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Abstract: We put forth a simple and yet practical theoretical model generalized from Raoult’s law 

and Henry’s law and show that it can be reduced to these two laws under limiting conditions. The 

model entertains a hybrid parameter ℎ𝐵 with activity coefficient bundled into it, which smoothly 

bridges the 𝑝𝐵
∗  and 𝐾𝐵 coefficients in Raoult’s law and Henry’s law. The value of ℎ𝐵 falls in the 

interval of [𝐾𝐵, 𝑝𝐵
∗ ] or [𝑝𝐵

∗ , 𝐾𝐵] in the case of negative or positive deviation from Raoult’s law, 

respectively. We uncover an overlapping rule for the ranges of ℎ𝐴 and ℎ𝐵, which binary mixtures 

must obey to form azeotropes. We also provide straightforward ways to analyze the characteristic 

mole fraction and pressure for azeotropes and to understand the relative positions of vapor 

composition curves with respect to the liquid counterparts. We rely heavily on experimental data 

available in the literature for representative binary mixtures with both negative and positive 

deviations from Raoult’s law to illustrate the algebraic derivations. The knowledge gained is useful 

in the analysis of experimental data from vapor−liquid equilibrium measurements and possess 

pedagogical merit in various relevant fields. 

 

Keywords: Azeotrope, Raoult’s law, Henry’s law, vapor−liquid equilibrium, theoretical modeling 

 

 

1. Introduction 

Azeotropes are liquid mixtures of two or more components with constant boiling points under a 

certain pressure at which the compositions of the vapor and liquid phases are identical to each 

other.1  There are two types of azeotropes including maximum-boiling and minimum-boiling 

azeotropes.2 If the experimental control variable is changed from temperature to pressure, these 

two kinds of azeotropes change to minimum-pressure and maximum-pressure azeotropes, which 

are also called negative and positive azeotropes, due to their negative and positive deviations from 

ideal solutions, respectively.3 Azeotropes can impose limits on the separation and purification of 
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liquid mixtures by simple distillation. A well-known example is the binary ethanol−water mixture, 

which is impossible to fully separate by distillation because the condensate under atmospheric 

pressure is an azeotrope containing 95.6 wt.% ethanol and 4.4 wt.% water that prevents further 

separation by distillation.4 Absolute ethanol with 99-100 wt.% purity is usually made by using an 

entrainer such as benzene to break the azeotrope. Despite this downside, azeotropes are used for a 

wide range of practical applications, such as fragrance, mosquito repellent, cleaning fluids, waste 

minimization, and azeotropic freeze-drying. 5 , 6 , 7 , 8  However, even with the long history of 

azeotropes, their formation mechanism is still not fully understood.9 

Scientists have carried out various experimental and theoretical studies to gain a fundamental 

understanding of azeotropes. Experimental studies focused on  acquiring and analyzing 

vapor−liquid equilibrium (VLE) data10,11,12,13 and investigating the microstructures of azeotropes 

and their link to thermodynamics properties.9,14  Theoretical studies range from mathematical 

modeling and statistical mechanics9,15 to theoretical predictions of azeotropes using Monte Carlo 

simula-tions.16 , 17  All these efforts provided critical insight into the formation mechanism of 

azeotropes in terms of intermolecular interactions.9 However, some questions remain unanswered 

even for the simplest phase diagrams. For instance, Fig. 1 shows isothermal vapor−liquid phase 

diagrams for four representative binary mixtures. It is qualitatively understood that 

tetrachloromethane− tetrahydrofuran and isopropanol−acetone do not form azeotropes due to their 

small negative and positive deviations from ideality, whereas acetone−chloroform and 

acetone−carbon disulfide form minimum-pressure and maximum-pressure azeotropes due to their 

large negative and positive deviations from ideality. However, it is still unclear how the deviations 

are quantified to be small and large and whether there is a simple guideline to interpret why some 

solutions form azeotropes while others do not. 
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Figure 1. Isothermal partial and total vapor pressures for representative binary mixtures. (a) 

Tetrachloromethane−tetrahydrofuran {𝑥𝐴CCl4 + 𝑥𝐵C4H8O} at 298.15 K. (b) Acetone−chloroform 

{𝑥𝐴C3H6O + 𝑥𝐵CHCl3} at 308.32 K. (c) Isopropanol−acetone {𝑥𝐴C3H8O + 𝑥𝐵C3H6O} at 298.15 

K. (d) Acetone−carbon disulfide {𝑥𝐴C3H6O + 𝑥𝐵CS2}  at 308.32 K. Data for (a) and (c) are taken 

from refs. 10,11 and data for (b) and (d) are taken from ref. 12. Dashed lines represent Raoult’s law 

and dotted lines indicate vapor compositions under the same total pressures. (a) and (b) show 

negative deviations while (c) and (d) show positive deviations from Raoult’s law. (a) and (c) do 

not form azeotropes while (b) and (d) form negative and positive azeotropes, respectively. 
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Motivated by these open questions, we present a simple and yet practical mathematical 

interpretation to the isothermal phase diagrams of binary mixtures, which can be easily understood 

and readily used for data analysis. To that end, we carried out algebraic derivations to 1) put forth 

a theoretical model entertaining a hybrid parameter ℎ𝐵 generalized from Raoult’s law and Henry’s 

law and prove that it can be reduced to these two laws under limiting conditions, 2) uncover an 

overlapping rule for the ranges of ℎ𝐴 and ℎ𝐵 out of three possible overlapping patterns for binary 

solutions to form azeotropes, 3) illustrate a simple way to rationalize the characteristic composition 

and pressure for azeotropes based on their partial and total pressures, and 4) interpret the relative 

mole fractions of vapor composition curves with respect to the liquid counterparts under the same 

pressures. Throughout the discussions the hybrid parameter ℎ𝐵 plays a central role. To the best of 

our knowledge, the main conclusions from this work are new and can be adopted as a framework 

to calibrate experimental results and explain fundamental concepts, e.g., in the textbook Atkins’ 

Physical Chemistry18 and in the LearnChemE chemical engineering education resources through 

the Wolfram Demonstration for vapor pressures of binary solutions.19 

 

2. Methodologies 

We confined our discussions to the isothermal phase diagrams of generic binary A−B mixtures 

that form negative and positive azeotropes with a single minimum-pressure or maximum-pressure 

point. Isobaric phase diagrams using temperature as the control parameter, more complicated 

multinary azeotropes containing more than two components, and less-common double azeotropes 

that display two extrema including both a minimum and a maximum are out of the scope of this 

work. We carried out simple algebraic derivations and relied on available experimental data to 

illustrate new understanding for VLE measurements. Experimental data were digitized from 
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figures or directly taken from tables in the literature. Digitization may introduce some small 

relative errors, which are typically less than 1% and therefore too small to affect the conclusions 

drawn from this work. In cases where necessary, experimental data were fitted by polynomials of 

order 6 and then the analytical formulae for the first-order derivatives were obtained. An excel file 

is provided in the Supplementary Materials to show all the detailed steps for data analysis using 

the experimental data of binary dimethoxymethane−carbon disulfide solution {𝑥𝐴C3H8O2 + 𝑥𝐵CS2} 

at 308.32 K taken from refs. 12,20. Additional statistical mechanics explanations of activity, activity 

coefficient, and the hybrid parameter in terms of intermolecular interactions were also given in the 

Supplementary Materials. 

 

3. Results and Discussion 

3.1. Generalization of Raoult’s law and Henry’s law. Both Raoult’s law and Henry’s law deal 

with VLE. Raoult’s law states that the partial pressure of each component in a vapor mixture at 

equilibrium with a liquid mixture is equal to the vapor pressure of the pure component multiplied 

by its mole fraction in the liquid mixture. Henry’s law states that the amount of gas dissolved in a 

liquid is proportional to its partial pressure above the liquid, by a factor now known as the Henry’s 

law constant. In principle, both laws are applicable to various multinary systems, but herein we 

will confine our discussions to generic binary A−B mixtures. For ideal solutions, Raoult’s law and 

Henry’s law become identical to each other where the Henry’s law constant is equal to the 

equilibrium vapor pressure for the pure component, and they are applicable in the entire range of 

solution compositions. However, most real solutions are non-ideal and exhibit negative or positive 

deviations from Raoult’s law; hence leading to a Henry’s law constant that is different from the 

equilibrium vapor pressure for the pure component. Under such a circumstance, Raoult’s law and 

https://en.wikipedia.org/wiki/Mole_fraction
https://en.wikipedia.org/wiki/Partial_pressure
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Henry’s law are appliable to only dilute solutions. More specifically, Raoult’s law is applicable to 

only the solvent while Henry’s law is applicable only to the solute. 

For a binary dilute solution consisting of solvent A and solute B, Raoult’s law and Henry’s law 

can be written as: 

𝑝𝐴 = 𝑝𝐴
∗ 𝑥𝐴

(𝑙)
          (1) 

𝑝𝐵 = 𝐾𝐵𝑥𝐵
(𝑙)

          (2) 

where 𝑝𝐴 and 𝑝𝐵 are the partial pressures in the vapor for solvent A and solute B, 𝑝𝐴
∗  and 𝐾𝐵 are 

the vapor pressure of pure solvent A and the Henry’s law constant for solute B, and 𝑥𝐴
(𝑙)

 and 𝑥𝐵
(𝑙)

 

are the mole fractions of solvent A and solute B in the liquid phase, respectively. The conditions 

that A is solvent and B is solute imply that 𝑥𝐴
(𝑙)

→ 1 and 𝑥𝐵
(𝑙)

→ 0. Conversely, if B is solvent and 

A is solute, i.e., 𝑥𝐵
(𝑙)

→ 1 and 𝑥𝐴
(𝑙)

→ 0, eqns 1 and 2 only change their format by swapping the 

subscripts A and B: 

𝑝𝐵 = 𝑝𝐵
∗ 𝑥𝐵

(𝑙)
          (3) 

𝑝𝐴 = 𝐾𝐴𝑥𝐴
(𝑙)

          (4) 

Since only two components exist in the liquid phase for a binary mixture, the sum of 𝑥𝐴
(𝑙)

 and 𝑥𝐵
(𝑙)

 

is unity, regardless of whether A and B are solvent or solute: 

𝑥𝐴
(𝑙)

+ 𝑥𝐵
(𝑙)

= 1         (5) 

and the total pressure in the vapor phase is the sum of the partial pressures based on Dalton’s law: 

𝑝𝑡𝑜𝑡 = 𝑝𝐴 + 𝑝𝐵         (6) 

Eqns 5 and 6 hold true in the entire range of mole fractions. For convenience of subsequent 

discussion on phase diagrams, the A and B components of a binary A−B mixture will be shown 

on the left and right of a phase diagram, respectively, which means that the mole fraction 𝑥𝐵
(𝑙)

 will 
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increase from 0 on the left to 1 on the right, while the mole fraction 𝑥𝐴
(𝑙)

 will decrease from 1 on 

the left to 0 on the right. 

The binary systems we examine throughout this work are generally under pressures that are 

not very high and at temperatures that are very low. Therefore, it is a common practice in the field 

to represent the data in the vapor phase using pressure without resorting to fugacity and fugacity 

coefficients.26 However, in the liquid phase we will be generally dealing with non-ideal solutions. 

Therefore, activities and activity coefficients should be adopted for the two components in the 

liquid phase. With activity and activity coefficient for component B defined as: 

𝑎𝐵 =
𝑝𝐵

𝑝𝐵
∗           (7) 

𝛾𝐵 =
𝑎𝐵

𝑥𝐵
(𝑙)          (8) 

the partial pressure of component B in a binary system becomes: 

𝑝𝐵 = 𝑝𝐵
∗ 𝑎𝐵 = 𝑝𝐵

∗ 𝛾𝐵𝑥𝐵
(𝑙)

        (9) 

As 𝑥𝐵
(𝑙)

→ 0, by relating eqn 9 with Henry’s law as shown in eqn 2 where B is solute, we have 

𝛾𝐵(0) =
𝐾𝐵

𝑝𝐵
∗           (10) 

As 𝑥𝐵
(𝑙)

→ 1, by relating eqn 9 and Raoult’s law as shown in eqn 3 where B is solvent, we have 

𝛾𝐵(1) = 1          (11) 

By lumping 𝑝𝐵
∗  and 𝛾𝐵 into a new parameter of ℎ𝐵, eqn 9 becomes: 

𝑝𝐵 = 𝑝𝐵
∗ 𝛾𝐵𝑥𝐵

(𝑙)
= ℎ𝐵𝑥𝐵

(𝑙)
        (12) 

which can be considered a generalization of Raoult’s law in eqn 3 and Henrys’ law in eqn 2, where 

the coefficients 𝑝𝐵
∗  and 𝐾𝐵 for the respective cases of B as solvent and solute are now bridged by 

a hybrid parameter ℎ𝐵, which has the activity coefficients bundled into it. Next, we will illustrate 

Raoult’s law and Henry’s law with representative experimental data available in the literature, 
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calculate the activities and activity coefficients, interpret the physical meaning of the hybrid 

parameter ℎ𝐵, and show how eqn 12 can be reduced to Raoult’s law and Henry’s law under limiting 

conditions. 

 

 
Figure 2. Partial pressures, activities, and activity coefficients of representative binary mixtures. 

(a) Partial pressure of chloroform in triethylamine−chloroform {𝑥𝐴 N(C2H5)3 + 𝑥𝐵 CHCl3} at 

283.15 K. (b) Partial pressure of water in ethanol−water {𝑥𝐴C2H5OH + 𝑥𝐵H2O} at 303.15 K. (c) 

and (d) are the activities and activity coefficients calculated using eqns 7 and 8 and the data in (a) 

and (b), respectively. Data in (a) and (b) are digitized from ref. 21, respectively. For clarity, ℎ𝐵 
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curves are not shown in (a) and (b) but can be scaled by a factor of 𝑝𝐵
∗  based on the 𝛾𝐵 curves in 

(c) and (d). 

 

Figure 2a,b shows the partial pressures of chloroform in the binary triethylamine−chloroform 

mixture and of water in the binary ethanol−water mixture as a function of their mole fractions, 

along with Raoult’s law and Henry’s law as indicated by the dashed and dotted lines, respectively. 

The partial pressure curves display a negative and a positive deviation from Raoult’s law, as 

indicated by the concave and convex curvatures, respectively. As expected, Raoult’s law is 

asymptotically approached by the partial pressure curve when  𝑥𝐵
(𝑙)

→ 1, with a tangent slope 

corresponding to the vapor pressure of pure component 𝑝𝐵
∗ , while Henry’s law is asymptotically 

approached by the partial pressure curve when 𝑥𝐵
(𝑙)

→ 0, with a tangent slope corresponding to the 

Henry’s law constant 𝐾𝐵. Note that 𝑝𝐵
∗  > 𝐾𝐵 (or 𝐾𝐵/𝑝𝐵

∗  < 1) in the case of negative deviation but 

𝑝𝐵
∗  < 𝐾𝐵 (or 𝐾𝐵/𝑝𝐵

∗  > 1) in the case of positive deviation from Raoult’s law. It can be further seen 

that the partial pressure curves in the entire range of mole fraction are bounded by the two tangent 

lines. If the binary mixture were an ideal solution, the concave or convex curves would collapse 

to a straight line that fully obeys Raoult’s law in the entire range of mole fractions. This means 

that for an ideal solution the two tangent lines would become just one identical line with a slope 

of 𝑝𝐵
∗  = 𝐾𝐵. Conversely, the larger deviation a solution is from ideality, the larger difference is 

between 𝑝𝐵
∗  and 𝐾𝐵. 

Figure 2c,d shows the activities and activity coefficients calculated using eqns 7 and 8 from 

the partial pressures shown in Fig. 2a,b. According to eqn 7, activities are obtained by simply 

scaling down the partial pressures using the pure component pressure 𝑝𝐵
∗  to a dimensionless value 

in the range of 0 to 1. Due to the simple scaling effect, the activities in Fig. 2c,d maintain the same 
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negative and positive curvatures as the partial pressures in Fig. 2a,b. Likewise, Raoult’s law and 

Henry’s law in Fig. 2a,b are also scaled down by 𝑝𝐵
∗  to the dashed and dotted lines in Fig. 2c,d. 

The scaled Raoult’s law becomes a diagonal line, because the vertical axis values are equal to the 

horizontal axis values, both in the ranges of [0, 1]. According to eqn 8, the dimensionless activity 

coefficients are obtained by dividing each value of the activity curve in Fig. 2c,d by the point on 

the diagonal line at the same mole fraction. According to eqn 9, activity coefficients can be also 

obtained by dividing the partial pressure in Fig. 2a,b by the pressure on the straight line according 

to Raoult’s law, i.e., 𝑝𝐵/(𝑝𝐵
∗ 𝑥𝐵

(𝑙)
). The difference between these two methods is only that the data 

in Fig. 2a,b are not scaled but those in Fig. 2c,d are scaled by 𝑝𝐵
∗ . A third method to obtain the 

activity coefficients is to project the activities in Fig. 2c,d at each mole fraction from the origin to 

the right axis at 𝑥𝐵
(𝑙)

 = 1. All these different ways lead to the same activity coefficients with a 

monotonical upward or downward trend as a function of mole fractions. On the left end of 𝑥𝐵
(𝑙)

→

0, 𝛾𝐵 approaches a constant value of 𝛾𝐵(0) = 0.19 or 2.36 that can be calculated using eqn 10, 

with the value being smaller or larger than 1 depending on the negative and positive deviations. 

However, on the right end of 𝑥𝐵
(𝑙)

→ 1, 𝛾𝐵 approaches only one identical constant 𝛾𝐵(1) = 1 as 

indicated by eqn 11, regardless of the negative or positive deviations. The reason activity 

coefficients approach constant values of  𝛾𝐵(0) and 𝛾𝐵(1) is that the partial pressure curve can be 

well described by linear equations of Henry’s law and Raoult’s law as 𝑥𝐵
(𝑙)

 approaches 0 and 1. It 

can be expected that in case of ideal solution, the value of 𝛾𝐵 would remain as 1 in the entire range 

of mole fractions. Therefore, the deviation of 𝛾𝐵 from the value of 1 is an indication of the non-

ideality of a solution at 𝑥𝐵
(𝑙)

 values not too close to 1. In fact, by using the 𝛾𝐵(0) values, the 

intermolecular interaction between A and B components relative to the average interactions among 
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pure A and pure B can be quantitatively calculated as ∆𝐸 = 𝛽𝑘𝐵𝑇 = 𝑙𝑛𝛾𝐵(0)𝑘𝐵𝑇 = -1.66 𝑘𝐵𝑇 or 

+0.86 𝑘𝐵𝑇  based on statistical mechanics understandings (Supplementary Materials). These 

negative and positive ∆𝐸 values indicate an attraction or repulsion between A and B components 

compared to their pure counterparts, which are the fundamental reasons for solutions to display 

negative and positive deviations from the Raoult’s law.13 

Further comparing Fig. 2a,b and Fig. 2c,d, it is straightforward to see that these figures are 

essentially the same, except for the scaling factor of  𝑝𝐵
∗ . This makes it convenient to understand 

the physical meaning of ℎ𝐵 . According to the definition of 𝑝𝐵
∗ 𝛾𝐵 shown in eqn 12, the hybrid 

parameter ℎ𝐵 has a dimension of pressure, and its curves (not shown) can be obtained by scaling 

up the activity coefficients 𝛾𝐵 in Fig. 2c,d using the pure component pressure 𝑝𝐵
∗ . Consequently, 

the ℎ𝐵  curves should maintain exactly the same upward or downward trend as the activity 

coefficients in Fig. 2c,d. Additionally, the ℎ𝐵 curves can be also obtained by simply projecting the 

partial pressures in Fig. 2a,b at each mole fraction from the origin to the right axis at 𝑥𝐵
(𝑙)

 = 1, in 

the same way that activity coefficients are obtained from activities in Fig. 2c,d by the third method 

mentioned above. Therefore, the ℎ𝐵 values are fully enclosed in an interval of [𝐾𝐵, 𝑝𝐵
∗ ] in the case 

of negative deviation and in an interval of [𝑝𝐵
∗ , 𝐾𝐵] in the case of positive deviation from Raoult’s 

law. Only when the mole fraction 𝑥𝐵
(𝑙)

 approaches 1 and 0, the hybrid parameter ℎ𝐵 asymptotically 

approaches the limiting values of 𝑝𝐵
∗  and 𝐾𝐵. Like 𝛾𝐵, the deviation of ℎ𝐵 from the value of 𝑝𝐵

∗  is 

an indication of the non-ideality of a solution at 𝑥𝐵
(𝑙)

 values not too close to 1. Recently Yin 

interpreted 𝑝𝐵
∗  and 𝐾𝐵 as the saturation vapor pressure and the apparent saturation vapor pressure 

of component B as solvent and solute at 𝑥𝐵
(𝑙)

 → 1 and 0, respectively, and a projected 𝐾𝐵
′ , which 

is similar to the ℎ𝐵 defined here in terms of activity coefficients, as the apparent saturation vapor 
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pressure of component B in the non-dilute solution region of 𝑥𝐵
(𝑙)

∈ (0,1).22 Further explanations 

for the physical meanings of activity 𝛼𝐵, activity coefficient 𝛾𝐵, and the hybrid parameter ℎ𝐵 in 

terms of intermolecular interaction 𝛽 from the standpoint of statistical mechanics can be found in 

the Supplementary Materials. 

Finally, it is straightforward to show that under the limiting conditions of 𝑥𝐵
(𝑙)

 → 1 and 0, eqn 

12 can be reduced back to Raoult’s law and Henry’s law as shown by: 

𝑝𝐵 = ℎ𝐵(1)𝑥𝐵
(𝑙)

= 𝑝𝐵
∗ 𝛾𝐵(1)𝑥𝐵

(𝑙)
= 𝑝𝐵

∗ 𝑥𝐵
(𝑙)

      (13) 

𝑝𝐵 = ℎ𝐵(0)𝑥𝐵
(𝑙)

= 𝑝𝐵
∗ 𝛾𝐵(0)𝑥𝐵

(𝑙)
= 𝐾𝐵𝑥𝐵

(𝑙)
      (14) 

This indicates that eqn 12 can be understood as a generalization of Raoult’s law and Henry’s law. 

Next, we will make further simple derivations based on eqn 12 to show that it is a useful model 

for qualitative and semi-quantitative interpretations of binary solutions forming negative and 

positive azeotropes. 

 

3.2. Overlapping rule of 𝒉𝑨  and 𝒉𝑩  ranges. Binary mixtures typically consist of two 

components with different vapor pressures 𝑝𝐴
∗   𝑝𝐵

∗ . For the convenience of discussions in this 

section, let us set 𝑝𝐵
∗  > 𝑝𝐴

∗  and put component A on the left and component B on the right of the 

phase diagram. Regardless of non-azeotropic or azeotropic mixtures, the total pressure on the left 

end of phase diagram where 𝑥𝐵
(𝑙)

 is close to 0 is mainly contributed by solvent A and slightly by 

solute B. Following eqns 5, 6, and 12-14, the total pressure is: 

𝑝 = 𝑝𝐴
∗ 𝑥𝐴

(𝑙)
+ 𝐾𝐵𝑥𝐵

(𝑙)
= 𝑝𝐴

∗ (1 − 𝑥𝐵
(𝑙)

) + 𝐾𝐵𝑥𝐵
(𝑙)

= 𝑝𝐴
∗ + (𝐾𝐵 − 𝑝𝐴

∗ )𝑥𝐵
(𝑙)

  (15) 

Therefore, the tangent line for the total pressure curve at 𝑥𝐵
(𝑙)

 close to 0 has an intercept at 𝑝𝐴
∗  on 

the left vertical axis and a slope of 𝐾𝐵 − 𝑝𝐴
∗ . Likewise, the total pressure on the right end of phase 
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diagram where 𝑥𝐵
(𝑙)

 is close to 1 is mainly contributed by solvent B and slightly by solute A. 

Following eqns 5, 6 and 12-14, the total pressure is: 

𝑝 = 𝑝𝐵
∗ 𝑥𝐵

(𝑙)
+ 𝐾𝐴𝑥𝐴

(𝑙)
= 𝑝𝐵

∗ 𝑥𝐵
(𝑙)

+ 𝐾𝐴(1 − 𝑥𝐵
(𝑙)

) = 𝐾𝐴 + (𝑝𝐵
∗ − 𝐾𝐴)𝑥𝐵

(𝑙)
  (16) 

Therefore, the tangent line for the total pressure curve at 𝑥𝐵
(𝑙)

 close to 1 has an intercept at 𝐾𝐴 on 

the left vertical axis and a slope of 𝑝𝐵
∗ − 𝐾𝐴. As shown above in Fig. 2a, we have 𝑝𝐴

∗  > 𝐾𝐴 and 𝑝𝐵
∗  > 

𝐾𝐵 for a binary system with negative deviations. Since we set 𝑝𝐵
∗  > 𝑝𝐴

∗ , it must be true that 𝑝𝐵
∗  > 

𝐾𝐴. According to eqn 16, the second tangent line must have a positive slope. As for the first tangent 

line, the slope could be positive if 𝑝𝐴
∗  < 𝐾𝐵 or negative if 𝑝𝐴

∗  > 𝐾𝐵. In comparison, as shown above 

in Fig. 2b, we have 𝑝𝐴
∗  < 𝐾𝐴 and 𝑝𝐵

∗  < 𝐾𝐵 for a binary system with positive deviations. Since we 

set 𝑝𝐵
∗  > 𝑝𝐴

∗ , it must be true that 𝑝𝐴
∗  < 𝐾𝐵. According to eqn 15, the first tangent line must have a 

positive slope. As for the second tangent line, the slope is positive if 𝑝𝐵
∗  > 𝐾𝐴 and negative if 𝑝𝐵

∗  < 

𝐾𝐴. 

For a binary mixture to form an azeotrope, the slopes of the two tangent lines must have 

opposite signs, so that a minimum or a maximum point can be formed. As noted in the 

methodology section, we exclude the scenarios with more than one extremum point. Therefore, 

for a binary system with negative deviations, both conditions of 𝑝𝐴
∗  > 𝐾𝐵  and 𝑝𝐵

∗  > 𝐾𝐴 must be 

satisfied, which leads to a concave total pressure curve connecting 𝑝𝐴
∗  and 𝑝𝐵

∗ . In contrast, for a 

binary system with positive deviations, both conditions of 𝑝𝐴
∗  < 𝐾𝐵 and 𝑝𝐵

∗  < 𝐾𝐴 must be satisfied, 

which leads to a convex total pressure curve connecting 𝑝𝐴
∗  and 𝑝𝐵

∗ . In other words, to form an 

azeotrope the ℎ𝐴  range of [𝐾𝐴, 𝑝𝐴
∗ ] must overlap with the ℎ𝐵  range of [𝐾𝐵, 𝑝𝐵

∗ ] in the case of 

negative deviations, or the ℎ𝐴 range of [𝑝𝐴
∗ , 𝐾𝐴] must overlap with the ℎ𝐵 range of [𝑝𝐵

∗ , 𝐾𝐵] in the 

case of positive deviations. For a scenario with 𝑝𝐵
∗  > 𝑝𝐴

∗ , the condition of 𝑝𝐴
∗  > 𝐾𝐵 for a binary 

solution with negative deviation simply means that the negative deviation of component B needs 
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to be large enough so that 𝐾𝐵 drops under 𝑝𝐴
∗ ; and likewise, the condition of 𝑝𝐵

∗  < 𝐾𝐴 for a binary 

solution with positive deviation simply means that the positive deviation of component A needs to 

be large enough so that 𝐾𝐴  rises above 𝑝𝐵
∗ . By using eqn 10 and the statistical mechanics 

understanding shown in the Supplementary Materials, these conditions simply indicate that the 

intermolecular interactions between the two components A−B should be stronger than  

|ln(𝑝𝐴
∗ /𝑝𝐵

∗ )| 𝑘𝐵𝑇. If the difference between 𝑝𝐴
∗  and 𝑝𝐵

∗  is small, the deviation from Raoult’s law 

does not need to be large for binary mixtures to form azeotropes. 

 

   

Figure 3. Data analysis for the binary non-azeotropic tetrachloromethane−tetrahydrofuran 

{𝑥𝐴CCl4 + 𝑥𝐵C4H8O} with negative deviation from Raoult’s law at 298.15 K (data taken from refs. 

10,23). The values of Henry’s law constant 𝐾𝐴  and 𝐾𝐵  are calculated by the averaged slopes of 
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Henry’s law and the tangent line on the right and left sides, respectively. For clarity, the vapor 

compositions are not shown. 

 

 

Figure 4. Data analysis for the binary non-azeotropic isopropanol−acetone mixture {𝑥𝐴C3H8O + 

𝑥𝐵C3H6O} with positive deviation from Raoult’s law at 298.15 K (data taken from ref. 11). The 

values of Henry’s law constant 𝐾𝐴 and 𝐾𝐵 are calculated by the averaged slopes of Henry’s law 

and the tangent line on the right and left sides, respectively. For clarity, the vapor compositions 

are not shown. 

 

Without overlapping ℎ𝐴  and ℎ𝐵  ranges, the mixture will be a non-azeotrope instead of an 

azeotrope. We illustrate the absence of overlapping ℎ𝐴 and ℎ𝐵  ranges in non-azeotropic binary 

mixtures with two representative examples. Figures 3 and 4 show the data analyses for 
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tetrachloromethane−tetrahydrofuran and isopropanol−acetone binary mixtures previously shown 

in Fig. 1a,c, with negative and positive deviations from Raoult’s law, respectively. For the 

tetrachloromethane−tetrahydrofuran mixture with negative deviation, the ℎ𝐴 range of [𝐾𝐴, 𝑝𝐴
∗ ] and 

the ℎ𝐵 range of [𝐾𝐵, 𝑝𝐵
∗ ] do not overlap, as can be seen from the order of 𝐾𝐴 < 𝑝𝐴

∗  < 𝐾𝐵 < 𝑝𝐵
∗ . As 

mentioned above, an azeotrope would be formed if the negative deviation of component B could 

be slightly enlarged so that 𝐾𝐵 drops under 𝑝𝐴
∗ . Likewise, for the isopropanol−acetone mixture 

with positive deviation, the ℎ𝐴 range of [𝑝𝐴
∗ , 𝐾𝐴] and the ℎ𝐵 range of [𝑝𝐵

∗ , 𝐾𝐵] do not overlap either, 

as can be seen from the order of 𝑝𝐴
∗  < 𝐾𝐴 < 𝑝𝐵

∗  < 𝐾𝐵. As mentioned above, an azeotrope would be 

formed if the positive deviation of component A could be slightly enlarged so that 𝐾𝐴 rises above 

𝑝𝐵
∗ . Consequently, the two tangent lines represented by eqns 15 and 16 have positive slopes in both 

Figs. 3 and 4, and therefore no azeotropes can be formed in these two cases. For ideal solutions 

with 𝑝𝐴
∗  = 𝐾𝐴  and 𝑝𝐵

∗  = 𝐾𝐵 , the ℎ𝐴  and ℎ𝐵  ranges are condensed to just two points for the two 

components. Binary mixtures typically consist of two components with different vapor pressures 

𝑝𝐴
∗   𝑝𝐵

∗ , and therefore, ideal solutions do not form azeotropes due to lack of overlap of ℎ𝐴 and ℎ𝐵 

ranges. In other words, azeotropes are special cases of only non-ideal, instead of ideal solutions. 

 

3.3. Mole fraction and pressure of azeotropes. Next, we turn to the azeotropic cases with 

overlapping ℎ𝐴 and ℎ𝐵 ranges. Note that eqns 15 and 16 are only applicable for the two ends of 

phase diagrams, i.e., 𝑥𝐵 ≈ 0 (or 𝑥𝐴 ≈ 1) on the left and 𝑥𝐵 ≈ 1 (or 𝑥𝐴 ≈ 0) on the right. For the 

middle section of mole fractions, we can exploit the new parameter ℎ𝐵 and the generalized eqn 12 

to rationalize azeotropic compositions. Following eqns 5, 6, and 12, the total pressure is: 

𝑝 = 𝑝𝐴 + 𝑝𝐵 = ℎ𝐴𝑥𝐴
(𝑙)

+ ℎ𝐵𝑥𝐵
(𝑙)

= ℎ𝐴(1 − 𝑥𝐵
(𝑙)

) + ℎ𝐵𝑥𝐵
(𝑙)

= ℎ𝐴 + (ℎ𝐵 − ℎ𝐴)𝑥𝐵
(𝑙)

 (17) 

For azeotropes that display a single minimum or maximum in total pressure, the derivative of total  
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pressure 𝑝 should be zero at the minimum or the maximum. In the next section, we will show that 

the minimum or the maximum exactly corresponds to the negative or positive azeotrope. For the 

extremum point, we have: 

𝑑𝑝

𝑑𝑥𝐵
(𝑙) = ℎ𝐵 − ℎ𝐴 = 0         (18) 

which leads to: 

ℎ𝐴 = ℎ𝐵 = ℎ          (19) 

The same conclusion was obtained by Yin recently using projected 𝐾𝐵
′  similar to the ℎ𝐵 defined 

in this work.22 However, the derivation started from a known conclusion of 𝑛𝐴
(𝑙)

/𝑛𝐵
(𝑙)

= 𝑛𝐴
(𝑔)

/𝑛𝐵
(𝑔)

 

rather than a starting condition for azeotropes.24  Eqn 19 means that an azeotrope is obtained when 

the ℎ𝐵  for component B at a mole fraction of 𝑥𝐵
(𝑙)

 is equal to the ℎ𝐴  for component A at the 

corresponding mole fraction of 𝑥𝐴
(𝑙)

 (or 1-𝑥𝐵
(𝑙)

). According to eqns 6 and 17, the derivatives of the 

partial pressures 𝑝𝐴 and 𝑝𝐵 at the azeotropic mole fraction must be of opposite sign but of the same 

magnitude so that eqn 18 can be satisfied. In addition, according to eqns 5, 6, 12, and 19, the total 

pressure for the system is: 

𝑝 = ℎ𝐴𝑥𝐴
(𝑙)

+ ℎ𝐵𝑥𝐵
(𝑙)

= ℎ(𝑥𝐴
(𝑙)

+ 𝑥𝐵
(𝑙)

) = ℎ ∙ 1 = ℎ     (20) 

This means that the total pressure at the azeotrope composition is the common ℎ. Now it becomes 

clear why the condition of overlapping ℎ𝐴 and ℎ𝐵 ranges identified above must be satisfied for a 

binary mixture to form an azeotrope. Only under this condition it is possible to have a common ℎ, 

which does not only dictate the azeotrope composition, but is also equal to the total pressure of the 

azeotropic system, regardless of negative or positive deviations. 

Next, we illustrate these understandings using available experimental data for a few azeotropes 

with both negative and positive deviations. Figures 5 and 6 show the data analyses for the 
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acetone−chloroform and acetone−carbon disulfide binary mixtures previously shown in Fig. 1b,d. 

For the acetone−chloroform system with negative deviations, we can see the order of 𝑝𝐴
∗  > 𝑝𝐵

∗  > 

𝐾𝐴 > 𝐾𝐵. Therefore, the ℎ𝐴 range of [𝐾𝐴, 𝑝𝐴
∗ ] overlaps with the ℎ𝐵 range of [𝐾𝐵, 𝑝𝐵

∗ ]. Additionally, 

the two tangent lines of the total pressure curve have opposite signs, leading to a minimum 

azeotropic point on the concave total pressure curve. In contrast, for the acetone−carbon disulfide 

system with positive deviations, we can see the order of 𝑝𝐴
∗  < 𝑝𝐵

∗  < 𝐾𝐵  < 𝐾𝐴. Therefore, the ℎ𝐴 

range of [𝑝𝐴
∗ , 𝐾𝐴] overlaps with the ℎ𝐵 range of [𝑝𝐵

∗ , 𝐾𝐵]. Additionally, the two tangent lines of the 

total pressure curve have opposite signs, in agreement with the presence of a maximum azeotropic 

point on the convex total pressure curve. 

 

 

Figure 5. Data analysis for the binary mixture of acetone−chloroform {𝑥𝐴C3H6O + 𝑥𝐵CHCl3} 

forming negative azeotrope at 308.32 K (data taken from ref. 12). The values of Henry’s law 
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constant 𝐾𝐴 and 𝐾𝐵 are calculated by the averaged slopes of Henry’s law and the tangent line on 

the right and left sides, respectively, and agree with the experimental values in refs. 25,26. For clarity, 

the vapor compositions are not shown. 

 

 
Figure 6. Data analysis for the binary mixture of acetone−carbon disulfide {𝑥𝐴C3H6O + 𝑥𝐵CS2} 

forming positive azeotrope at 308.32 K (data taken from ref. 12). The values of Henry’s law 

constant 𝐾𝐴 and 𝐾𝐵 are calculated by the averaged slopes of Henry’s law and the tangent line on 

the right and left, respectively. For clarity, the vapor compositions are not shown. 

 

Figures 5 and 6 further show our data analysis following eqns 19 and 20. One can first draw 

an auxiliary horizontal line tangent with the concave or convex total pressure curve at the minimal 

or maximal pressure for the cases with negative or positive deviations. The tangent points should 
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be located exactly at the azeotropic points. This horizontal line intersects with the two vertical axes 

at ℎ𝐴 on the left and ℎ𝐵 on the right, which is equal to the common pressure ℎ = 248.4 Torr for the 

azeotrope. One can then draw an auxiliary vertical line from the azeotropic point to find the mole 

fractions 𝑥𝐵 = 0.62 for the azeotropes. According to our discussions associated with Fig. 2, the ℎ𝐴 

point on the left vertical axis can be obtained by projecting the partial pressure on the 𝑝𝐴 curve at 

the azeotropic composition of 𝑥𝐴 = 1 − 𝑥𝐵 = 0.38 from point B (𝑥𝐴
(𝑙)

= 0) to the left vertical axis 

(𝑥𝐴
(𝑙)

= 1), and meanwhile the ℎ𝐵 point on the right vertical axis can be obtained by projecting the 

partial pressure on the 𝑝𝐵 curve at the azeotropic composition of 𝑥𝐵 = 0.62 from point A (𝑥𝐵
(𝑙)

=

0) to the right vertical axis (𝑥𝐵
(𝑙)

= 1). These expectations are indeed confirmed to be the case for 

both systems in Figs. 5 and 6. Alternatively, the auxiliary lines shown in Figs. 5 and 6 can be 

drawn in a different order. After obtaining ℎ𝐴 and ℎ𝐵 by drawing a horizontal tangent line, one can 

then connect point ℎ𝐴 with point B, and connect point ℎ𝐵  with point A. These lines will intersect 

with the 𝑝𝐴 and 𝑝𝐵 curves at the azeotropic mole fraction of 𝑥𝐵 = 0.62. Finally, the vertical line 

can be drawn at the azeotropic mole fraction to intersect with the horizontal tangent line to find 

the azeotropic point with 𝑥𝐵 = 0.62 and ℎ = 248.4 Torr. The second approach is especially useful 

to find the azeotropic point with 𝑥𝐵 = 0.67 and ℎ = 655.0 Torr for the binary system in Fig. 6, 

where the total pressure near the azeotropic point shows a small variance in a wide range of mole 

fractions. 

Figure 7 shows the first-order derivatives of the partial and total pressure curves and the 

calculated values of ℎ𝐴 and ℎ𝐵 as a function of mole fraction for the acetone−chloroform binary 

mixture shown in Fig. 5. To obtain smooth curves for derivatives, the experimental data points for 

the partial and total pressure are first fitted by polynomials of order 6 and then the analytical 

formulae for the first-order derivatives are obtained. Both the polynomials without constraints in 
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Figure 7. First-order derivatives of the partial and total pressure curves and the calculated values 

of ℎ𝐴  and ℎ𝐵  as a function of mole fraction for the binary mixture of acetone−chloroform 

{𝑥𝐴C3H6O + 𝑥𝐵CHCl3} forming negative azeotrope at 308.32 K (data taken from ref. 12). Vertical 

dashed line indicates the azeotropic mole fraction. 

 

the generic form of 𝑦 = 𝑎𝑥6 + 𝑏𝑥5 + 𝑐𝑥4 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔 and with constraints at the two 

ends of 𝑥 = 0 and 1 in the form of 𝑦 = 𝑦1(1 − 𝑥) + 𝑦2𝑥 + (𝑎𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥)(1 −

𝑥) led to nearly the same result with negligible difference. However, the fitting quality is limited 

near the two ends due to small number of available data points. Consequently, as 𝑥𝐵
(𝑙)

 approaches 

0 and 1, the −𝑑𝑝𝐴/𝑑𝑥𝐵
(𝑙)

 curve and the 𝑑𝑝𝐵/𝑑𝑥𝐵
(𝑙)

 curve may not fully converge with the ℎ𝐴 and 

ℎ𝐵 curves as they are supposed to. Nevertheless, at the azeotropic mole fraction of 𝑥𝐵 = 0.62, the 
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derivatives of the partial pressures 𝑝𝐴  and 𝑝𝐵  are of opposite sign but of the same magnitude, 

leading to a zero derivative for the total pressure curve. In addition, it can be also seen that for this 

binary azeotropic system with negative deviation, the values of ℎ𝐴 at any one 𝑥𝐵
(𝑙)

 is greater or less 

than the value of ℎ𝐵 on the left and right of the azeotropic point, respectively; only at the azeotropic 

composition of 𝑥𝐵 = 0.62, ℎ𝐴 is equal to ℎ𝐵 and meanwhile both are equal to the total pressure ℎ 

= 248.4 Torr of the azeotrope. It can be readily seen from Fig. 6 that the trend is exactly the opposite 

for the acetone−carbon disulfide binary azeotropic system with positive deviation, except at the 

mole fraction for the azeotrope. 

 

 

Figure 8. Data analysis for the binary mixture of triethylamine−chloroform {𝑥𝐴 N(C2H5)3 + 

𝑥𝐵CHCl3} forming negative azeotrope at 283.15 K (data taken from ref. 27). The values of Henry’s 
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law constant 𝐾𝐴 and 𝐾𝐵 are calculated by the averaged slopes of Henry’s law and the tangent line 

on the right and left, respectively. For clarity, the vapor compositions are not shown. 

 

 
Figure 9. Data analysis for the binary mixture of water−tert-butanol {𝑥𝐴 H2O + 𝑥𝐵 C4H10O} 

forming positive azeotrope at 298.15 K (data taken ref. 28,29). The values of Henry’s law constant 

𝐾𝐴 and 𝐾𝐵 are calculated by the averaged slopes of Henry’s law and the tangent line on the right 

and left, respectively. Due to the very large Henry’s law constant for tert-butanol and the very 

large slope of the tangent line on the left, the 𝐾𝐵 is not shown but only indicated by an arrow. For 

clarity, the vapor compositions are not shown. 

 

To rule out the possibility that the data analysis shown in Figs. 5 and 6 is only fortuitous, we 

also checked two more binary azeotropic systems with negative and positive deviations. Figure 8 
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shows the phase diagram for the binary mixture of triethylamine−chloroform with negative 

deviations. This binary system shows an order of 𝑝𝐵
∗  > 𝑝𝐴

∗  > 𝐾𝐵 > 𝐾𝐴, which indicates an overlap 

of ℎ𝐴 and ℎ𝐵 ranges. However, unlike the binary mixture of acetone−chloroform shown in Fig. 5, 

here the ℎ𝐴 range of [𝐾𝐴, 𝑝𝐴
∗ ] overlap only marginally with the ℎ𝐵 range of [𝐾𝐵, 𝑝𝐵

∗ ], because 𝑝𝐴
∗  is 

only slightly larger than 𝐾𝐵 although 𝑝𝐵
∗  is much larger than 𝐾𝐴. Another difference of the current 

system from the previous one is that here the tangent slope at 𝑥𝐵
(𝑙)

 close to 0 is very small while 

the other tangent slope at 𝑥𝐵
(𝑙)

 close to 1 is very large. Correspondingly, the azeotropic composition 

is located at a small 𝑥𝐵
(𝑙)

 = 0.20 and the common pressure ℎ = 4.02 kPa is only slightly lower than 

𝑝𝐴
∗ . Furthermore, Fig. 9 shows the phase diagram for the binary mixture of water−tert-butanol with 

positive deviations, which has an order of 𝑝𝐴
∗  < 𝑝𝐵

∗  < 𝐾𝐴 < 𝐾𝐵 , showing overlapping ℎ𝐴 and ℎ𝐵 

ranges. Unlike the binary mixture of acetone−carbon disulfide shown in Fig. 6 with comparable 

𝐾𝐴 and 𝐾𝐵, here the 𝐾𝐵 is about 8 larger than the 𝐾𝐴 because of a significant positive deviation 

of tert-butanol’s partial pressure from Raoult’s law. Nevertheless, the analyses based on eqns 15-

20 still work very well to locate the azeotrope point at 𝑥𝐵 = 0.61 and ℎ = 49.42 kPa. 

By checking the non-overlapping and overlapping ℎ ranges in Figs. 3-9, one can see that they 

display three different types of overlapping patterns due to the alignments of the four key quantities 

𝑝𝐴
∗ , 𝐾𝐴 , 𝑝𝐵

∗ , and 𝐾𝐵 . These different alignments are similar to the three kinds of known band 

alignments in semiconductor heterojunctions, which result from the relative positions of four band 

edges including the highest edge of the valence band (i.e., valence band maximum) and the lowest 

edge of the conduction band (i.e., conduction band minimum) for two different semiconductors. 

The three kinds of band alignments are called straddling (type I), staggered (type II), and broken 

(type III).30 We note that the four key quantities in binary solutions are not related to the four band 

edges of semiconductor heterojunctions. However, we can borrow the terminologies from the band 
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alignments, to help differentiate the different overlapping patterns for ℎ𝐴 and ℎ𝐵 ranges. Therefore, 

the non-azeotropic mixture in Figs. 3 and 4 show a broken overlap or no overlap (type III), whereas 

the azeotropic mixtures in Figs. 5, 8, and 9 show staggered overlap (type II), and the azeotropic 

mixture in Fig. 6 shows straddling overlap (type I). Only in the type I and type II overlaps a binary 

mixture can lead to an azeotrope while the type III overlap (or no overlap) will give rise to only 

non-azeotrope. 

 

3.4. Vapor composition curve for non-azeotropic and azeotropic mixtures. To complete a 

phase diagram, we need to include the vapor composition curve. When a VLE is established, we 

have: 

𝑝𝐴 = 𝑝𝑡𝑜𝑡𝑥𝐴
(𝑔)

= ℎ𝐴𝑥𝐴
(𝑙)

        (21) 

𝑝𝐵 = 𝑝𝑡𝑜𝑡𝑥𝐵
(𝑔)

= ℎ𝐵𝑥𝐵
(𝑙)

        (22) 

Division of the two equations gives: 

𝑥𝐴
(𝑔)

𝑥𝐵
(𝑔) =

ℎ𝐴

ℎ𝐵
∙

𝑥𝐴
(𝑙)

𝑥𝐵
(𝑙)        (23) 

It appears that eqn 23 can be used to calculate the vapor compositions from the liquid compositions. 

However, since the values of ℎ𝐴  and ℎ𝐵  are derived from the vapor compositions, these 

calculations would form a loop and can only serve the purpose to check whether ℎ𝐴 and ℎ𝐵 are 

correctly calculated. Therefore, herein we will just use eqn 23 to show qualitatively where the 

vapor composition curve should be, simply by using the ratio of ℎ𝐴/ℎ𝐵. 

Let us consider first non-azeotropic mixtures where the ℎ𝐴 and ℎ𝐵 ranges do not overlap. If 

𝑝𝐵
∗  > 𝑝𝐴

∗ , then it must be true that ℎ𝐵 > ℎ𝐴. On the basis of eqn 23, we have the following result 

regardless of negative or positive deviations from Raoult’s law: 
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𝑥𝐴
(𝑔)

𝑥𝐵
(𝑔) <

𝑥𝐴
(𝑙)

𝑥𝐵
(𝑙)  

1−𝑥𝐵
(𝑔)

𝑥𝐵
(𝑔) <

1−𝑥𝐵
(𝑙)

𝑥𝐵
(𝑙)   

𝑥𝐵
(𝑙)

(1 − 𝑥𝐵
(𝑔)

) < 𝑥𝐵
(𝑔)

(1 − 𝑥𝐵
(𝑙)

) 

𝑥𝐵
(𝑙)

−𝑥𝐵
(𝑔)

𝑥𝐵
(𝑙)

< 𝑥𝐵
(𝑔)

− 𝑥𝐵
(𝑔)

𝑥𝐵
(𝑙)

 

𝑥𝐵
(𝑔)

> 𝑥𝐵
(𝑙)

          (24) 

This means that the vapor composition curve will have more B component than the liquid 

counterpart under the same total pressure. Therefore, the vapor composition curve will be on the 

lower right side of the liquid composition curve (Fig. 1a,c). This is reasonable as component B 

should be more volatile than component A due to 𝑝𝐵
∗  > 𝑝𝐴

∗ . Note that the assignment of A and B is 

arbitrary, and therefore the conclusion is also true if 𝑝𝐴
∗  > 𝑝𝐵

∗ . Since the two curves are equal at 

pure A and pure B, the two curves close together at 𝑥𝐴
(𝑙)

= 0 and 1 to form a “single-eye-shaped” 

region, as can be seen from Fig. 1a,c. 

For azeotropic mixtures, the ℎ𝐴 and ℎ𝐵 ranges overlap. At the azeotropic point, according to 

eqn 19, eqn 23 becomes: 

𝑥𝐴
(𝑔)

𝑥𝐵
(𝑔) =

𝑥𝐴
(𝑙)

𝑥𝐵
(𝑙)        (25) 

This can be also obtained by using Dalton’s law in the following way: 

𝑥𝐴
(𝑔)

𝑥𝐵
(𝑔) =

𝑛
𝐴
(𝑔)

𝑛
𝐴
(𝑔)

+𝑛
𝐴𝐵
(𝑔)

𝑛
𝐵
(𝑔)

𝑛
𝐴
(𝑔)

+𝑛
𝐴𝐵
(𝑔)

=
𝑛𝐴

(𝑔)

𝑛𝐵
(𝑔) =

𝑝𝐴

𝑝𝐵
=

ℎ𝐴𝑥𝐴
(𝑙)

ℎ𝐵𝑥𝐵
(𝑙) =

ℎ𝐴

ℎ𝐵
∙

𝑥𝐴
(𝑙)

𝑥𝐵
(𝑙) = 1 ∙

𝑥𝐴
(𝑙)

𝑥𝐵
(𝑙) =

𝑥𝐴
(𝑙)

𝑥𝐵
(𝑙)   (26) 

Further simplification of eqn 25 gives: 

𝑥𝐴
(𝑔)

1−𝑥𝐴
(𝑔) =

𝑥𝐴
(𝑙)

1−𝑥𝐴
(𝑙)  
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𝑥𝐴
(𝑔)

(1 − 𝑥𝐴
(𝑙)

) = 𝑥𝐴
(𝑙)

(1 − 𝑥𝐴
(𝑔)

) 

𝑥𝐴
(𝑔)

−𝑥𝐴
(𝑔)

𝑥𝐴
(𝑙)

= 𝑥𝐴
(𝑙)

− 𝑥𝐴
(𝑔)

𝑥𝐴
(𝑙)

 

𝑥𝐴
(𝑔)

= 𝑥𝐴
(𝑙)

          (27) 

and 

1 − 𝑥𝐵
(𝑔)

= 1 − 𝑥𝐵
(𝑙)

 

𝑥𝐵
(𝑔)

= 𝑥𝐵
(𝑙)

          (28) 

Equations 25-28 indicate that at the azeotropic point, the composition is the same between the 

vapor and liquid phases. 

Next, we consider the full vapor−phase curve on the left and right of the azeotropic point. As 

have been shown in Fig. 7, for a binary system with negative deviations, when the binary 

composition is on the left of the azeotropic point, ℎ𝐴 > ℎ𝐵  or ℎ𝐴/ℎ𝐵 > 1, and when the binary 

composition is on the right of the azeotropic point, ℎ𝐴 < ℎ𝐵 or  ℎ𝐴/ℎ𝐵 < 1, and of course at the 

azeotropic composition, ℎ𝐴 = ℎ𝐵 or ℎ𝐴/ℎ𝐵 = 1, as indicated by eqn 19. Therefore, by substituting 

the ratio of ℎ𝐴/ℎ𝐵 to eqn 23, we have the following result on the left of the azeotropic point for a 

binary system with negative deviation: 

𝑥𝐴
(𝑔)

𝑥𝐵
(𝑔) >

𝑥𝐴
(𝑙)

𝑥𝐵
(𝑙)  

𝑥𝐴
(𝑔)

1−𝑥𝐴
(𝑔) >

𝑥𝐴
(𝑙)

1−𝑥𝐴
(𝑙)  

𝑥𝐴
(𝑔)

(1 − 𝑥𝐴
(𝑙)

) > 𝑥𝐴
(𝑙)

(1 − 𝑥𝐴
(𝑔)

) 

𝑥𝐴
(𝑔)

−𝑥𝐴
(𝑔)

𝑥𝐴
(𝑙)

> 𝑥𝐴
(𝑙)

− 𝑥𝐴
(𝑔)

𝑥𝐴
(𝑙)

 

𝑥𝐴
(𝑔)

> 𝑥𝐴
(𝑙)

          (29) 

and the following result on the right of the azeotropic point: 
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𝑥𝐴
(𝑔)

𝑥𝐵
(𝑔) <

𝑥𝐴
(𝑙)

𝑥𝐵
(𝑙)  

1−𝑥𝐵
(𝑔)

𝑥𝐵
(𝑔) <

1−𝑥𝐵
(𝑙)

𝑥𝐵
(𝑙)   

𝑥𝐵
(𝑙)

(1 − 𝑥𝐵
(𝑔)

) < 𝑥𝐵
(𝑔)

(1 − 𝑥𝐵
(𝑙)

) 

𝑥𝐵
(𝑙)

−𝑥𝐵
(𝑔)

𝑥𝐵
(𝑙)

< 𝑥𝐵
(𝑔)

− 𝑥𝐵
(𝑔)

𝑥𝐵
(𝑙)

 

𝑥𝐵
(𝑔)

> 𝑥𝐵
(𝑙)

          (30) 

Therefore, on the left of the azeotropic composition, the vapor phase has larger 𝑥𝐴
(𝑔)

 than the 

liquid phase 𝑥𝐴
(𝑙)

 at equilibrium because component A is more volatile than the azeotrope. On the 

right of the azeotropic composition, the vapor phase has larger 𝑥𝐵
(𝑔)

 than the liquid phase 𝑥𝐵
(𝑙)

 at 

equilibrium because component B is more volatile than the azeotrope. Here the azeotrope is 

considered as a single substance instead of a mixture, because its composition remains unchanged 

during evaporation as indicated by eqns 25-28. These results dictate that the vapor curve should 

be lower than the liquid curve and touches the liquid-phase curve at the azeotropic point. Finally, 

it can be readily shown that for a positive azeotrope, the trend is exactly the opposite on the left 

and right of the azeotrope point, as a result of its opposite ratios of ℎ𝐴/ℎ𝐵 except for the point of 

azeotrope. This can be understood by the fact that the positive azeotrope is more volatile than both 

component A and B, contrary to the scenario of the negative azeotrope. These results dictate that 

the vapor curve should be also lower than the liquid curve and touches the liquid-phase curve at  

the azeotropic point. 

Figure 10a,b shows the total vapor pressure as a function of vapor and liquid compositions for 

two binary mixtures of acetone−chloroform and acetone−carbon disulfide at 35.17 C forming 

negative and positive azeotropes. As mentioned above, the vapor composition curves are below  
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Figure 10. Vapor composition versus liquid composition. (a,b) Total pressure as a function of 

mole fractions in liquid and vapor. (c,d) Mole fractions in vapor as a function of mole fractions in 

liquid, for acetone−chloroform {𝑥𝐴C3H6O + 𝑥𝐵CHCl3} and acetone−carbon disulfide {𝑥𝐴C3H6O 

+ 𝑥𝐵 CS2} at 308.32 K forming negative and positive azeotropes (data taken from ref. 12,31). 

Diagonal line in (c,d) indicates the situation when vapor and liquid compositions are identical. 

 

the liquid composition curves in both cases, and they have equal mole fractions only for pure A, 

pure B, and the azeotropic points, thereby forming “double-eye-shaped” regions. It can be further 
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seen that in the case of negative deviation, eqns 29 and 30 are satisfied in the two regions on the 

left and right of the azeotropic point, respectively, while in the case of positive deviation, eqns 29 

and 30 are satisfied in the two regions on the right and left of the azeotropic point, respectively. 

Figure 10c,d further shows the direct comparison between vapor composition and liquid 

composition. The diagonal line divides the figure into two halves, where the upper left half has 

𝑥𝐵
(𝑔)

 > 𝑥𝐵
(𝑙)

 and the lower right half has 𝑥𝐵
(𝑔)

 < 𝑥𝐵
(𝑙)

, which is equivalent to 𝑥𝐴
(𝑔)

 > 𝑥𝐴
(𝑙)

 in eqn 29. 

Only on the diagonal line, the vapor and liquid compositions are identical, which is the case for 

pure A, pure B, and the azeotropic points. It can be seen that the azeotropic points divide the figures 

into two blocks, where eqns 29 and 30 again are satisfied in the lower left block and the upper 

right block of Fig. 10c, respectively, and in the upper right block and the lower left block of Fig. 

10d, respectively. 

With both the liquid and vapor compositions shown in Fig. 10a,b, we further justify why an 

azeotrope should be considered as a single substance instead of a mixture, despite the fact it is 

made up of two components. On the isothermal phase diagram for each binary system, there is 

only one azeotropic point with a fixed combination of pressure and composition. Similar to the 

cases of pure components A and B, the degree of freedom or variance for an azeotrope is f = 3 −  

= 3 − 2 = 1 according to the Gibbs phase rule at the vapor pressure of ℎ𝐴 = ℎ𝐵 = ℎ due to co-

existing two phases of vapor and liquid. Alternatively, the conditional degree of freedom with 

temperature fixed is f* = 3 − 1 −  = 2 −  = 2 − 2 = 0. This means that for an azeotrope, once 

temperature is fixed, then the pressure and composition are not variables. If the azeotrope is forced 

to be two components, then its Gibbs phase rule should be f = 4 −  = 4 – 2 = 2 or f* = 4 – 1 −  

= 3 −  = 3 – 2 = 1, which does not agree with the fact that the pressure and mole fraction are 

fixed for azeotrope under a certain temperature. Therefore, an azeotrope must be considered a 
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single substance. In comparison, in one of the two eye-shaped regions, the conditional degree of 

freedom is f* = 3 – 2 = 1, which means that a pressure is needed to define the system because 

under this pressure the compositions of vapor and liquid can be found from the phase diagram; 

under the vapor composition curve or above the liquid composition curve, the conditional degree 

of freedom is f* = 3 – 1 = 2, which means both pressure and composition are needed to fully define 

the system. 

 

4. Conclusion 

We have put forth a simple and yet practical theoretical model generalized from Raoult’s law and 

Henry’s law. The model entertains a hybrid parameter ℎ𝐵  that is related to the experimentally 

accessible activity coefficient. Throughout the discussions the hybrid parameter ℎ𝐵 plays a central 

role. The values of  ℎ𝐵 are mole fraction dependent and fall in the range of [𝐾𝐵, 𝑝𝐵
∗ ] or [𝑝𝐵

∗ , 𝐾𝐵] in 

the case of negative or positive deviation from Raoult’s law, respectively. When the mole fraction 

approaches 1 and 0, the hybrid parameter ℎ𝐵 asymptotically approaches the limiting values of 𝑝𝐵
∗  

and 𝐾𝐵, respectively. Under the same mole fraction limits, the generalized model can be reduced 

to the Raoult’s law and Henry’s law, respectively. 

We have uncovered an overlapping rule for the ℎ𝐴 and ℎ𝐵 ranges, which binary mixtures must 

obey to form azeotropes. There can be three different types of overlapping patterns, i.e., straddling 

overlap (type I), staggered overlap (type II), and broken overlap or no overlap (type III). For binary 

mixtures with either type I or type II overlaps, azeotropes are formed when the ℎ𝐴  at a mole 

fraction for component A is equal to the ℎ𝐵 at a corresponding mole fraction for component B, 

giving a total pressure at common ℎ for the azeotrope composition, regardless of negative or 

positive deviations. For binary mixtures with type III overlap (or no overlap), non-azeotropes are 
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formed. For ideal solutions, the ℎ𝐴 and ℎ𝐵 ranges are condensed to just two different points with 

non-overlapping pressures, and therefore ideal solutions do not form azeotropes. This overlapping 

rule serves as a simple guideline to rationalize why some solutions form azeotropes. It is worth 

pointing out that only the ranges of the hybrid parameter ℎ work for this purpose, while those of 

activity 𝛼, intermolecular interaction 𝛽, and activity coefficient 𝛾 do not. 

We have also shown a semi-quantitative way to find the characteristic mole fraction and 

pressure for binary azeotropes. In isothermal phase diagrams, one can first draw an auxiliary 

horizontal line tangent with the concave or convex total pressure curve at the minimum or 

maximum pressure for negative or positive deviations, respectively. This horizontal line intersects 

with the two vertical axes at ℎ𝐴 on the left and ℎ𝐵 on the right, which is equal to the common 

pressure ℎ for the azeotrope. One can then connect point ℎ𝐴 with point B at zero pressure and 

connect point ℎ𝐵  with point A at zero pressure. These lines will intersect with the partial pressure 

curves for the two components at the azeotropic mole fraction. Finally, a vertical line can be drawn 

at the azeotropic mole fraction to intersect with the horizontal line to find the azeotropic point. 

Finally, we have presented a qualitative interpretation for the relative mole fractions of vapor 

composition curves with respect to the liquid counterparts under the same pressures. For non-

azeotropic mixtures where the ℎ𝐴 and ℎ𝐵 ranges do not overlap, the vapor composition curve will 

have more B component (if ℎ𝐵 > ℎ𝐴 ) or more A component (if ℎ𝐴 > ℎ𝐵 ) than the liquid 

counterpart under the same total pressure. For azeotropic mixtures with negative deviation, we 

have ℎ𝐴 > ℎ𝐵 or ℎ𝐴 < ℎ𝐵 if the binary composition is on the left or right of the azeotropic point, 

respectively, and ℎ𝐴 = ℎ𝐵  at the azeotropic composition. Therefore, on the left or right of the 

azeotropic composition, the vapor phase has more component A or B than the liquid phase because 

component A or B is more volatile than the azeotrope, whereas at the azeotropic point, the 



34 
 

composition is the same between the vapor and liquid phases. The opposite scenarios can be 

obtained for a binary system with positive deviation, except for the point of azeotrope. 

To the best of our knowledge, the understandings presented in this work have not been adopted 

for the analysis of realistic experimental data or documented in any physical chemistry or chemical 

engineering books. We believe the approaches presented in this work will be useful in the analysis 

of experimental data from VLE measurements and also possess pedagogical merit in various 

relevant fields. For instance, in the data analysis presented in the Supplementary Materials for the 

binary dimethoxymethane−carbon disulfide solution, we noticed that the experimental data are 

inconsistent between the azeotropic mole fraction (𝑥𝐵 = 0.48) and the maximum pressure position 

on the total pressure curve (𝑥𝐵 = 0.45), which can be ascribed to the relatively large uncertainty of 

±0.05 kPa in pressure measurement. This illustrates how the understandings of the present work 

can be used as a framework to calibrate experimental results. In addition, eqns 12-16 and 19-20 

along with the tangent lines and auxiliary lines shown in Figs. 5-9 can be adopted to explain 

fundamental concepts in the textbook of Atkins’ Physical Chemistry and in the LearnChemE 

chemical engineering education resources through the Wolfram Demonstration for vapor pressures 

of binary solutions. 
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Supplementary Materials Available: An excel file with detailed steps for data analysis using the 

experimental data of binary dimethoxymethane−carbon disulfide solution {𝑥𝐴C3H8O2 + 𝑥𝐵CS2} 

at 308.32 K. Additional statistical mechanics explanations of activity 𝛼𝐵, activity coefficient 𝛾𝐵, 

and the hybrid parameter ℎ𝐵 in terms of intermolecular interaction 𝛽𝐵. 
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Statistical mechanics explanations in terms of intermolecular interaction 𝜷: 

In the following discussions, we do not include superscript (l) in 𝑥𝐵
(𝑙)

 for convenience since we are 

looking at liquid phase only. According to statistical mechanics derivations, eqn 9 in the main text 

for components A and B can be written as:s1 

𝑝𝐴 = 𝑝𝐴
∗ 𝑎𝐴 = 𝑝𝐴

∗ 𝛾𝐴𝑥𝐴 = 𝑝𝐴
∗ 𝑥𝐴𝑒𝛽𝑥𝐵

2
= 𝑝𝐴

∗ (1 − 𝑥𝐵)𝑒𝛽𝑥𝐵
2
    (s1) 

𝑝𝐵 = 𝑝𝐵
∗ 𝑎𝐵 = 𝑝𝐵

∗ 𝛾𝐵𝑥𝐵 = 𝑝𝐵
∗ 𝑥𝐵𝑒𝛽𝑥𝐴

2
= 𝑝𝐵

∗ 𝑥𝐵𝑒𝛽(1−𝑥𝐵)2
    (s2) 

In these full equations, a new parameter 𝛽 is defined as: 

𝛽 = ∆𝐸/𝑘𝐵𝑇          (s3) 

In eqn s3, the denominator contains the Boltzmann constant and absolute temperature, while the 

numerator is the intermolecular interaction between A and B: 



s2 
 

∆𝐸 = 𝑧𝑤 = 𝑧[𝑤𝐴𝐵 −
𝑤𝐴𝐴+𝑤𝐵𝐵

2
]       (s4) 

where 𝑧  is the number of nearest neighbors or equivalently the coordination number of each 

molecule, regardless it is solvent or solute, and 𝑤𝐴𝐵, 𝑤𝐴𝐴, and 𝑤𝐵𝐵 are the average intermolecular 

potential energies for A−B, A−A, and B−B pairs. Therefore, eqn s4 represents the intermolecular 

interaction between A and B components relative to the average interactions among pure A and 

pure B. With the activity coefficients 𝛾𝐵 defined in eqns s1 and s2, other parameters including 

activity 𝛼𝐵 and the hybrid parameter ℎ𝐵 are also functions of intermolecular interaction. 

Taking derivative of eqns s1 and s2, respectively, we have: 

𝑑𝑝𝐴

𝑑𝑥𝐵
= −𝑝𝐴

∗ 𝑒𝛽𝑥𝐵
2

+ 2𝛽𝑥𝐵(1 − 𝑥𝐵)𝑝𝐴
∗ 𝑒𝛽𝑥𝐵

2
      (s5) 

𝑑𝑝𝐵

𝑑𝑥𝐵
= 𝑝𝐵

∗ 𝑒𝛽(1−𝑥𝐵)2
− 2𝛽𝑥𝐵(1 − 𝑥𝐵)𝑝𝐵

∗ 𝑒𝛽(1−𝑥𝐵)2
     (s6) 

At the azeotropic point, the derivative of the total pressure should be zero. Therefore, we have: 

𝑑𝑝

𝑑𝑥𝐵
=

𝑑𝑝𝐴

𝑑𝑥𝐵
+

𝑑𝑝𝐵

𝑑𝑥𝐵
= 0         (s7) 

−
𝑑𝑝𝐴

𝑑𝑥𝐵
=

𝑑𝑝𝐵

𝑑𝑥𝐵
          (s8) 

𝑝𝐴
∗ 𝑒𝛽𝑥𝐵

2
− 2𝛽𝑥𝐵(1 − 𝑥𝐵)𝑝𝐴

∗ 𝑒𝛽𝑥𝐵
2

= 𝑝𝐵
∗ 𝑒𝛽(1−𝑥𝐵)2

− 2𝛽𝑥𝐵(1 − 𝑥𝐵)𝑝𝐵
∗ 𝑒𝛽(1−𝑥𝐵)2

 (s9) 

𝑝𝐴
∗ 𝑒𝛽𝑥𝐵

2
[1 − 2𝛽𝑥𝐵(1 − 𝑥𝐵)] = 𝑝𝐵

∗ 𝑒𝛽(1−𝑥𝐵)2
[1 − 2𝛽𝑥𝐵(1 − 𝑥𝐵)]   (s10) 

𝑝𝐴
∗ 𝑒𝛽𝑥𝐵

2
= 𝑝𝐵

∗ 𝑒𝛽(1−𝑥𝐵)2
        (s11) 

𝑝𝐴
∗

𝑝𝐵
∗ =

𝑒𝛽(1−𝑥𝐵)2

𝑒𝛽𝑥𝐵
2           (s12) 

𝑙𝑛
𝑝𝐴

∗

𝑝𝐵
∗ = 𝛽(1 − 2𝑥𝐵)         (s13) 

𝑥𝐵 =
1

2
(1 −

1

𝛽
𝑙𝑛

𝑝𝐴
∗

𝑝𝐵
∗ )         (s14) 
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In the discussions presented in the main text, we assumed that all partial pressures or activities 

display a monotonic change as a function of mole fractions. If this were not the case, then there 

would be values of zero even for the derivative of partial pressures at some mole fractions. By 

setting eqns s5 or s6 to zero, we can arrive at the following conditions to give values of zero for 

the derivative of partial pressures: 

1 − 2𝛽𝑥𝐵(1 − 𝑥𝐵) = 0        (s15) 

𝑥𝐵
2 − 𝑥𝐵 +

1

2𝛽
= 0         (s16) 

𝑥𝐵 =
1±√1−

2

𝛽

2
          (s17) 

These conditions for obtaining values of zero for the derivative of partial pressures also hold true 

for the derivative of activities. 

 

 
Figure S1. Activity (left) and derivative of activity (right) calculated using different 𝛽 values as a 

function of mole fractions. The case of 𝛽 = 0 corresponds to Raoult’s law, manifesting as a straight 

line and a horizontal line in the two panels, respectively. 
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Figure S1 shows activities and derivatives of activities calculated using eqns s2 and s6 for only 

component B. Raoult’s law is obtained with 𝛽 = 0, which according to eqn s4 means that ideal 

solutions are obtained when the intermolecular interaction between A and B components is equal 

to the average interactions among pure A and pure B. In comparison, the non-zero values of 𝛽 <

0 and 𝛽 > 0 lead to negative and positive deviations from the Raoult’s law. More specifically, 

activities show monotonic changes as a function of mole fraction for all negative deviation cases; 

however, activities show monotonic changes only if 𝛽 < 2 for positive deviation cases. According 

to eqn s17, the derivative curve of activity with 𝛽 = 2  becomes zero at exactly 𝑥𝐵 = 1/2 ±

1/2√1 − 2/2 = 0.5 while the derivative curve of activity with larger values, e.g.,  𝛽 = 3 , 

becomes zero at  𝑥𝐵= 1/2 ± 1/2√1 − 2/3 = 0.21 and 0.79. 

 

 
Figure S2. Partial pressures of acetone in binary acetone−chloroform {𝑥𝐴C3H6O + 𝑥𝐵CHCl3} and 

binary acetone−carbon disulfide {𝑥𝐴C3H6O + 𝑥𝐵CS2}  mixtures at 308.32 K, fitting by eqn s2 

giving 𝛽 = −0.81 and +1.56 with fitting quality of R2 = 0.99979 and 0.98537, respectively, and 
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compared to curves calculated with other 𝛽 values. The negative and positive 𝛽 values are the root 

cause for the negative and positive of deviation of partial pressure of acetone from Raoult’s law. 

 

In Fig. S2 we analyze the experimental partial pressure curves of acetone in binary 

acetone−chloroform and acetone−carbon disulfide mixtures at 308.32 K previously shown in the 

main text. The experimental data can be well fitted using eqn s2, validating the applicability of the 

statistical-mechanics model. Using eqn s14 and the values of 𝛽 = −0.81 and +1.56, the azeotropic 

point has a mole fraction of 𝑥𝐵 = 0.60 and 0.63, which are close to the actual azeotropic mole 

fraction of 𝑥𝐵 = 0.62 and 0.67 for acetone in binary acetone−chloroform and acetone−carbon 

disulfide mixtures at 308.32 K, respectively (Figs. 5 and 6). This again confirms that the statistical-

mechanics model is approximately correct. Further using eqn s2 and eqn 10 (main text), we have 

𝛾𝐵(𝑥𝐵 = 0) = 𝐾𝐵/𝑝𝐵
∗ = 𝑒𝛽(1−𝑥𝐵)2

, and therefore 𝐾𝐵 = 𝑝𝐵
∗ 𝑒−0.81 = 153.3  Torr for acetone in 

binary acetone−chloroform, which is very close to the experimental values in the range of 

150−155 Torr in refs. 25, 26,s2. Finally, Fig. S2 shows that actual experimental partial pressures do 

display monotonic changes as a function of mole fractions, presumably due to their values of 𝛽 <

2. 
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