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An open-source framework for fast-yet-accurate
calculation of quantum mechanical features†

Eike Caldeweyher,∗a Christoph Bauer,a and Ali Soltani Tehrania

We present the open-source framework kallisto that enables the efficient and robust calculation of
quantum mechanical features for atoms and molecules. For a benchmark set of 49 experimental
molecular polarizabilities, the predictive power of the presented method competes against second-
order perturbation theory in a converged atomic-orbital basis set at a fraction of its computational
costs. Robustness tests within a diverse validation set of more than 80,000 molecules show that
the calculation of isotropic molecular polarizabilities has a low failure-rate of only 0.3%. We present
furthermore a generally applicable van der Waals radius model that is rooted on atomic static
polarizabilites. Efficiency tests show that such radii can even be calculated for small- to medium-size
proteins where the largest system (SARS-CoV-2 spike protein) has 42,539 atoms. Following the
work of Domingo-Alemenara et al. [Domingo-Alemenara et al., Nat. Comm., 2019, 10, 5811], we
present computational predictions for retention times for different chromatographic methods and
describe how physicochemical features improve the predictive power of machine-learning models that
otherwise only rely on two-dimensional features like molecular fingerprints. Additionally, we developed
an internal benchmark set of experimental super-critical fluid chromatography retention times. For
those methods, improvements of up to 17% are obtained when combining molecular fingerprints
with physicochemical descriptors. Shapley additive explanation values show furthermore that the
physical nature of the applied features can be retained within the final machine-learning models.
We generally recommend the kallisto framework as a robust, low-cost, and physically motivated
featurizer for upcoming state-of-the-art machine-learning studies.

1 Introduction
The efficient and accurate calculation of molecular physicochem-
ical properties is highly desirable because these descriptors pro-
vide insight and explanation for experimental and simulation re-
sults. Quantum chemistry, including ab initio wave function the-
ory (WFT), and density functional theory (DFT), has been the via
regia in this field.1 However, ab initio and DFT methods often
form a bottleneck due to their computational demands. One av-
enue to expedite these efforts has been the development of mod-
ern semi-empirical quantum chemistry methods.2–4 Additionally,
machine learning (ML) methods have recently emerged that ac-
celerate predictions in the chemical sciences.5–7 These bypass the
time-consuming solution of the ab initio equations by training
on pre-generated data, for example the computation of absolute
energies using neural network potentials.8–10 Applications that
make use of these ML-based potentials include e.g., the prediction
of reactivity,11 and molecular ground- and excited-state proper-
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ties.12–14 Combined quantum chemistry and ML workflows have
shown the great potential of these data-supported computational
chemistry approaches within regioselectivity determination,15,16

activation energies for organic reactions,17 as well as in tun-
ing molecular excitation energies.18 However, in those reports
the generation of the quantum chemical features is the compu-
tational bottleneck, often involving DFT geometry optimizations.
The on-the-fly generation of quantum chemistry-like features us-
ing ML methods can alleviate these issues, as shown for exam-
ple in regioselectivity prediction.19 Moreover, the prediction of
partial charges by random forest models20 has been of use for
molecular dynamics simulations. For molecular polarizabilities,
empirical dipole-based models have long been available in the
literature21,22 and used to predict, e.g., retention times (RT) in
chromatographic applications.23

We have developed the open-source computational framework
kallisto,24 which enables the efficient calculation of multiple
physicochemical descriptors like atomic partial charges or po-
larizabilities. In the next section, we introduce the theoreti-
cal foundations for calculating such atomic and molecular fea-
tures. Starting at atomic coordination numbers, we show how
they are used to build more complex atomic descriptors like, e.g.,
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environment-dependent atomic partial charges or an efficient yet
highly accurate model for atomic and molecular dynamic polar-
izabilities. Atomic static polarizabilities are furthermore used to
build a charge- and environment-dependent van der Waals radius
model for all elements up to Radon. An example from pharma-
ceutical science is highlighting how physicochemical descriptors
can be incorporated in a quantitative structure-activity relation-
ship (QSAR) to accurately predict RTs for liquid chromatography
(LC) and super-critical fluid chromatography (SFC) applications.

2 Methodologies

We introduce in the following the concepts of coordination num-
bers, electronegativity equilibration atomic partial charges, as
well as how dynamic atomic and molecular polarizabilities are
created within the presented method.

2.1 Coordination numbers

Coordination numbers (CN) represent the atomic hybridization
inside a molecular environment that agrees well with chemical
intuition.25 CNs are calculated in a pairwise sum that incorpo-
rates atomic covalent radii (Rcov) as defined by Pyykkö.26 Re-
cently, the CN has been extended by information about the atomic
electronegativity for each atom pair27 as shown in its definition
below

CNi = ∑
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Herein, EN is the Pauling electronegativity,28 RAB is the internu-
clear distance of the atom pair AB, and Rcov

AB is the sum of both co-
valent atomic radii – Rcov

A and Rcov
B . The parameters were obtained

by fitting CN-values against GFN2-xtb4 Wiberg bond orders29 of
diatomic molecules having different EN-values (final parameters:
k0 = 7.5, k1 = 4.1, k2 = 19.09, and k3 = 254.56).

Fig. 1 shows CN-values for the bisphosphine palladium com-
plex Pd(Cy)3, whose structure has been extracted from Ref. 30.
The CN-values of a selection of atoms (bold) inside the complex
show that, e.g., sp3-hybridized carbon atoms have CN-values that
corresponds to four covalent binding partners. Hydrogen atoms
have one covalent binding partner, while Palladium has two and
Phosphorous four, respectively. By introducing a computationally
efficient measure for atomic hybridization states we are ready to
develop more advanced descriptors. Hence, in the next section
we describe the development of an atomic partial charge and an
atom-in-molecule polarizability model that both incorporate CN-
values to capture environment effects of each atom.

2.2 Partial charges and dynamic polarizabilities

Electronegativity equilibration partial charges are determined by
minimising the isotropic electrostatic (IES) energy expression

Fig. 1 Palladium catalyst structure of Pd(Cy)3 for which atomic coordi-
nation numbers are shown.
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The first part of the equation describes the on-side interaction for
atom i. Environment effects are captured by a first-order term
χi that incorporates the atomic electronegativity and the κ-scaled
coordination number. The second part of the equation describes
the pairwise interactions between atom i and all j particles as
obtained for interacting charge densities.31 We apply Lagrangian
optimisation to obtain atomic partial charges under the constraint
of preserving the total charge qtot of the system

L = EIES +λ
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which leads to a set of (N + 1) linear equations that can be rewrit-
ten in matrix form as(
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A incorporates an atomic radius dependent term γi j =(
a2

i +a2
j

)−1/2
with the atomic radii parameter ai/ j, as well as the

2 | 1–14Journal Name, [year], [vol.],



chemical hardness Jii. Elements of A are defined as follows

Ai j =


Jii +

2γii√
π
, if i = j

erf(γi jRi j)

Ri j
, if i ̸= j.

(5)

There exist overall five parameters per element in this charge
model that have been parametrized to match hybrid DFT derived
Hirshfeld charges at the PBE032/def2-TZVP33 level of theory.27

The parameters per element are: atomic hardness Jii, atomic elec-
tronegativity ENi, CN-scaling parameter κi, covalent atomic ra-
dius Rcov

i , and atomic radii ai used to calculate γ-values as de-
scribed above.

The model shows remarkable low deviations compared to
higher-level and computationally more demanding density func-
tional methods.27 Atomic partial charges q are further used to cal-
culate atomic charge-dependent dynamic polarizabilities using an
empirical scaling method. For this purpose, a charge-scaling func-
tion has been designed previously.27 This charge scheme requires
the formulation of effective nuclear charges that are defined as
follows

zi = Zi +qi, (6)

with Zi being the nuclear charge of atom i, respectively. The
charge dependency is incorporated by multiplying precalculated
dynamic reference polarizabilities, termed α j,re f (iω), – at the
time-dependent PBE3825/d-aug-def2-QZVP34 level of theory –
by a Gompertz-like scaling term. The scaling term incorporates
the atomic chemical hardness τ j as steepness regulator and the
reference and calculated effective charges z j,re f

/
z j.
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Every element has a set of Ni,re f precalculated reference polar-
izabilities. We apply a Gaussian nearest-neighbors algorithm to
interpolate between reference polarizabilities with respect to CN-
values. Hence the contribution of every reference value to the
final atom-in-molecule polarizability of atom i is given by
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with the sum of all weights equal to unity. The Ns-limit influences
the steepness of the Gaussian and is larger than unity for ref-
erence systems having small CN-differences (e.g., for references
describing carbon inside ethene and benzene). The final charge-
and environment dependent atomic polarizability is obtained by

α j(iω) =
N j,re f

∑
j,re f=1

α j,re f (iω,z j) ·W j,re f
j . (9)

Molecular isotropic polarizabilities are calculated by adding all
N atomic polarizabilities exploiting the additivity of polarizabili-

ties35

αmol(iω) =
N

∑
j

α j(iω). (10)

3 Results
We highlight next how the presented method compares to well-
established and computationally more demanding models in
terms of predicting experimental molecular polarizabilities. For
this purpose, we created a benchmark set of experimental molec-
ular polarizabilities for 49 different organic compounds. We show
furthermore how atomic polarizabilities are used to develop a
generally applicable model for determining van der Waals (vdW)
radii for all elements up to Radon. Last, we show how physico-
chemical descriptors like the molecular polarizability can be used
within a QSAR approach to predict retention times within chro-
matographic applications in pharmaceutical industry.

3.1 Prediction of experimental molecular polarizabilities

In this section, we compare several methods to predict ex-
perimental molecular polarizabilities. Our selection of meth-
ods includes an ab initio quantum chemical method, a deep-
learning framework, a chemoinformatical approach, and lastly
the presented method. In order to make a statement about
the performance of each method, we created a benchmark set
that includes experimentally determined molecular polarizabili-
ties termed MOLPOL135.36 This benchmark set consists of 135 ex-
perimentally obtained static molecular polarizabilities with struc-
tures at the CAM-B3LYP37-D3(BJ)25/def2-TZVP33 level of theory.
Reported experimental molecular polarizabilities are obtained via
different techniques, i.e. dipole oscillator, refractive index, dielec-
tric permittivity, or electron-molecule scattering measurements.

Some of the predictive models are not yet parametrized for
the whole periodic table (see below). We therefore extracted a
subset of the MOLPOL135 consisting of 49 organic compounds (a
list of all compounds is given in the Supplementary Information)
that incorporate the following elements: Hydrogen, Carbon, Ni-
trogen, Oxygen, Sulfur, and Chlorine. Correlation plots for each
method (termed as "Predicted") with respect to the experimental
molecular polarizabilities (termed as "Experimental") are given in
Fig. 2. The root mean squared error (RMSE), the mean abso-
lute error (MAE), the coefficient of determination (r2), and the
computer-timing measure to calculate all systems of considera-
tion once (∑ tCPU) are listed as well.

We extracted second-order Møller-Plesset perturbation the-
ory (MP2) molecular polarizabilities obtained in a large atomic-
orbital basis set (def2-QZVPD34) from Ref. 38 (abbreviated as
MP2/QZ in the following). MP2/QZ has the highest ∑ tCPU-value,
which is expected since we need to solve the non-relativistic
Schrödinger equation and perform perturbation theory of sec-
ond order on-top where a molecular-orbital (MO) transformation
is necessary that formally scales O(N5) with respect to the ap-
plied basis set functions N. The high computer cost comes along
with the lowest RMSE (1.36 Bohr3) and MAE (1.16 Bohr3) val-
ues across all tested methods for the prediction of experimen-
tal molecular polarizabilities. The coefficient of determination
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Fig. 2 Correlation plots of experimental molecular polarizabilities for 49 organic molecules against MP2/def2-QZVPD34, AlphaML, kallisto , and
Meanpol listed with respect to decreasing computer time tCPU. Given are furthermore the root mean squared error (RMSE), the mean absolute error
(MAE), and the coefficient of determination (r2). Two outliers – CS2 and O3 – were removed from the AlphaML set (listed in the Supplementary
Information).
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shows a perfect correlation to the experimental references. How-
ever, due to the high computational costs arising from diagonaliz-
ing the Hamiltonian and performing the MO transformation, this
method is not routinely applicable on large scales, e.g., screening
hundreds to thousands of compounds. Hence we can only rec-
ommended MP2/QZ as a theoretical reference method, but not
generally for the fast prediction of molecular polarizabilities.

Another promising candidate of being an efficient and accurate
model for the prediction of molecular polarizabilities is the re-
cently published AlphaML deep learning model as developed by
Ceriotti and co-workers.39 References for this method have been
obtained at the linear-response coupled-cluster method including
single and double excitations (CCSD) in a d-aug-cc-pVDZ basis
set. A symmetry-adapted Gaussian process regression scheme has
been created and tested on a set of 52 larger molecular systems to
validate the accuracy for predicting molecular polarizabilities.39

We calculate AlphaML molecular static polarizability as the trace
of the obtained polarizability tensor P – as introduced by Ceriotti
and co-workers in a recent work.40

α
AlphaML
mol =

1
3

TrP (11)

Computer times for this method are orders of magnitudes below
the MP2/QZ method reaching an overall scope of minutes in com-
puter time. This, however, comes with the drawback of increas-
ing RMSE (4.90 Bohr3) and MAE values (2.98 Bohr3). Unfortu-
nately, AlphaML suffers from robustness issues in terms of pre-
dicting physically correct molecular polarizabilities. Within our
set, two molecular systems obtained unphysical molecular polar-
izabilities: First, the molecular polarizability of ozone (O3) has
been overestimated several orders of magnitudes. Second, the
molecular polarizability of carbon disulfide (CS2) was predicted
to be negative. Even though the performance of the AlphaML
method is good in terms of computational speed, this could not
compensate the missing availability of elements across the pe-
riodic system and the mentioned robustness issues. These lim-
itations hinder the general application of AlphaML for the fast,
robust, and accurate prediction of molecular polarizabilities.

The next predictive method has been developed within the
field of chemoinformatics.41 This method is the conceptionally
simplest one among all of our tested approaches. Obtaining the
molecular polarizability is straightforward since we only need to
add up averaged atomic polarizabilities α to obtain this molec-
ular property. We therefore term this method as Meanpol in the
following.

α
Meanpol
mol = ∑

i
α i (12)

In their work, Bosque and Sales published α-values for 10 dif-
ferent elements (Carbon, Hydrogen, Oxygen, Nitrogen, Sulfur,
Phosphorous, Fluorine, Chlorine, Bromine, and Iodine). Since
only the chemical composition is necessary, this method is by far
the most efficient one, calculating all molecular polarizabilities
in only milliseconds of computer time. Nevertheless, this gain in
efficiency also comes with the price of the overall highest RMSE
(9.62 Bohr3) and MAE (3.91 Bohr3) values across all tested meth-
ods. Nevertheless, it is remarkable that such a simple method is

able to predict experimental polarizabilities with a reasonable ac-
curacy. Though this method is not accurate enough to be gener-
ally applicable in the sense of offering a fast yet reliable predictive
model, however, it can be used for the fast guess of molecular po-
larizabilities when averaged atomic references are available for
the system of interest.

Last, we discuss results for the kallisto method whose theoret-
ical framework has already been introduced in section 2. This
method uses the same strategy as the Meanpol approach, how-
ever, instead of applying averaged atomic polarizabilities, refer-
ences are interpolated with respect to a Gaussian nearest neigh-
bour approach using atomic CNs. This enables the explicit de-
scription of environment effects and the implicit modulation of
many-body dispersion effects that generally lower atomic polariz-
abilities. Compared to MP2/QZ, and AlphaML, the computer time
is lowered achieving a scope of seconds to calculate all molecu-
lar polarizabilities within our test set. Note that the computer
time can even be lowered below one second when additionally
a pre-compiled shared library that handles intense linear algebra
calculations in the back-end is included.27 However, for the sake
of applicability and user-friendliness we decided to stick to an im-
plementation that does not incorporate pre-compiled sources and
is as such easier to distribute and easier to install by the user.

With the second lowest RMSE (2.57 Bohr3) and MAE (1.77
Bohr3) the kallisto method hits the “sweet-spot” between accuracy
and efficiency. Also the coefficient of determination (r2 = 0.99)
shows almost the same quality of correlation as the orders of
magnitudes computationally more demanding MP2/QZ method.
Furthermore, this method is parameterized for all elements up to
Radon (Z = 86), which enables a far wider scope of applicabil-
ity compared to AlphaML and Meanpol. We tested the robustness
for obtaining molecular polarizabilities on a molecular set having
more than 80,000 organic compounds.42 Only 0.3% of the cases
were not successful, which shows generally a high robustness for
this method. Overall, this enables the efficient, robust, and ac-
curate prediction of molecular polarizabilities for large parts of
the periodic table reaching from small to large system sizes. We
therefore generally recommend the kallisto method for the calcu-
lation of accurate molecular polarizabilities. In the next section,
we use atomic polarizabilities as obtained by kallisto to develop a
quantum mechanical van der Waals radii model applicable for all
elements up to Radon.

3.2 van der Waals radii model

The concept of a vdW radius was pioneered by Pauling and
Bondi,28,43 who both defined this radius as half of the distance
between two atoms of the same chemical element. At this dis-
tance Pauli exchange repulsion and London dispersion attraction
forces exactly balance each other. However, the determination
of the atomic vdW radius is unambiguous for noble gases only,
while the definition breaks apart for other elements. Hence, a ro-
bust determination of vdW radii for most elements in the periodic
table requires a high amount of experimental structural data.44 It
is therefore of interest to have theoretical models that allow the
accurate prediction of vdW radii across large parts of the periodic
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Fig. 3 Van der Waals radii derived from static polarizabilities for all elements up to Radon. Shown are atomic values for CN = 0 and q = 0 using the
default vdW parametrization. All values have been calculated using the kallisto command-line interface.

table.

The classical relationship between the atomic polarizability and
the vdW radius defines an atom as a positive charge q surrounded
by a uniform electron density within a hard sphere having radius
r. Once an external electrical field ε is acting on the point charge,
it undergoes a displacement d with respect to the center of the
sphere. By including the induced dipole moment (qd = αε) we
obtain

qε − q2d
r3

vdW
= 0 ⇔ qε − qαε

r3
vdW

= 0 ⇔ rvdW = α
1/3. (13)

Another definition has recently been popularized by Fedorov et
al.45 showing the quantum-mechanical relation between the two
quantities based on the Tang–Toennies model.46,47 Their model
consists purely of a London dispersion and a Pauli exchange repul-
sion part and, furthermore, a dipole approximation is employed
to the Coulomb potential. The application of quantum Drude os-
cillators48–50 leads to simplified expressions for both the attrac-
tive London dispersion (Disp) and the repulsive Pauli repulsion
(X). Force equilibration finally reveals the important relation (see
Ref. 45 for the exact derivation)

FX +FDisp = 0 → rvdW = θaα
1/7. (14)

By fitting this scaling law to reference data of noble gases, the au-
thors obtained θa = 2.54 as their central result. Since the present
model should be applicable to all elements up to Radon, an addi-
tional element-wise parameter θb is introduced, which is fitted to
reproduce theoretically obtained atomic vdW radii.

rvdW = θbθaα
1/7 (15)

Two parametrizations are available – termed “rahm” (default)
and “truhlar” –, which have been obtained by fitting against
atomic vdW radii as reported in Ref. 51 and Ref. 52, respectively.
For the calculation of vdW radii, we apply the static atomic polar-
izability. Fig. 3 shows calculated atomic vdW radii in Ångström
for all elements up to Radon. Fitted θb values are shared in the
reference implementation.24

Due to many-body effects, the atomic polarizability decreases
significantly when additional covalent bonds are formed.53 Since
the proposed vdW scheme is directly dependent on the atomic
polarizability, we expect that the radii decrease with increasing
coordination numbers. This trend is correctly observed for all
tested systems (see Table 1 in the Supplementary Information).

Fig. 4 Computer times as obtained by kallisto for different sized proteins.
Our selection of proteins is given as follows: PDB code, name (number
of atoms). 1L2Y 54, Trp-Cage miniprotein (302); 1EMA55, Green fluo-
rescent protein (3,784); 1GZX56, Haemoglobin (9,689); 1CC157, Ni-Fe-
Se hydrogenase (12,689); 1GPE58, Glucose oxidase (20,561); 6LZ359,
Cryptochrome (31,396); 7AD160, SARS-CoV-2 spike protein (42,539).
Timings obtained on a single Intel(R) Xeon(R) Gold 6140 CPU@2.30GHz
processor.

Additionally, charge-scaling effects show a decrease for vdW
radii with increasing cationic character. This effect, however, be-
comes less pronounced for atoms having larger ordinal numbers.
Changing the electronic state from a neutral atom to a cation re-
sults for the vdW radius of Carbon in a 5% decrease while the
Iridium radius decreases only by 2%. This smaller influence is ex-
pected due to the application of effective charges in the charge-
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Fig. 5 The impact of chromatography method on the separation of target analytes and impurities. Each method has its discrete set of conditions
(stationary phase, mobile phase, including gradients). A larger retention time difference implies better separation quality (green and amber markers).

scaling procedure (equation 7), which reduce the relative charge
effect for higher nuclear charges. To the best of the authors
knowledge, this enables for the first time the efficient and robust
calculation of environment- and charge-dependent vdW radii us-
ing quantum mechanical data across large parts of the periodic
table.

Apart from small molecules applications, other interesting ar-
eas might include larger system sizes. We exemplify the gener-
ation of vdW radii for the scope of small- to medium-sized pro-
teins, i.e. several hundred to thousands of atoms as shown in
Fig. 4. To estimate its feasibility and efficiency, we begin with a
designed 20-residue miniprotein54 consisting of 304 atoms and
end with the SARS-CoV-2 spike protein60 having 42,539 atoms
(shown as ribbon inlet in Fig. 4). In our selection, we include
proteins with transition metals (Haemoglobin and Ni-Fe-Se hy-
drogenase) to show the generality with respect to applied atom
types.

Note that even for the largest SARS-CoV-2 spike protein no
memory issues appeared, which highlights the robustness of
the presented method. Possible areas of application for vdW
radii are, e.g., the construction of new or the enhancement of
well-established force fields,61,62 the improvement of state-of-
the-art implicit solvation models as commonly applied in quan-
tum chemistry,63 or the calculation of features for protein QSAR
approaches.64 Ongoing work applies the proposed vdW radius
model for the construction of energy terms within a low-cost
free-energy approach that is intended to share insights about
hydrogen-bond strengths.

We discuss in the following the impact of the presented method
within one example applications from the pharmaceutical indus-
try. We show how some of the proposed physicochemical molec-
ular descriptors can be incorporated in a machine-learning ap-
proach to predict experimental RTs for different chromatographic
methods.

3.3 Pharmaceutical industry machine-learning application

In the pharmaceutical industry, LC and SFC methods coupled
with mass spectrometry are commonly used to separate the tar-
get compound from impurities. Depending on the compound and
the analytical method, each compound (target or impurity) elutes
at different times from the chromatographic columns, commonly
referred to as its retention time (RT). Generally, RTs are highly

influenced by method-specific conditions, e.g., stationary phase,
mobile phase, and applied gradients. Purification is achieved by
only collecting the solution at the appropriate RT where the target
compound is expected to appear.

Fig. 5 exemplifies this for two different chromatographic meth-
ods that obtain different RTs for the target and impurity com-
pound. Here, ”chromatographic method 1” is superior in terms
of separating the target and impurity compound and hence this
setup both simplifies the purification step and ensures higher pu-
rity in the resulting solution. Accurate predictions of RTs for
the target and impurity compound are therefore of general in-
terest to develop, e.g., an automated recommender system that
predicts the best chromatographic method for a given target-
impurity pair. The basis for such a recommender system is given
by computer-supported algorithms that enable the accurate pre-
diction of RTs for different chromatographic methods and hence
enable chemists to make quantitative statements with respect to
their chromatographic method choice. Recently, researchers have
been using machine-learning methods to accurately predict RTs,
for both the target compound and impurities.42,65–67

We present in the following how the accuracy of predicted RTs
for LC and SFC methods is impacted by including certain molec-
ular information via physicochemical descriptors as obtained by
the kallisto featurizer. Many different molecular descriptors and
fingerprints have been proposed in the literature, and compar-
ing kallisto descriptors to all available descriptors is out of scope
of this work. We follow the recently published approach of
Domingo-Almenara et al., who proposed that extended connec-
tivity fingerprints (ECFP) generally outperform physicochemical
based molecular descriptors for RT modelling.42

We take their recommendation as baseline and enhance it
by physicochemical descriptors as calculated by the presented
method. Physicochemical descriptors are selected to account
qualitatively for basic interactions between chromatographic col-
umn material and target or impurity compound. We choose the
isotropic electrostatic energy (IES) of a molecule to account for
electrostatic interactions and molecular polarizabilities (MolPol)
to account for London dispersion (LD) interactions. Since the
pair-wise and leading order LD term is directly proportional to
the polarizability of a molecule (Casimir–Polder integration),68

the MolPol should be suitable for this interaction type. In the next
section, we present the data acquisition process and featurization
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Fig. 6 Retention time prediction MAE for the various methods with and without kallisto descriptors. The left side of distributions show errors with
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strategy, which is followed by a comparison between modelling
performances of the baseline and the enhanced model.

3.3.1 Defining the training and validation set

In this work we use the METLIN dataset42 consisting of 80,308
small molecule chromatograms and an internal dataset of 17,108
small molecules experimented on two different LC mass spec-
trometry and five different SFC mass spectrometry analytical
methods (termed AZset). For the METLIN dataset, the valida-
tion set is derived from a (75/25) train/validation split, while for
the AZset, the training set is composed of non-publicly available
compounds, while the validation set are the compounds that are
publicly available. This public set is shared in the Supplementary
Information.

3.3.2 Predicting experimental retention times

Following the strategy of Domingo-Almenara et al., we extract
ECFP4 fingerprints for each compound using RDKIT.69 After gen-
erating three-dimensional coordinates (xmol files) via OPENBA-
BEL,70 MolPol and IES values are calculated using the kallisto
command-line interface.24 With the fingerprints and kallisto de-
scriptors as features, and the experimental RTs as the labels, we
train a random forest regressor with 100 decision trees and max
depth of 10 using SCIKIT LEARN.71 Due to the high number of
features, we also apply a feature reduction scheme to remove
features with variance lower than 0.05, and remove correlated
features where the correlation is higher than 0.9. The resulting
regressor is used to predict RTs on the validation set.

We reproduce the results of Domingo-Almenara et al. on the
METLIN dataset, where the trained random forest model achieves
a RT prediction MAE and RMSE of 42s and 66s, respectively. Us-
ing the kallisto descriptors yields an MAE of 39s and an RMSE of

62s. This corresponds to improvements in RT predictions of 7.1%
and 6.1%.

Furthermore, we create models for the AZset methods – namely
LC-1, LC-2, SFC-1, SFC-2, SFC-3, SFC-4 – and predict RTs on the
validation set for which violin plots of the MAE for all analytical
method RTs are shown in Fig. 6.

In this figure, the prediction error using kallisto descriptors is
shown in blue on the left-hand split of the distributions, while the
non-kallisto distribution is given in orange on the right-hand split.
The improvements in MAE in terms of percentages are shown in
the boxes below each distribution. The modelling and RT pre-
diction using kallisto show promising results, with improvements
ranging from 2.5% to 16.9% with generally SFC methods seeming
to see the highest improvement in RT predictions.

Last, we prepared Shapley additive explanations (SHAP) to an-
alyze the RT prediction by computing the contribution of each fea-
ture.72,73 An overview of which features are the most important
for the trained model is given in Fig. 7. This plot sorts features
by the sum of SHAP value magnitudes over all samples, and uses
SHAP values to show the distribution of the impacts each feature
has on the model output. The color code represents the feature
value, where red is high and blue is low. Overall, the MolPol
and IES features are rated as the most and third-most important
features within the random forest regressor.

Fig. 7 furthermore shows that high MolPol values increase the
predicted RT as expected from increasing LD interactions with in-
creasing molecular size (additivity of polarizabilities). Hence, we
reproduce this physical effect within our trained random forest re-
gressor. The IES feature behaves somehow different, where low
IES-values increase the predicted RT. Since the IES is an energetic
contribution, its sign is generally negative, but positive values
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can occur for charged molecules. However, we excluded charged
molecules in our selection and hence no positive IES-values are
present. The molecular size is implicitly captured within this fea-
ture, showing a more negative value for larger molecular size.

Compared to the ECFP4 fingerprint (FpBit) features, both
MolPol and IES have a larger span of SHAP values showing that
those physicochemical features might have a broader impact on
the model performance. Further analysis in terms of feature im-
portance showed that both MolPol and IES ranked in the top 3
important features for model predictions (see Supplementary In-
formation), which shows their importance and suitability for use
in RT modelling.

4 Conclusions
We have presented the theory and main features of the open-
source framework kallisto, which enables the efficient and ro-
bust calculation of atomic and molecular features designed for
machine-learning applications. Atom-in-molecule dipole polariz-
abilities are obtained by a Gaussian nearest-neighbor algorithm
(equation 8) that interpolates charge-scaled polarizabilties such
that charge and environment effects are represented. The par-
tial charges used within the charge-scaling step are obtained by a
classical electronegativity equilibration model. For a benchmark
set of 49 experimental molecular polarizabilities, the presented
method obtains similar accuracies as our ab initio method within
a nearly converged atomic-orbital basis set (MP2/def2-QZVPD),
but at only a fraction of its computational costs. Robustness test
for the creation of molecular polarizabilies on a test set including
more than 80,000 molecules are conducted showing a remarkably
low failure rate of 0.3%.

Furthermore, a model is presented that exploits the connection
between the quantum mechanically derived atomic polarizability
and the van der Waals (vdW) radius of an atom as initially pro-
posed by Fedorov et al.. The effect of many-body perturbations is
retained showing that vdW radii decrease for increasing crowd-

ness of an atom. Furthermore, charge effects show that vdW radii
shrink for atoms that have a higher cationic nature and vice versa.
Efficiency tests exhibit that this vdW model is amenable for small-
to medium-sized proteins including also transition-metal atoms,
where the largest system tested has 42,539 atoms. To the best
of the authors knowledge this enables the low-cost calculation of
quantum mechanically derived vdW radii for the first time.

An example from pharmaceutical industry highlights that
physicochemical descriptors improve the accuracy of machine-
learning models that otherwise only include two-dimensional fea-
tures like molecular fingerprints. The molecular polarizability
and the isotropic electrostatic energy are used within a quanti-
tative structure activity relationship procedure to predict reten-
tion times for different chromatographic methods including liquid
chromatography (LC) as well as super-critical fluid chromatog-
raphy (SFC). On the established METLIN dataset improvements
of up to 7% are archived for LC methods. An internally cre-
ated benchmark set for experimentally determined SFC retention
times exhibits an even higher improvement showing an accuracy
gain of up to 17% while including the two physicochemical fea-
tures within a random-forest model. Furthermore, to the best of
the authors knowledge this is the first time that predictions for
SFC methods are published within the literature.

An online documentation that covers bits of the underlying the-
ory has been created including a selection of copy-paste recipes
for a quick-start into production.74 The framework is listed in
the python package index and hence easily installable via the pip
command-line interface.* The program code of the presented
framework is available and maintained at GitHub75 and pub-
lished under the Apache 2.0 license.24

* To install the kallisto framework into your virtual environment: pip install kallisto
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5 Supplementary Information

5.1 Extended statistical measures
As statistical measure for a set {x1, . . . ,xn} of data points with ref-
erences {r1, . . . ,rn} we use

• Root mean squared error: RMSE =

√
1
n

n
∑

i=1
(ri − xi)

2

• Mean: m = 1
n

n
∑

i=1
xi

• Mean absolute error: MAE = 1
n

n
∑

i=1
abs(ri − xi)

• Coefficient of determination: r2 = 1− SSres
SStot

Residual of squares: SSres =
n
∑

i=1
(ri − fi)

2 =
n
∑

i=1
e2

i

Total sum of squares: SStot =
n
∑

i=1
(xi −m)2

5.2 Charge- and environment effects for van der Waals radii
The table below shows the environment- and charge dependency
of van der Waals (vdW) radii calculated for different atom types
(Carbon, Nitrogen, Oxygen, Phosphorous, and Iridium). Overall,
three different CN-values (CN = 0,1,2) and three different atomic
partial charges q (q= 0.0,0.5,1.0) have been chosen within the de-
termination of vdW radii. All radii have been calculated using the
kallisto command-line interface with its default parameterization
(“rahm”).

5.3 Molecular polarizabilities
This benchmark set is a subset of the MOLPOL135 benchmark
set36, whose experimental molecular polarizabilities have been
determined by either dipole oscillator, refractive index, dielectric
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Table 2 Molecular polarizabilities given in Bohr3 obtained by experiment,
MP2, kallisto, AlphaML, and Meanpol and statistical measures - root
mean squared error (RMSE), mean absoulte error (MAE), and the coef-
ficient of determination (r2).

Name Formula Exp. MP2 kallisto AlphaML Meanpol

1-3-butadiene C4H6 54.64 53.73 50.29 51.72 47.64
1-butene C4H8 52.88 51.56 51.27 51.69 49.94
2-methyl-1-propene C4H8 53.13 51.40 51.32 51.72 49.94
acetaldehyde C2H4O 30.25 29.81 30.23 31.15 28.82
acetone C3H6O 42.30 41.37 42.06 43.13 41.30
adamantane C10H16 107.50 105.50 108.62 106.03 120.26
benzene C6H6 67.79 67.99 68.08 65.22 68.02
C2H2 C2H2 22.96 22.29 23.02 19.15 22.67
C2H4 C2H4 27.72 26.91 27.63 25.89 24.97
C2H6 C2H6 29.69 28.23 28.62 29.22 27.26
CH3Cl CH3Cl 29.98 29.29 29.22 19.24 28.21
CH3CN C2H3N 29.52 28.48 29.65 29.68 30.77
CH3NH2 CH5N 26.50 25.53 25.78 25.08 22.88
CH3OH CH4O 21.94 21.01 21.49 21.26 18.63
CH3SH CH4S 35.00 36.48 36.36 30.76 34.96
CH4 CH4 17.24 16.50 16.86 16.71 14.78
CO2 CO2 17.50 17.55 19.04 23.06 17.88
CS2 CS2 55.30 56.53 48.90 (−98.55) 50.55
cyclopropane C3H6 37.32 36.00 35.38 37.08 37.45
dimethylamine C2H7N 38.70 37.74 37.71 38.05 35.36
dimethylether C2H6O 34.54 33.20 33.56 34.22 31.11
E-2-butene C4H8 53.13 51.75 51.28 52.28 49.94
ethanol C2H6O 34.43 33.00 33.22 34.55 31.11
ethoxyethane C4H10O 59.50 57.80 57.15 60.73 56.08
H2CO CH2O 19.32 17.54 18.46 17.14 16.33
H2O H2O 9.64 9.69 9.44 2.95 6.14
H2S H2S 24.68 24.50 24.52 12.28 22.47
HCN CHN 16.75 16.30 17.89 15.37 18.29
methyl-propyl-ether C4H10O 59.20 57.43 57.13 59.74 56.08
N2O N2O 19.70 19.42 18.66 34.36 17.75
N2O4 N2O4 43.83 41.31 34.07 60.46 29.29
n-butane C4H10 54.10 52.24 52.23 54.02 52.23
NCCN C2N2 32.20 31.14 31.13 30.65 34.28
neopentane C5H12 66.23 64.16 64.20 65.16 64.72
NH3 H3N 14.56 14.14 14.02 14.15 10.39
n-heptane C7H16 90.00 89.01 87.64 92.06 89.69
n-hexane C6H14 78.00 76.67 75.84 79.28 16.06
n-octane C8H18 102.00 101.40 99.44 104.85 102.17
n-pentane C5H12 66.10 64.39 64.04 66.57 64.72
O3 O3 19.18 15.94 15.55 (1572.84) 11.54
OCS COS 33.72 34.72 33.94 44.22 34.21
oxirane C2H4O 29.19 28.28 28.60 30.15 28.82
propadiene C3H4 40.48 39.54 36.64 39.24 35.16
propane C3H8 42.12 40.17 40.43 41.46 39.75
propene C3H6 40.79 39.22 39.46 38.90 37.45
propyne C3H4 37.47 35.11 34.84 32.58 35.16
SO2 O2S 25.61 25.59 30.13 32.89 27.87
SO3 O3S 29.00 28.60 35.31 32.05 31.72
trimethylamine C3H9N 49.90 50.48 49.66 51.01 47.85

RMSE 0.90 2.35 4.95(223.54) 9.28
MAE 1.16 1.76 2.98(37.70) 4.09

r2 0.99 0.99 0.95 0.80

Table 3 Timings given in seconds for the calculation of small- to medium-
sized protein structures. PDB codes are given for each entry. All
calculations were performed on a single Intel(R) Xeon(R) Gold 6140
CPU@2.30GHz. 1L2Y54: Trp-Cage miniprotein; 1EMA55: Green flu-
orescent protein; 1CC157: Active form of the Ni-Fe-Se hydrogenase;
1GPE58: Gluose oxidase; 6LZ359: Cryptochrome in active conforma-
tion; 7AD160: Prefusion stabilized SARS-CoV-2 spike protein.

PDB Number of atoms tCPU / seconds

1L2Y 302 2.4

1EMA 3784 212.9

1GZX 9686 1238.7

1CC1 12689 2110.9

1GPE 20561 5582.2

6LZ3 31396 12765.6

7AD1 42539 23522.6

Table 1 Consequence of environment- and charge effects on the absolute
vdw-radius size. We calculate vdw radii for every coordination number at
three different atomic partial charges. All values are given in Ångström.

CN

0 1 2

q

0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00

C 1.90 1.85 1.80 1.73 1.69 1.64 1.82 1.77 1.73

N 1.79 1.74 1.69 1.76 1.71 1.66 1.77 1.72 1.67

O 1.71 1.65 1.60 1.70 1.65 1.60 1.70 1.65 1.60

P 2.23 2.20 2.18 2.22 2.20 2.18 2.23 2.19 2.17

Ir 2.40 2.38 2.36 2.30 2.28 2.25 2.28 2.26 2.24

permittivity, or electron-molecule scattering. MP2 molecular po-
larizabilities have been extracted from Ref. 38. Meanpol molec-
ular polarizabilities are obtained by adding up averaged atomic
polarizabilities using the chemical formula of the molecule as ex-
emplified below for ethane

α
C2H6
mol = 2 ·αC +6 ·αH. (16)

We applied averaged polarizabilities to calculate Meanpol molec-
ular polarizabilities (Carbon: 10.19, Hydrogen: 1.15, Oxygen:
3.85, Nitrogen: 6.95, Sulfur: 20.18, and Chlorine: 14.58 all
given in Bohr3).41 AlphaML molecular polarizabilities have been
obtained by their webinterface76 and kallisto molecular polariz-
abilities by its command-line interface.74

5.4 Timings for the calculation of van der Waals radii
All structures have been extracted from the protein data bank77

and in all cases hydrogen atoms were added using the Maestro
suite.

5.5 Retention times: Data Acquisition and Experimental
Setup

Tentative: For this work, data gathered by the separation sciences
laboratory at AstraZeneca used for purifying novel compounds
was used. The lab uses different instruments, analytical columns
and solvents for purification, where the scientist analyzes mass
and UV chromatograms, and decides on the most appropriate ex-
perimental setup to use for purification.

The preparative samples, submitted dissolved in dimethyl sul-
foxide (DMSO), were diluted 20-200 µL DMSO, and injected on
a Waters supercritical fluid chromatography system (UPC2 de-
scription) coupled to a Waters 3100 mass detector. A Waters
diode array detector (DAD) was used in the range of 200-500 nm.
The mass detector was set to detect in the m/z range 100-1200
kDa. The electrospray source conditions were as follows: Cap-
illary voltage 3 kV, cone voltage 30 kV, source temperature 150
C, with a desolvation gas flow of 650 L/h. The stationary phase
was a Waters Viridis BEH Column, 130Å , 3.5 µm, 3 mm X 100
mm, 1/pk. A mobile phase, 5-50% gradient, of methanol with 20
mM ammonia in supercritical CO2, with a 4.1 minutes total run
time was used. The flow was 2.5 mL/min, the back pressure was
set to 1740 psi and the temperature was 40°C. Retention times
were based on the peak time of the positive ESI mass trace of
the protonated target compound. A summary of the experimen-
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tal setups for preparatory step of the different experiments and
the number of data points for each of the Liquid Chromatogram
Mass Spectrometry (LC/MS) and Superfluid Critical Mass Spec-
trometry (SFC/MS) used for this analysis is presented in Table 4
and 5. It should be noted that a compound may have more than
one or no datapoints for an experiment type. These experiments
were done on a total 14627 unique compounds. Of these 3031
are publicly available, and separated from the original dataset to
be used as validation.

Analytical Method # T # T U # V # V U

LC-1 15818 13170 876 869
LC-2 13172 13171 851 833

SFC-1 10939 9395 487 480
SFC-2 6020 5333 227 227
SFC-3 10848 9297 495 487
SFC-4 11170 9571 502 495

Table 4 Description of number of data points (#) in the dataset
(T=training, V=validation, U=unique).

The data was processed into a machine learning-ready format
using the ProteoWizard MS Converter for Linux†, where the .raw
data files were converted to an .mzXML format. The data files
were further processed and the SMILES, analytical method used
in the experiment and retention time were inserted into a Pandas
dataframe to be used for analysis and modelling purposes.

We analyze feature importance in two ways, by using the mean
decrease in impurity with SCIKIT LEARN,71 and by the SHAP im-
portance metrics cite that use a game theoretic approach with
Shapley values to explain the outputs of the model. The results
are shown in Fig. 8 and 7, and can be seen that the kallisto de-
scriptors rank highly in terms of feature importance. Further
analysis showed that the kallisto descriptors consistently ranked
in top 3 important features. This result, in conjunction with the
other results, show that the kallisto features are indeed describ-
ing aspects of the compounds that are not properly captured by
the fingerprints, indeed they capture 3D features in a meaningful
way, and thus are enhancing the modelling performance.

† https://hub.docker.com/r/chambm/pwiz-skyline-i-agree-to-the-vendor-licenses
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Analytical Method Stationary Phase Mobile Phase

LC-1 Waters Acquity BEH C18 1.7µ 2.1x50mm Gradient 5-95% ACN, in 0.1M NH4HCO3, pH9
LC-2 Waters Acquity HSS C18 1.8µ 2.1x50mm Gradient 5-95% ACN, in 0.1M HCO2H, pH3

SFC-1 Waters Acquity BEH 3.5µ 3x100mm Gradient 5-50% MeOH, in 20mM MeOH/NH3
SFC-2 Waters Acquity BEH 3.5µ 3x100mm Gradient 5-50% MeOH, in 20mM MeOH/H2O/NH3
SFC-3 Phenomenex Luna Hilic 3.5µ 3x100mm Gradient 5-50% MeOH, in 20mM MeOH/NH3
SFC-4 Waters Acquity BEH-2EP 3.5µ 3x100mm Gradient 5-50% MeOH, in 20mM MeOH/NH3

Table 5 Experimental setup for the different analytical methods.
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(a) Molecular Polarizability ranks as the top feature, while IES ranks as
second.
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(b) Molecular Polarizability ranks as the top feature, while IES ranks as
second.

Fig. 8 Feature importance for top 10 features of the random forest applied to the (a) AstraZeneca SFC-2 dataset and (b) METLIN dataset
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