {1, … , n}: 𝑥𝑗 > 𝑦𝑗 292 

otherwise, m1 and m2 are non-dominated with each other. After the dominance between 293 

all pair of solutions being determined, the non-dominated scoring algorithm is exploited 294 

to obtain a rank of Pareto frontiers which consist of a set of solutions. After obtaining 295 

frontiers between dominant solutions, molecules were ranked based on the average 296 

Tanimoto-distance to other molecules instead of the commonly used crowding distance 297 

in the same frontier. Subsequently molecules with smaller average distances were 298 

ranked on the top. The final reward R* is defined as: 299 

𝑅∗ =

{
 

  0.5 +
𝑘 − 𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
2𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑

, 𝑖𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 
𝑘

2𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
,                   𝑖𝑓 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 300 

here k is the index of the solution in the Pareto rank. Rewards of undesired and desired 301 

solutions will be evenly distributed in (0, 0.5] and (0.5, 0.1], respectively.  302 

 303 

In this work, we took two objectives into consideration: 1) the QED score 30 as 304 

implemented by RDKit (from 0 to 1) to evaluate the drug-likeness of each molecule (a 305 

larger value means more drug-like) ; 2) an affinity score towards the A2AAR which was 306 

implemented by a random forest regression model with Scikit-Learn 31 like in DrugEx 307 

v2 25. The input descriptors consisted of 2048D ECFP6 fingerprints and 19D physico-308 

chemical descriptors (PhysChem). PhysChem included: molecular weight, logP, 309 

number of H bond acceptors and donors, number of rotatable bonds, number of amide 310 

bonds, number of bridge head atoms, number of hetero atoms, number of spiro atoms, 311 

number of heavy atoms, the fraction of SP3 hybridized carbon atoms, number of 312 

aliphatic rings, number of saturated rings, number of total rings, number of aromatic 313 

rings, number of heterocycles, number of valence electrons, polar surface area, and 314 



Wildman-Crippen MR value. Again it was determined if generated molecules are 315 

desired based on the Affinity score (larger than the threshold = 6.5). In addition, the SA 316 

score was also exploited an independent measurement to evaluate the synthesizability 317 

of generated molecules, which is also calculated by RDKit 32.  318 

 319 

Reinforcement learning  320 

In this work we constructed a reinforcement learning framework based on the interplay 321 

between a Graph Transformer (agent) and two scoring functions (environment). A 322 

policy gradient method was implemented to train the reinforcement learning model, the 323 

objective function is designated as follows: 324 

𝐽(𝜃) = 𝔼[𝑅∗(𝑦1:𝑇)|𝜃] =∑𝑙𝑜𝑔𝐺(𝑦𝑡|𝑦1:𝑡−1) ∙ 𝑅
∗(𝑦1:𝑇)

𝑇

𝑡=1

 325 

For each step t during the generation process the generator (G) determines the 326 

probability of each token (yt) from the vocabulary to be chosen based on the generated 327 

sequence in previous steps (y1:t-1). In the sequence-based models yt can only be a token 328 

in the vocabulary to construct SMILES while it can be different type of atoms or bonds 329 

or the previous or current position in the graph-based model. The parameters in the 330 

objective function are updated by employing a policy gradient based on the expected 331 

end reward (R*) received from the predictor. By maximizing this function the parameter 332 

𝜃  in the generator can be optimized to ensure that the generator designs desired 333 

molecules which obtain a high reward score. 334 

 335 

In order to improve the diversity and reliability of generated molecules, we 336 

implemented our exploration strategy for molecule generation during the training loops. 337 

In the training loop our generator is trained to produce the chemical space as defined 338 

by the target of interest. In this strategy there are two networks with the same 339 

architectures, an exploitation net (Gθ) and an exploration net (Gφ). Gφ did not need to 340 

be trained and its parameters are always fixed and it is based on the general drug-like 341 

chemical space for diverse targets obtained from ChEMBL. The parameters in Gθ on 342 

the other hand were updated for each epoch based on the policy gradient. Again an 343 



exploring rate (ε) was defined with a range of [0.0, 1.0] to determine the percentage of 344 

scaffolds being randomly selected as input by Gφ to generate molecules. Conversely Gθ 345 

generated molecules with other input scaffolds. After the training process was finished 346 

Gφ was removed and only Gθ was left as the final model for molecule generation. 347 

 348 

Performance evaluation 349 

In order to evaluate the performance of the generators, four coefficients were calculated 350 

from the population of generated molecules (validity, accuracy, desirability, and 351 

uniqueness) which are defined as: 352 

Validity =
𝑁𝑣𝑎𝑙𝑖𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 353 

Accuracy =
𝑁𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒
𝑁𝑡𝑜𝑡𝑎𝑙

 354 

Desirability =
𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 355 

Uniqueness =
𝑁𝑢𝑛𝑖𝑞𝑢𝑒

𝑁𝑡𝑜𝑡𝑎𝑙
 356 

here Ntotal is the total number of molecules, Nvalid is the number of molecules parsed as 357 

valid SMILES sequences, Naccurate is the number of molecules that contained all given 358 

scaffolds, Ndesired is the number of desired molecules that reach all required objectives, 359 

and Nunique is the number of molecules which are different from others in the dataset.  360 

 361 

To measure molecular diversity, we adopted the Solow Polasky measurement as in the 362 

previous work. This approach was proposed by Solow and Polasky in 1994 to estimate 363 

the diversity of a biological population in an eco-system 33. The formula to calculate 364 

diversity was redefined to normalize the range of values from [1, m] to (0, m] as follows: 365 

𝐼(𝐴) =
1

|𝐴|
𝒆⊺𝐹(𝒔)−1𝒆 366 

where A is a set of drug molecules with a size of |A| equal to m, e is an m-vector of 1’s 367 

and F(s) = [f(dij))] is a non-singular m × m distance matrix, in which f(dij) stands for 368 

the distance function of each pair of molecule provided as follows: 369 

𝑓(𝑑) = 𝑒−𝜃𝑑𝑖𝑗  370 



here we defined the distance dij of molecules si and sj by using the Tanimoto-distance 371 

with ECFP6 fingerprints as follows: 372 

𝑑𝑖𝑗 = 𝑑(𝑠𝑖, 𝑠𝑗) = 1 −
|𝑠𝑖 ∩ 𝑠𝑗|

|𝑠𝑖 ∪ 𝑠𝑗|
 ,  373 

where | si ∩ sj | represents the number of common fingerprint bits, and | si ∪ sj | is the 374 

number of union fingerprint bits. 375 



Results and Discussion 376 

Fragmentation of molecule 377 

As stated we decomposed each molecule into a series of fragments with the BRICS 378 

algorithm to construct a fragment-molecule pair. Each organic compound can be split 379 

into retrosynthetically interesting chemical substructures with a compiled elaborate set 380 

of rules. For the ChEMBL and LIGAND sets, we respectively obtained 194,782 and 381 

2,223 fragments. We further split the LIGAND set into three parts: active ligands 382 

(LIGAND+, 2,638), inactive ligands (LIGAND-, 2710) and undetermined ligands 383 

(LIGAND0, 5480) based on the pX of bioactivity for A2AAR. The number of fragments 384 

in these four datasets have a similar distribution (Fig. 3A) and there are approximately 385 

five fragments on average for each molecule with a 95% confidence between [0, 11] 386 

(Fig. 3A).  387 

 388 

In the LIGAND set the three subsets have a similar molecular weight distribution of the 389 

fragments (Fig. 3B) with an average of 164.3 Da, smaller than in the ChEMBL set 390 

(247.3 Da). In order to check the similarity of these fragments we used the Tanimoto 391 

similarity calculation with ECFP4 fingerprints between each pair of fragments in the 392 

same dataset. We found that most of them were smaller than 0.5 indicating that they are 393 

dissimilar to each other (Fig. 3C). Especially, the fragments in the LIGAND+ set have 394 

the largest diversity. Moreover, the distribution of different fragments in these three 395 

subsets of the LIGAND set are shown in Fig. 3D. The molecules in these three subsets 396 

have their unique fragments and share some common substructures. 397 

 398 



  399 

Fig 3: Analysis of some properties of fragments in the ChEMBL set and three LIGAND subsets. 400 

(A) Violin plot for the distribution of the number of fragments per molecules; (B) Distribution of 401 

molecular weight of these fragments; (C) Distribution of the similarity of the fragments measured 402 

by the Tanimoto-similarity with ECFP4 fingerprints; (D) Venn diagram for the intersection of the 403 

fragments existing in the three subsets of the LIGAND set.  404 

 405 

406 



Pre-training & Fine-tuning 407 

After finishing the dataset construction four models were pre-trained on the ChEMBL 408 

set and fine-tuned on the LIGAND set. Here, these models were benchmarked on a 409 

server with four GTX1080Ti GPUs. After the training process converged, each 410 

fragment in the test set was presented as input for 10 times to generate molecules. The 411 

performance is shown in Table 1. The training of Transformer models was faster but 412 

consumed more computational resources than LSTM-based methods. In addition, 413 

Transformer methods outperformed LSTM-based methods using SMILES. Although 414 

the three SMILES-based models improved after being fine-tuned they were still 415 

outperformed by the Graph Transformer because of the advantages of a graph 416 

representation. To further check the accuracy of generated molecules we also compared 417 

the chemical space between the generated molecules and the compounds in the training 418 

set with three different representations 1) MW ~ logP; 2) PCA with 19D PhysChem 419 

descriptors; 3) tSNE with 2048D ECFP6 fingerprints (Fig. 4). The region occupied by 420 

molecules generated by the Graph Transformer overlapped completely with the 421 

compounds in both the ChEMBL and LIGAND sets.  422 

 423 

Table 1: The performance of four different generators for pre-training and fine-tuning 424 

processes. 425 

Methods 
Pre-trained Model Fine-tuned Model 

Time Memory 
Validity Accuracy Validity Accuracy 

Graph 

Transformer 
100% 99.3% 100% 99.2% 453.8 s 14.5 GB 

Sequential 

Transformer 
96.7% 72.0% 99.3% 87.3% 832.3 s 31.7 GB 

LSTM-BASE 93.9% 44.1% 98.7% 77.9% 834.6 s  5.5 GB 

LSTM+ATTN 89.7% 52.2% 96.4% 84.2% 1212.5 s 15.9 GB 

 426 



 427 

Fig. 4: The chemical space of generated molecules by the Graph Transformer pre-trained on the 428 

ChEMBL set (A, C and E) and being fine-tuned on the LIGAND set (B, D and F). Chemical space 429 

was represented by either logP ~ MW (A, B) and first two components in PCA on PhysChem 430 

descriptors (C, D) and t-SNE on ECFP6 fingerprints (E, F). 431 



 432 

The graph representation for molecules has more advantages over the SMILES 433 

representation when dealing with fragment-based molecule design: 1) Invariance in 434 

the local scale: During the process of molecule generation, multiple fragments in a 435 

given scaffold can be put into any position in the output matrix without changing the 436 

order of atoms and bonds in that scaffold. 2) Extendibility in the global scale: When 437 

fragments in the scaffold are growing or being linked, they can be flexibly appended in 438 

the end column of the graph matrix while the original data structure does not need 439 

changing. 3) Free of grammar: Unlike in SMILES sequences there is no explicit 440 

grammar to constrain the generation of molecules, such as the parentheses for branches 441 

and the numbers for rings in SMILES; 4) Accessibility of chemical rules: For each 442 

added atom or bond the algorithm can detect if the valence of atoms is valid or not and 443 

mask invalid atoms or bonds in the vocabulary to guarantee the whole generated matrix 444 

can be successfully parsed into a molecule. With these advantages the Graph 445 

Transformer generates molecules faster while using less computational resources.  446 

 447 

However, after examining the QED scores and SA scores we found that although the 448 

distribution of QED scores was similar between the methods (Figure 5A,C), the 449 

synthesizability of the molecules generated by the Graph Transformer were not better 450 

than the SMILES-based generators. This was especially true when fine-tuning on the 451 

LIGAND set. A possible reason is that molecules generated by the Graph Transformer 452 

contain uncommon rings when the model dealt with long-distance dependencies. In 453 

addition, because of more complicated data structure and presence of more parameters 454 

in the model, Graph Transformer did not outperform for the synthesizability of 455 

generated molecules when being trained on the small dataset (e.g. the LIGAND set). It 456 

is also worth noticing that there still was a small fraction of generated molecules that 457 

did not contain the required scaffolds which is caused by a kekulization problem. For 458 

example, a scaffold ‘CCC’ can be grown into ‘C1=C(C)C=CC=C1’. After being 459 

sanitized, it can be transformed into ‘c1c(C)cccc1’. In this process one single bond in 460 

the scaffold is changed to an aromatic bond, which causes a mismatch between the 461 



scaffold and the molecule. Currently our algorithm cannot solve this problem because 462 

if the aromatic bond is taken into consideration, the valence of aromatic atoms is 463 

difficult to be calculated accurately. This would lead to the generation of invalid 464 

molecules. Therefore, there is no aromatic bond provided in the vocabulary and all of 465 

the aromatic rings are inferred automatically through the molecule sanitization method 466 

in RDKit.  467 

 468 

Fig. 5: the distribution of the QED score (A, C) and SA score (B, D) of desired ligands in the 469 

ChEMBL set and LIGAND set and of molecules generated by four different generators. For 470 

the QED score, four generators had the same performance as the molecules in both ChEMBL set (A) 471 

and the LIGAND set (C). For the SA score, Graph Transformer did not outperform three other 472 

SMILES-based generators in ChEMBL set (B) and even worse in the LIGAND set (D). 473 



 474 

Policy gradient 475 

Because the Graph Transformer generates molecules accurately and fast it was chosen 476 

as the agent in the RL framework. Two objectives were tested in the training process of 477 

this work. The first one was affinity towards A2AAR, which is predicted by the random 478 

forest-based regression model from DrugEx v2; the second one was the QED score 479 

calculated with RDKit to measure how similar the generated molecule is to known 480 

approved drugs. With the policy gradient method as the reinforcement learning 481 

framework two cases were tested. On the one hand, predicted affinity for A2AAR was 482 

considered without the QED score. On the other hand, both objectives were used to 483 

optimize the model with Pareto ranking. In the first case 86.1% of the generated 484 

molecules were predicted active, while the percentage of predicted active molecules in 485 

the second case was 74.6%. Although the generator generated more active ligands 486 

without the QED score constraint most of them are not drug-like as they always have a 487 

molecular weight larger than 500Da. However, when we checked the chemical space 488 

represented by tSNE with ECFP6 fingerprints the overlap region between generated 489 

molecules and ligands in the training set was not complete implying that they fall out 490 

of the applicability domain of the regression model.  491 

 492 

In DrugEx v2, we provided an exploration strategy which simulated the idea of 493 

evolutionary algorithms such as crossover and mutation manipulations. However, when 494 

coupled to the Graph Transformer there were some difficulties and we had to give up 495 

this strategy. Firstly, the mutation strategy did not improve with different mutation rates. 496 

A possible reason is that before being generated, part the molecule was fixed with a 497 

given scaffold counteracting the effect of mutation caused by the mutation net. 498 

Secondly, the crossover strategy is computationally very expensive in this context. This 499 

strategy needs the convergence of model training and iteratively updates the parameters 500 

in the agent. With multiple iterations, it takes a long period of time beyond the 501 

computational resources we can currently access. As a result, we updated the 502 

exploration strategy as mentioned in the Methods section with six different exploration 503 



rates: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5].  504 

 505 

Table 2: the performance of the Graph Transformer with different exploration rates in the RL 506 

framework.  507 

Changes to the exploration rate do not influence accuracy and have a low effect on diversity. 508 

However, desirability (finding active ligands) and uniqueness can be influenced significantly. 509 

Empirically determining an optimal value for a given chemical space is recommended. 510 

 511 

 512 

After training of the models, multiple scaffolds were input 10 times to generate 513 

molecules. The results for accuracy, desirability, uniqueness, and diversity with 514 

different exploration rates are shown in Table 2. With a low ε the model generates more 515 

desired molecules, but the uniqueness of the generated molecules can be improved. At 516 

ε = 0.3 the model generated the highest percentage of unique desired molecules (56.8%). 517 

Diversity was always larger than 0.84 and the model achieved the largest value (0.88) 518 

with ε = 0.0 or ε = 0.2. The chemical space represented by tSNE with ECFP6 519 

fingerprints confirms that our exploration strategy produces a set of generated 520 

molecules completely covering the region occupied by the LIGAND set (Fig. 6).  521 

 522 

ε Accuracy Desirability Uniqueness Diversity 

0.0 99.7% 74.6% 60.7% 0.879 

0.1 99.7% 66.8% 75.0% 0.842 

0.2 99.8% 61.6% 80.2% 0.879 

0.3 99.7% 56.8% 89.8% 0.874 

0.4 99.7% 54.8% 88.8% 0.859 

0.5 99.7% 46.8% 88.5% 0.875 



 523 
Fig. 6: The chemical space of generated molecules by the Graph Transformer trained with 524 

different exploration rates in the RL framework. The chemical space was represented by t-SNE on 525 

ECFP6 fingerprints. 526 

 527 



Generated Molecules 528 

In the chemical space making up antagonists of A2AAR there are several well-known 529 

scaffolds. Examples include furan, triazine, aminotriazole, and purine derivatives such 530 

as xanthine and azapurine. The Graph Transformer model produced active ligands for 531 

A2AAR (inferred from the predictors) with different combinations of these fragments as 532 

scaffolds. Taking these molecules generated by the Graph Transformer as an example, 533 

we filtered out the molecules with potentially reactive groups (such as aldehydes) and 534 

uncommon ring systems and listed 30 desired molecules as putative A2AAR 535 

ligands/antagonists (Fig. 7). For each scaffold five molecules were selected and 536 

assigned in the same row. These molecules are considered a valid starting point for 537 

further considerations and work (e.g. molecular docking or simulation). 538 

 539 

 540 

Fig. 7: Sample of generated molecules with the Graph Transformer with different scaffolds. 541 



These scaffolds include: furan, triazine, aminotriazole, xanthine, and azapurine. The generated 542 

molecules based on the same scaffolds are aligned in the same row.  543 

 544 

Conclusions and Future Perspectives 545 

In this study, DrugEx was updated with the ability to design novel molecules based on 546 

scaffolds consisting of multiple fragments as input. In this version (v3), a new positional 547 

encoding scheme for atoms and bonds was proposed to make the Transformer model 548 

deal with a molecular graph representation. With one model, multiple fragments in a 549 

given scaffold can be grown at the same time and connected to generate a new molecule. 550 

In addition, chemical rules on valence are enforced at each step of the process of 551 

molecule generation to ensure that all generated molecules are valid. These advantages 552 

are impossible to be embodied in SMILES-based generation, as SMILES-based 553 

molecules are constrained by grammar that allows a 2D topology to be represented in 554 

a sequential way. With multi-objective reinforcement learning the model generates 555 

drug-like ligands, in our case for the A2AAR target.  556 

 557 

In future work, the Graph Transformer will be extended to include other information as 558 

input to design drugs conditionally. For example, proteochemometric modelling (PCM) 559 

can take information for both ligands and targets as input to predict the affinity of their 560 

interactions, which allows generation of compounds that are promiscuous (useful for 561 

e.g., viral mutants) or selective (useful for e.g., kinase inhibitors) 34. The Transformer 562 

can then be used to construct inverse PCM models which take the protein information 563 

as input (e.g. sequences, structures, or descriptors) to design active ligands for a given 564 

protein target without known ligands. Moreover, the Transformer can also be used for 565 

lead optimization. For instance, the input can be a “hit” already, generating “optimized” 566 

ligands, or a “lead” with side effects to produce ligands with a better ADME/tox profile.  567 
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Table S1: Atoms in vocabulary for graph-based molecule generation. The column of “Symbol” 638 

is the symbol of the atom and its charge; the column of “Valence” is the value of valence of the state 639 

of each chemical element; the “Number” column stands for the index of each element in the periodic 640 

table, the last row is the unique word for each state of these elements, a combination of its valence 641 

and symbol. 642 

Symbol Valence Charge Number Word 

O 2 0 8 2O 

O+ 3 1 8 3O+ 

O- 1 -1 8 1O- 

C 4 0 6 4C 

C+ 3 1 6 3C+ 

C- 3 -1 6 3C- 

N 3 0 7 3N 

N+ 4 1 7 4N+ 

N- 2 -1 7 2N- 

Cl 1 0 17 1Cl 

S 2 0 16 2S 

S 6 0 16 6S 

S 4 0 16 4S 

S+ 3 1 16 3S+ 

S+ 5 1 16 5S+ 

S- 1 -1 16 1S- 

F 1 0 9 1F 

I 1 0 53 1I 

I 5 0 53 5I 

I+ 2 1 53 2I+ 

Br 1 0 35 1Br 

P 5 0 15 5P 

P 3 0 15 3P 

P+ 4 1 15 4P+ 

Se 2 0 34 2Se 

Se 6 0 34 6Se 

Se 4 0 34 4Se 

Se+ 3 1 34 3Se+ 

Si 4 0 14 4Si 

B 3 0 5 3B 

B- 4 -1 5 4B- 

As 5 0 33 5As 

As 3 0 33 3As 

As+ 4 1 33 4As+ 

Te 2 0 52 2Te 

Te 4 0 52 4Te 

Te+ 3 1 52 3Te+ 

* 0 0 0 * 



Table S2: The pseudo code for encoding the graph representation of molecules in DrugEx v3 643 

Algorithm encoding: 

 Input:  

mol: structure of the kekulized molecule 

subs: structure of the scaffolds 

vocab: vocabulary of tokens which is consisted of graph matrix 

Output:  

  matrix: the n x 5 matrix to represents the molecular graph. 

 

# Ensure the atom of the subs are put at the start in the molecule 

mol ← RANK_ATOM_BY_SUB(mol, subs)  

sub_atoms ← GET_ATOMS (subs) 

sub_bonds ← GET_BONDS (subs) 

mol_atoms ← GET_ATOMS (mol) 

frag, grow, link ← [('GO', 0, 0, 0, 1)], [], [(0, 0, 0, 0, 0)] 

For atom in mol_atoms: 

    # The bonds which connect to the atom having the index before this atom 

bonds ← GET_LEFT_BONDS (mol, atom) 

For bond in bonds: 

    tk_bond ← GET_TOKEN (vocab, bond) 

    other ← GET_OTHER_ATOM(mol, atom, bond) 

    If IS_FIRST (bonds, bond): 

        tk_atom ← GET_TOKEN (vocab, atom) 

    Else: 

        tk_atom ← GET_TOKEN (vocab, None) 

 

    # The index of the scaffold in which the current atom locates 

# Its value starts from 1. If it is not in the scaffold, it will be 0 

    scf ← GET_FRAG_ID (subs, atom) 

    column ← (tk_atom, tk_bond, GET_INDEX (other), GET_INDEX (atom), scf) 

If other in sub_atoms and atom in sub_atoms and bond not in sub_bonds: 

        Insert column to link 

    Else if bond in sub_bonds: 

        Insert column to frag 

    Else: 

        Insert column to grow 

 End 

End 

Insert ('EOS', 0, 0, 0, 0) to grow 

matrix ← CONCATENATE_BY_COLUMN (frag, grow, link) 

Return matrix 

 644 

  645 



Table S3: The pseudo code for decoding the graph representation of molecules in DrugEx v3 646 

Algorithm decoding: 

 Input:  

        matrix: the n x 5 matrix to represents the molecular graph 

vocab: vocabulary of tokens which is consisted of graph matrix 

Output:  

mol: structure of the kekulized molecule 

subs: structure of the scaffolds 

 

mol ← new MOL () 

subs ← new SUB () 

For atom, bond, prev, curr, scf in matrix: 

    If atom == 'EOS' or atom == 'GO':  

continue 

    If atom != '*': 

        a ← new Atom (GET_ATOM_SYMBOL(vocab, atom)) 

        SET_FORMAL_CHARGE (a, GET_CHARGE(vocab, atom)) 

        ADD_ATOM (mol, a) 

        If scf != 0: ADD_ATOM (subs, a) 

    If bond != 0: 

        b ← new Bond (bond) 

        ADD_BOND(mol, b) 

    If frag != 0:  

ADD_BOND (subs, b) 

End 

 

# automatically determine the aromatic rings 

mol ← SANITIZE (mol) 

subs ← SANITIZE (subs) 

Return mol, subs 

 

 647 

 648 


