
1

HyFactor: Hydrogen-count labelled graph-based
defactorization Autoencoder
Tagir Akhmetshin[1, 2], Arkadii Lin[1], Daniyar Mazitov[2], Evgenii Ziaikin[2],
Timur Madzhidov[2]*, and Alexandre Varnek[1]*
[1] Laboratory of Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, 4, Blaise Pascal str.,
67081 Strasbourg, France
[2] Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan
Federal University, 18, Kremlyovskaya str., 420008 Kazan, Russia

*e-mail: Timur.Madzhidov@kpfu.ru, varnek@unistra.fr

Abstract
Graph-based architectures are becoming increasingly popular as a tool for structure generation.
Here, we introduce a novel open-source architecture HyFactor which is inspired by previously
reported DEFactor architecture and based on the hydrogen labeled graphs. Since the original
DEFactor code was not available, its new implementation (ReFactor) was prepared in this work
for the benchmarking purpose. HyFactor demonstrates its high performance on the ZINC 250K
MOSES and ChEMBL data set and in molecular generation tasks, it is considerably more
effective than ReFactor. The code of HyFactor and all models obtained in this study are
publicly available from our GitHub repository: https://github.com/Laboratoire-de-
Chemoinformatique/hyfactor

Keywords
Molecular design, Autoencoders, Deep learning, Generative models, Chemical databases

Introduction
Nowadays, Deep Neural Networks (DNNs) play an important and significant role in drug and
materials discovery, being used for properties prediction [1], de novo design [2], and computer-
aided retrosynthesis [3]. One of the most widely used DNN architectures is Autoencoder
(AE)[4] due to its ability to encode chemical structures in their latent representation as well as
generate new compounds by decoding sampled latent vectors using a decoder subnetwork.
For molecular generation, the majority of AEs are based on the Simplified Molecular Input
Line-Entry System (SMILES). [5] This chemical language allows modellers to employ all the
power of Natural Language Processing (NLP) techniques to solve chemical problems.
Although SMILES seems suitable for de novo design tasks, the latent representation of text
strings may not reflect chemical similarity relationships between underlying molecules.
Graph-based AE (GAE) architectures [6] offer a valuable alternative to SMILES-based
architectures. Within these approaches, a molecule is represented as a graph in which nodes
and edges encode, respectively, atoms and chemical bonds. GAEs have three fundamental
advantages over SMILES-based architectures. First, no specific order of graph traversal is
required, which solves the problem of a canonical order often imposed for SMILES strings.
Second, a graph object does not obey specific grammar rules, such as opening and closing
brackets, cycles numbering, etc., which seriously limits the generation ability of networks
(although a recently proposed SELFIES language [7] may partially improve that). Finally,

2

GAEs always sample graph objects, which, in turn, allows a meaningful errors analysis in terms
of chemistry (i.e., detecting graph disconnectivity and valence errors).
A molecular graph can be decomposed to a vector of atoms and bonds matrix, and modelled
further using Graph Convolutional Networks (GCN)[8]. Once a latent vector is obtained, it can
be decoded using various decoding techniques: single-shot and iterative generation. Single-
shot decoders generate atoms and bonds in a graph in a single pass.[6, 9] Their training is fast,
but the simultaneous generation of atom vectors and bond matrices is technically
challenging.[10] Iterative decoders, in contrast, create atoms and bonds sequentially one by
one, so they can stop when a molecule is reconstructed.[11] The first class generates atoms’
vectors, from which atom types and connectivity are extracted separately. One example of such
iterative generation is an autoregressive concept, when the generation of the next atom is based
on previously created atoms.[12, 13] Another popular approach uses a recurrence-based
generation, where the next atom is generated from a hidden (or difference) vector, which
updates every step.[14] The second class of decoders uses a Markov decision process. They
apply several actions, such as "creation of atoms" and "creation of bonds" to a given subgraph
of a molecule to obtain an updated subgraph until the molecule is reconstructed.[11, 15]
However, interative generation requires much more complex and slow network architecture
than single-shot Autoencoders.[9] These and other limitations (e.g., high memory and time
costs) prevent GAE architectures to become widely used.
Recently, DEFactor GAE architecture was published by R. Assouel et al. [13] uses reccurent
iterative decoder. The encoder in DEFactor is a multi-layer GCN, whereas the decoder
combines the Long-Short Term Memory (LSTM) [16] cell for atomic vectors generation with
a new adjacency matrix defactorization procedure (see Method section for details). This
approach allows one to model molecular graphs much more efficiently. Although the results of
the benchmarking study reported in the original publication look promising, many important
details, such as the number of convolutional layers in the encoder or the batch size, needed for
re-implementation of this approach are missing. Therefore, we made an attempt to re-
implement and further improve the DEFactor architecture. The improved version of DEFactor
is referred here as ReFactor (see the details in the Method chapter). It was tested in ZINC250K
and ChEMBL v.27 data sets as well as MOSES benchmarking, and its efficiency was shown
to be comparable to that of other GAE architectures.
Moreover, we propose a methodological improvement that reduces the amount of GPU
memory required to store the model as well as training time without loss of accuracy. The GCN
employed by the encoder subnetwork in DEFactor computes the neighbours’ messages within
each bond-type specific channel. As a consequence, it is necessary to store three or four bond-
type-specific adjacency matrices and specific trainable weight matrices (depending on whether
an aromatic bond is considered an alternate of single and double bonds or a separate bond type).
This takes a lot of memory and adds numerous mathematical operations to the corresponding
computational graph in DEFactor. Here, we propose to use the number of hydrogens attached
to each heavy atom instead of bond order. In fact, based on the number of hydrogens at every
atom and the graph adjacency matrix, molecular structure can be reproduced. Also, it solves
the problem of the standard representation of functional groups and aromaticity. A similar
approach is used in the InChI molecule representation system [17]. In this case, a molecular
graph can be represented by three objects: 1) a vector of atom types, 2) a vector of the numbers
of attached hydrogens, and 3) a single binary adjacency matrix. By simplifying the encoder
GCN, we can reduce the number of trainable weights by 50% (see Methods section). Moreover,
by using hydrogen atom numbers instead of bond orders, functional groups standardization and
aromatization steps can be omitted. This can enhance the network's generation ability. For
example, the addition of an aromatic bond to an open-chain fragment could easily introduce an

3

error, and, in the opposite, the probability to generate an aromatic ring in a Kekule form is low
if the model is trained to alternate single and double bonds in rings.
Based on the above mentioned inventiones, we introduce a new hydrogen-count labelled graph-
based GAE architecture named HyFactor. Within this architecture, a DNN is combined with a
set of heuristic rules on allowed atoms’ valences needed to do a conversion of a regular
molecular graph to a hydrogen-count labeled graph (a graph where a certain number of
hydrogens is assigned to each heavy atom) and back. It was compared to DEFactor and
ReFactor architectures using ZINC250K, ChEMBL v.27 and MOSES benchmarking data sets
in the tasks of reconstruction and generation. It has been shown that ReFactor and HyFactor
possess similar reconstruction rates, whereas HyFactor trains faster and requires less GPU
memory.
Therefore, in this work we present the two new graph-based AutoEncoder architectures that
can be used for molecule encoding and generation tasks. In order to accelerate development in
this area and create sustainable and reproducible algorithms, we are contributing proposed
architectures to open-source. Additionaly, we provide weights of both architectures as well as
tools to create and decode a new molecular representation, the hydrogen-count labeled graph.
The code and all models are publicly available in our GitHub repository:
https://github.com/Laboratoire-de-Chemoinformatique/hyfactor

Methods
Data and curation

In this work, three data sources were used: a subset of ZINC database called ZINC250K [4],
MOSES (v. 1.0) [18] data set, and ChEMBL database (v. 27) [19]. All sets were standardized
using the following procedures: 1) dearomatization, 2) isotopes removal, 3) stereo marks
removal, 4) explicit hydrogens removal, 5) small fragments removal, 6) solvents removal, 7)
salts strip, 8) neutralization of charges, 9) functional groups transformation, 10) selection of
canonical tautomer form of molecule, 11) aromatization, 12) duplicates removal, 13)
dearomatization. All stages of the standardization were done by ChemAxon JChem’s utilities
[20]. Once structures were standardized, the order of atoms was defined from the canonical
SMILES string produced by ChemAxon JChem.
About 1.7K structures were removed from the ZINC250K data set as the result of the cleaning
procedure. The cleaned set was split into training, validation (tuning), and test sets according
to the previous article [21]. The test set was taken as 5K predefined molecules, and the
remaining structures were randomly split into training and validation sets in ratio 9:1. Note that
several duplicates were found in ZINC250K (see Table 1), due to the presence of stereoisomers
in the data set. This may cause some overestimation of model performance for architectures
reported earlier.

Table 1. Results of ZINC 250K data set standardization.

Filters Training and validation sets Test set
Number

of molecules

244 455 5 000

Duplicates within set 1612 1
Duplicates between training and test

sets 73

Remaining molecules 242 770 4 999

4

The ChEMBL database was standardized by the same workflow as the ZINC250K data set.
The initial database consisted of 1.9M molecules and it was reduced to 1.6M of standardized
structures. The prepared data set was additionally analyzed in terms of the frequency of atom
types (Figure S1). 60 unique atomic types (including information on atomic charge) were found
in ChEMBL, and only 15 (C, O, N, S, F, Cl, N+, O-, Br, P, I, N-, B, Si, and Se) have been
chosen according to the threshold of 1000. Next, compounds with less than 5 and more than
50 heavy atoms have been removed due to their under-representation. The filtrated ChEMBL
data set was then split into a training set (80% of data or 1.3M molecules) and a validation set
(20% of data or 327K molecules). It was not divided into a test set because the amount of data
in the validation set was sufficient to reliably assess the performance of the model.
The MOSES data set was analyzed with the proposed standardization procedure; however, no
mistakes were found. Therefore, it was used as it is. The original “training” set was split into
training and validation sets in the 4:1 ratio.
All chemical structures from each data set have been kekulized in order to avoid a need to
introduce an additional aromatic bond type for ReFactor architecture. The latter would increase
the size of the graph-based architecture, slow down the calculations and decrease the number
of valid structures in sampling.
After standardization of the data sets, they were analyzed in terms of heavy atoms count
distribution (Figure 1).

Figure 1. Heavy atoms count distribution in studied data sets

Both the ChEMBL and ZINC250K data sets have a similar distribution of heavy atom count.
However, the MOSES data set differs from both, and most of the structures lie in the range
from 16 to 26 heavy atoms.
Hydrogen-count labelled graph

We propose to use a new molecular graph-based representation – Hydrogen-count labelled
graph (HLG) (see Figure 2). In this graph, only the connections between atoms and the count
of hydrogens connected to the atoms are taken into account. Also, the formal charge of an atom
is used as a vertex label. This representation has already been tested with graph convolution

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of heavy atoms

0.0

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

220k

240k

N
um

be
r o

f m
ol

ec
ul

es

ChEMBL
MOSES
ZINC

Architecture

5

networks on quantitative structure-property relationship (QSPR) tasks.[22] In the latter work,
the performance of HLG was similar to other representations, but it has not been compared to
the classical molecular graph representation.

Figure 2. Hydrogen-count labeled graph representation. Here the molecular graph (hydrogens are hidden) is
converted into a graph with no edge features, while the nodes have two features - types of atoms and number of
hydrogens.

We convert the molecular graph to the HLG, and then to three numerical representations:
adjacency matrix, atomic types which includes atom symbol and charge, and hydrogens count
vectors (Figure 2). The conversion algorithm from molecular graph to HLG and backward is
implemented with CGRtools toolkit.[23]

DEFactor, ReFactor, HyFactor

In this work, we propose ReFactor architecture which is a slight modification of DEFactor
architecture [13] published by Assouel et al. earlier. We chose the DEFactor architecture
because its concept of decoding incorporates the ideas of iterative decoders, making the
generation procedure flexible and optimal.
All three architectures (DEFactor, ReFactor, and HyFactor) are depicted in Figure 3. The
encoder from the DEFactor architecture uses one-hot embeddings to represent atoms in a
molecular graph, and consists of several layers of edge-specific graph convolution networks
[8, 24] that can be expressed as follows:

where Hl is atoms’ vectors after the lth graph convolution layer, Eb is a bond-type specific
adjacency matrix, Db is the corresponding bond-type specific diagonal degree matrix, Wb and

!!"# = ReLU '()*$
%#&+$*$

%#&!!,$
!-

$
+!!,'(!)

! / (1),

6

Wself are trainable matrices of weights for every bond type b and weights for self-channel,
respectively, and ReLU is the rectifier activation function. The aggregation of atomic vectors
is done by a Long short-term memory (LSTM) [16] unit followed by a one-layer perceptron
(see Figure 3a) giving molecular latent vector.

In the decoder, the molecular latent vector is unpacked into a set of atomic embeddings !0 ,
where each hi is predicted using LSTM layer. Thus, the entire matrix of atoms’ embeddings is
restored. Next, it passes through two subunits in parallel, where the first one is represented by
a Multi-layer Perceptron (MLP) with softmax output function that returns predictions on
atoms’ types A0, and the second one is the multichannel defactorization procedure [25] needed
to reconstruct the bond matrix. The latter is described by the authors as

where +2$ is the reconstructed adjacency matrix for bond type b, !0 is the matrix of the recovered
atoms’ embeddings hi, ,$ is a diagonal matrix of weights for the bond type b, and σ is a
sigmoid output function. A certain probability is returned for each bond type between each pair
of atoms, and the bond type with the highest probability is selected for reconstruction. A three-
steps procedure including teacher forcing has been used to speed up the training of DEFactor.
Within each step, trainable weights of a certain part of the network were frozen, and then
relaxed at the next step.
The loss function used in DEFactor was a combination of categorical cross-entropy (CCE) for
atoms predictions (3), and binary cross-entropy (BCE) for bonds predictions (4):

L*+,-' = −
1
n(A ∗ log	(A0) (3)

L$,./' = −
1
n&(=E$ ∗ log?E0$@ + (1 − E$) ∗ 	 log?E0$@A

0

1
 (4),

where A is a one-hot matrix for atoms types, Ã is a predicted atoms types probability matrix,
and n is the number of atoms in a molecule, E$ is the real adjacency matrix for bond type b.
The ideas behind this architecture seemed promising, although the architecture was poorly
described in the paper by Assouel et al [13]. For instance, the number of GCN layers as well
as the dimensionality of the atoms’ embedding matrix was not mentioned. Thus, we
reimplemented DEFactor architecture as much as possible and introduced some changes that
improved its performance.
Unless otherwise specified, the dimensionality of the atom embedding vectors, as well as all
internal and latent vectors, was the same. Dimensionality of latent vectors refers to these
dimensions. Parameters for each experiment are specified in Table S1 of Supporting
Information. All layers were taken with standard parameters of Tensorflow package v. 2.6. if
not additionaly mentioned.
To stabilize the learning process, the GCN was upgraded with Layer Normalization (LN) layer
among atoms features (parameter “axis=-2”) and masking of imaginary atoms (padding):

+2$ = σ(!0,$!02 + bias) (2),

7

!!"# = Mask ∗ ReLU '()*$
%#&+$*$

%#& ∗ IJ(!!,$
!)- +

$
IJ(!!,'(!)

!)/ (5)

In each experiment, the number of CGN layers was fixed at five. The dimensionality of the
input and output vectors was the same.
For atomic vector aggregation, LSTM units in DEFactor were replaced with bidirectional
Gated Recurrent Units [26] (GRU; see Figure 3b). The output of GRU was passed to the dense,
batch normalisation (BN) and ReLU activation layers to obtain the molecular latent vector. A
teacher-forcing technique published in the original article was not applied since it had not led
to performance improvement.
In the decoder, atom vectors were generated by sequentially connected two GRU layers and a
dense layer in between, headed by a RepeatVector layer (see Figure 3b). In such case, the input
molecular latent vector was repeated N times (i.e., according to the maximal molecular graph
size), passed through the first GRU and intermediate atom vectors were returned. These
intermediate vectors were then concatenated with the repeated molecular vectors. They passed
first through a perceptron layer with a ReLU activation function and then through the second
GRU layer. Further, the hidden vectors of the second GRU were used as retrieved atoms’
embeddings. For the atoms reconstruction, the retrieved atoms’ embeddings were passed to
two dense layers with output dimensions equal to the number of atom types. Activation of the
first layer was ReLU, and activation of the second - Softmax function. During the bonds
reconstruction step, the atoms’ embeddings were forwarded to a dense layer with output
dimension of the latent vector divided by eight and ReLU activation and to the defactorization
layer.
These and other minor changes allowed us to handle molecules containing up to 50 heavy
atoms with the ReFactor architecture (see Results and Discussion section).
The HyFactor architecture was based on ReFactor. The main changes concern the steps of
graph convolution and graph reconstruction from the atoms’ vectors (see Figure 3c). First, the
HLG was transformed to the atoms’ (dimension of 64) and hydrogens’ (dimension of 4)
embeddings. These embeddings were concatenated and passed through the dense layer with
ReLU activation function. The graph convolution network was similar to that in ReFactor:

!!"# = Mask ∗ ReLU K*%
#
&+*%

#
& ∗ LN?!!,.(345$,6'

! @ + LN?!!,'(!)
! @M (6)

where E and D are adjacency and degree matrices of HLG, the other designations are the same
as in eqn. 1 and 2. From the eqn. 6 it can be seen, that the number of the training parameters
decreased in two times.
With the graph reconstruction task, the difference from ReFactor was that the number of
hydrogens and atom types were predicted using a softmax function after two dense layers with
a ReLU activation in between. In the experiments we considered that the maximal number of
hygrogens around atom is 3. The adjacency matrix was reconstructed using defactorization
(eqn. 2) ignoring bond types (only one trainable diagonal ,$ matrix).
The initialization of weights for each layer was done with HE normal initialization [27] and
the training of the architecture was done with AdaBelief optimizer [28] with standard
parameters. In order to maintain training stability, exponential learning decay was applied.

8

Figure 3. Architectures of different Autoencoders considered in this work: (a) DEFactor [13], (b) ReFactor and
(c) HyFactor. BN refers to Batch Normalization layer and GRU – Gated Reccurent Unit. Parameters for each
experiment are specified in Table S1 of Supporting Information.

9

Sampling procedure

Since in current architectures no special restrictions on latent space distribution were posed,
for the molecule generation procedure the latent vectors were sampled in the vicinity of the
known molecules. In this case, few molecules from the training set were selected and their
latent vectors were used as seeds in the generation process as it was done in [29] (Figure 4).
During generation, the latent vectors were multiplied by noise vectors (i.e., random numbers
generated from a probability density function of a known random distribution), followed by
their decoding to a molecular graph.
For the experiments, the probability density function of lognormal distribution was chosen. To
effectively and systematically explore chemical space around the given seed, the “mean”
parameter was set to 0 and the “standard deviation” was variable. Therefore, as the "standard
deviation" parameter would rise, the probability of generating more dissimilar structures should
increase.

Figure 4. Sampling strategy for new structures in the Autoencoder latent space.

Results and Discussion
Reconstruction rate of different graph Autoencoders
The performance of Autoencoders’ model is measured by the reconstruction rate representing
a percentage of correctly reconstructed compounds out of the considered data set.
Reconstruction rate values obtainedfor several SMILES-based and graph-based Autoencoders
on the ZINC 250K reference set are reported in Table 2.

Table 2. ZINC 250K results

Architecture name Standardization
Molecular

representation

Reconstruction rate, %

Training set Validation set Test set

TSGСD[10] - Molecular graph - - 90.5

DEFactor[13] - Molecular graph - - 89.8

JTVAE[14] - Molecular graph* - - 76.7

10

Re-balanced VAE[30] - SMILES - - 92.7

All SMILES[31] - SMILES - - 87.6

SDVAE[32] - SMILES - - 76.2

ReFactor no Molecular graph 99.5 90.8 90.7

ReFactor yes Molecular graph 99.7 90.0 90.0

HyFactor no HLG 99.3 89.3 89.0

HyFactor yes HLG 99.2 89.8 88.4

* JTVAE uses hierarchical fragments instead of atoms to reconstruct the molecule

In comparison to graph-based architectures, SMILES-based architectures show similar
performance. The leading graph-based architecture (TSGCD) has a reconstruction rate that is
only 2% lower than the best SMILES-based Autoencoder (Re-balanced VAE). The DEFactor
architecture also shows high performance and is only 1% lower than the leading graph-based
Autoencoder. Although it was found that the protocols for data set standardization were not
sufficiently addressed in the publications on all the architectures presented. Thus, results for
the ReFactor and HyFactor architectures are presented for both non-standardized and
standardized data sets. In addition, results for training and validation sets for model overfitting
analysis are given.
The reconstruction rate for ReFactor, trained and tested on the non-standardized data set, is
slightly higher than for the standardized data set. This fact supports our assumption that the
performance of Autoencoder may be overestimated since training and test sets partially overlap
in the non-standardised data set. Comparing the results of ReFactor with the original DEFactor,
we see that on both standardized and non-standardized data sets our implementation
outperforms the original architecture.
HyFactor architecture has almost the same reconstruction rate on both sets as ReFactor. Hence,
it can be concluded that the molecular representation used in HyFactor does not change the
performance of the model while reducing the number of neural network parameters (from 12M
to 10M).
Generation ability of graph-based Autoencoders
The Autoencoders are a class of generative neural networks, which are widely used to generate
novel chemical structures. Thus, here we discuss the ability of proposed graph-based
Autoencoders to generate molecules. For this purpose, MOSES benchmarking was used [18].
Original DEFactor architecture could not be benchmarked since the source code is not available
and corresponding information is not given in original publication.
The metrics included in the MOSES package are adopted for the distribution learning objective
(see the supporting information for details). Even though the proposed generation method does
not fit into the category of such methods, most of the metrics are applicable to sampled
structures. Also worth noting is that distribution learning models generate various structures,
while the proposed approach generates molecules around seeds. Therefore, it was not possible
to select a subset of ten thousand structures for calculation of uniqueness, so it was calculated
on the entire set.

11

For the generation tests ReFactor and HyFactor architectures were trained on 80% of the
original MOSES training set. Both architectures achieved more than 99% of the reconstruction
rate on the remaining 20% of the data used as validation set. Then, 10K compounds were
randomly selected as seeds for sampling new structures. For each seed compound, 10 virtual
structures were generated, so the total number of structures obtained should be 100K. The
generation was based on log-normal distribution with a mean equal to zero and a variable
standard deviation from 0.2 to 1.0 with a step of 0.2.
A preliminary review of the results revealed that MOSES does not correctly handle a molecular
graph consisting of several components (mixture of compounds) and some valence errors
during metrics calculation. At the same time, they were generated quite frequently by the
proposed graph architectures. To verify the results of benchmarking study, we performed the
validity analysis including additional valence checks and disconnected graph check. The
validity checks were implemented using the CGRtools package [23]. The results of the analysis
of standard deviation parameter influence on validity, uniqueness and novelty of the generated
structures is given in Table 3.

Table 3. MOSES metrics calculated for the 100K structures generated with different standard deviations (STD)

STD Validity Uniqueness Novelty

 Original Modified* Original Modified* Original Modified*

ReFactor
0,2 0,997 0,996 0,656 0,105 0,074 0,042
0,4 0,921 0,886 0,748 0,265 0,634 0,578
0,6 0,698 0,503 0,948 0,730 0,875 0,814
0,8 0,540 0,149 0,998 0,971 0,978 0,855
1 0,516 0,022 0,961 1,000 0,999 0,983

HyFactor
0,2 1,000 0,9880 0,661 0,193 0,117 0,006
0,4 0,989 0,7290 0,795 0,267 0,729 0,129
0,6 0,940 0,1820 0,980 0,634 0,923 0,288
0,8 0,886 0,0120 1,000 0,966 0,993 0,491
1 0,822 0,0003 0,981 1,000 1,000 0,912

* With additional valence and disconnected structures checks and uniqueness computed on the whole generated
set

Observing the results, it is evident that the percentage of new molecules and their uniqueness
grow with increasing standard deviation for both models, but the validity drops. Nonetheless,
when standard deviation is high, structures returned after validity check are characterized by
high novelty and uniqueness. The probable reason is the discontinuity of the latent space that
has lots of voids. It is quite common for regular Autoencoders without special regularization
on latent space, like in variational Autoencoders [33], or application of latent vectors for
additional task solving [34].
Another observation is that the structures generated by ReFactor are more valid and novel than
HyFactor’s molecules. It has been suggested that during systematic sampling with HyFactor,
it is easier to fall into a void, where an invalid structure is present. Yet, both architectures
achieved high reconstruction rates, so they should have similar generative capabilities. Thus,

12

if the sampled method is changed, it is possible to achieve better results for both HyFactor and
ReFactor. We leave this issue for the future work.
After analyzing the generation with variable standard deviation, it was decided to compare the
molecules generated for an STD equal to 0.4 with the results for known Autoencoders. The
results of MOSES benchmarking are given in Table 4. In the table, the most important metrics
that can help us to analyze the generation ability of the proposed architectures are presented.
The results for the all other metrics available in the MOSES package are given in Table S2.

Table 4. Results of MOSES benchmarking compared to the known Autoencoders. The similarity metrics are
given in comparison with the MOSES test set. The presented Autoencoders are SMILES-based, except JTVAE.

Model Valid Unique
10k Novelty FCD SNN Scaf IntDiv

Combinatorial
(BRICS frag) 1.000 0.991 0.988 4.238 0.451 0.445 0.873

AAE 0.937 0.997 0.793 0.556 0.608 0.902 0.856

VAE 0.977 0.998 0.695 0.099 0.626 0.939 0.856

JTVAE 1.000 1.000 0.914 0.395 0.548 0.896 0.855

ReFactor 0.4 std* 0,886 0,265** 0,578 1.743 0,547 0,847 0,868

HyFactor 0.4 std* 0,729 0,267** 0,129 0.365 0,614 0,862 0,860

* All metrics are calculated if valence errors and disconnected structures are excluded.
** Uniqueness was calculated on the whole generated data set after filtration by validity.

As graphs are discrete objects, it is expected that the latent space of a graph-based Autoencoder
should also be discrete. In other words, invalid molecular graphs (for example, disconnected
structures or structures with valence mistakes) are present in the space between the valid
molecules. With the proposed sampling method, it is not possible to control the validity of the
generated molecules, thus validity is lower than for other architectures (Table 4). The
uniqueness and novelty is also lower than for other architectures, as we generate molecules in
the vinicity of seed molecules. Therefore, validity, uniqueness, and novelty can be increased
by updating the sampling method, which is outside of scope of this study.
According to Table 4, scaffold similarity (Scaf) is low for each proposed architecture, so more
scaffolds were generated than for other Autoencoders. This is an advantage of both
architectures, as they can perfrom scaffold hopping, which is crucial during search of new drug-
like molecules. Moreover, HyFactor and ReFactor generate molecules with high internal
diversity (IntDiv), indicating a broader variety of generated structures. These properties make
them powerful tools for discovering new analogs of molecules that can be used for the creation
of focused libraries.
Another observation is that generated samples from ReFactor have the biggest Fréchet
Chemnet Distance (FCD) and the smallest Similarity to a Nearest Neighbour (SNN). These
values indicate that ReFactor's structures are more dissimilar than any other architecture.
Hence, ReFactor can be helpful in the search for a novel scaffold or pattern task, where only a
few molecules are known.
Through the proposed generation approach, it is possible to examine how molecules are
arranged in the latent space. It is expected that molecules generated close to the seed should
have a similar chemical structure, and vice versa, if molecules are obtained far away from the

13

seed, they should be more dissimilar. Hence, it was decided to take one seed structure and use
both models to generate several molecules with a range of standard deviation from 0.3 to 1.0
with the step of 0.02. At each step, 10 molecules were generated followed by the validity and
uniqueness check. These simulations resulted in 10 and 40 new generated structures in average
from each structure for HyFactor and ReFactor, respectively. Several generated structures are
shown in Figure 5.
Before analysis all molecules were aromatized with ChemAxon toolbox. To measure similarity
of new molecules, Tanimoto metric was applied. The similarity was calculated on atom-centred
ISIDA fragments [35] was based on sequences of atoms and bonds of size from 2 to 4 atoms.
Additionally, bonds within a cycle in a fragment were marked with a special symbol.

Figure 5. Example of structures generated with ReFactor and HyFactor trained on the MOSES set. Molecules
generated with standard deviation < 0.6 (> 0.6) lie within (outside) the dashed circle. Each number corresponds
to pairwise Tanimoto similarity of a given generated structure with respect to the seed assessed with the ISIDA
descriptors.

14

From Figure 5 it can be seen, that the sampled structures are similar to the seed molecule. It
further proves that even if the latent spaces of the proposed Autoencoders are discrete, the
arrangement of molecules in them is reasonable. However, in some cases there are some
structures dissimilar to the seed molecule that can be generated with a small standard deviation,
and vice versa, rather similar structures can be found in the list of molecules generated with a
large standard deviation.
Application on ChEMBL data set

The Achilles' heel of graph-based Autoencoders is the reconstruction of molecules with a large
number of atoms. Indeed, as the size of a molecule grows, the probability of error in the type
of atom or bond increases. Therefore, in the next phase of experiments, the reconstruction
ability of Autoencoders was studied on the ChEMBL data set containing molecules bearing up
to 50 heavy atoms. The results of training are given in Table 5 and the specifications on training
parameters can be found in Table S1.

Table 5. Training results on the ChEMBL data set.

Architecture Batch Vector
length

Number of training
parameters, M

Time
per
epoch*,
min

GPU
Memory*,
MB

Reconstruction rate, %

Encoder Decoder Training set Validation set
ReFactor 1024 1024 35.7 14.8 ~ 24.3 ~ 22 845 99.8 95.2

HyFactor 1024 1024 25.3 15.1 ~ 16.5 ~ 16 755 99.7 95.0

* - measured in “mixed precision” mode, available in TensorFlow package. In this mode 16-bit floating-point
type is used where it’s possible, otherwise 32-bit floating-point type is applied.

According to Table 5, HyFactor uses 20% fewer training parameters than ReFactor in order to
achieve a similar reconstruction rate, and, thus, its training is 33% faster than ReFactor.
Although the overall reconstruction rate is high enough, the reconstruction error sharply
increases for molecules containing more than 35 atoms and it reaches almost 30% for ReFactor
and HyFactor for molecules containing 50 atoms (Figure 6a). The latter can be explained by
small number of heavy molecules present in the training set (see Figure 1).

Figure 6. Distributions of errors in molecules from the a) ChEMBL and b) E_ChEMBL validation sets and for
ReFactor (gold) and HyFactor (blue) architectures trained on a) ChEMBL and b) E_ChEMBL training sets as a
function of molecular size.

Number of heavy atoms

0%

10%

20%

30%

40%

Fr
ac

tio
n

of
 w

ro
ng

ly
 re

co
ns

tru
ct

ed
 m

ol
ec

ul
es

a) ChEMBL b) enriched ChEMBL

30 32 34 36 38 40 42 44 46 48 50 30 32 34 36 38 40 42 44 46 48 50

ReFactor
HyFactor

Architecture

15

In order to confirm these suggestions, 460K virtual structures containing >35 atoms have been
generated using the SynthI tool [36] and then added to the ChEMBL set. The enriched
ChEMBL set (from now on referred to as E_ChEMBL) was then divided into training and
validation sets in the ratio 4:1 (1.6M and 400K of molecules) respectively. Distribution of
molecular size in the obtained data set is given in Figure S3 of Supporting Materials. Both
architectures trained on the E_ChEMBL training set achieved reconstruction rates above 95%
measured on the E_ChEMBL validation set. As a result, the enrichment of the ChEMBL data
set allowed to significantly decrease the reconstruction error for heavy molecules (Figure 6b).
By adding new molecules, one can expect the model to reconstruct molecules from the original
ChEMBL set more accurately. The reconstruction rate of molecules from the original ChEMBL
validation set was measured with Autoencoders trained on the E_ChEMBL training set to
confirm this assumption. The results can be seen in Figure 7.

Figure 7. Distributions of errors in molecules from the ChEMBL validation set and for the models trained on the
E_ChEMBL training set as a function of molecular size.

Comparing to Figure 6a, the decrease in reconstruction error of molecules bigger than 35 heavy
atoms is dramatic both for ReFactor and HyFactor. The HyFactor has bigger errors in
reconstruction, but the overall error is the same as for ReFactor (Figure 6b). This fact supports
the assumption that the added molecules are helpful in learning ones from the original set. In
conclusion, such combinatorial oversampling can be useful for generating novel structures and
training robust models.

Conclusions
In this paper two graph-based Autoencoder architectures for molecule encoding and generation
are presented. One of the architectures, named ReFactor, is an updated version of the previously
published DEFactor architecture. Another Autoencoder, HyFactor, inherits approaches of
ReFactor and is based on a new representation of the molecule, the hydrogen-count labelled
graph.
Both architectures showed the highest performance in reconstruction ability on the ZINC250K
dataset comparing to existing SMILES- and graph-based Autoencoders. The standardization

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of heavy atoms

0%

10%

20%

30%

40%

Fr
ac

tio
n

of
 w

ro
ng

ly
 re

co
ns

tru
ct

ed
 m

ol
ec

ul
es

ReFactor
HYFactor

Architecture

16

of ZINC250K dataset allowed for a more accurate assessment of graph-based model
performance.
Moreover, HyFactor and ReFactor were successfully tested in learning of molecules with up
to 50 heavy atoms from the ChEMBL data set. While the HyFactor architecture achieved the
same reconstruction rate as ReFactor, it was more effective in terms of number of network
parameters and training time. The analysis of the results showed that the number of molecules
larger than 35 heavy atoms in the ChEMBL dataset was insufficient for the models to learn
them. To solve this problem, virtual molecules were added which improved the learning of
large molecules.
Trained on MOSES dataset, both Autoencoders were used to systematically explore the
chemical space around given molecules. From the calculation of MOSES metrics on the
generated structures it was concluded that both architectures were able to generate diverse
structures with various scaffolds. Although the validity and uniqueness of the generated
structures was low, the autoecnoders outperformed previous architectures in terms of similarity
metrics as well. To improve the validity of the generated structures, one of the future research
directions might be the use of generative neural networks for latent vectors sampling.
In conclusion, although these architecutres have some shortcomings, their potential is very
high. By providing the open-source code, we hope that our developments will accelerate
research in this area.

Acknowledgments
Tagir Akhmetshin thanks the Region Grand Est for the PhD fellowship. Yuliana Zabolotna,
postdoctoral researcher of the Chemoinformatics Laboratory in Strasbourg, is acknowledged
for the help with combinatorial generation of molecules using SyntI tool.

References
1. Varnek A, Baskin I (2012) Machine learning methods for property prediction in

chemoinformatics: Quo Vadis? J Chem Inf Model 52:1413–1437 .
https://doi.org/10.1021/ci200409x

2. Button A, Merk D, Hiss JA, Schneider G (2019) Automated de novo molecular design
by hybrid machine intelligence and rule-driven chemical synthesis. Nat Mach Intell
1:307–315 . https://doi.org/10.1038/s42256-019-0067-7

3. Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses with deep
neural networks and symbolic AI. Nature 555:604–610 .
https://doi.org/10.1038/nature25978

4. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-
Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik
A (2018) Automatic Chemical Design Using a Data-Driven Continuous Representation
of Molecules. ACS Cent Sci 4:268–276 . https://doi.org/10.1021/acscentsci.7b00572

5. Baskin II (2020) The power of deep learning to ligand-based novel drug discovery.
Expert Opin Drug Discov 15:755–764 .
https://doi.org/10.1080/17460441.2020.1745183

6. Simonovsky M, Komodakis N (2018) GraphVAE: Towards generation of small graphs
using variational autoencoders. Lect Notes Comput Sci (including Subser Lect Notes
Artif Intell Lect Notes Bioinformatics) 11139 LNCS:412–422 .

17

https://doi.org/10.1007/978-3-030-01418-6_41
7. Krenn M, Häse F, Nigam A, Friederich P, Aspuru-Guzik A (2020) Self-referencing

embedded strings (SELFIES): A 100% robust molecular string representation. Mach
Learn Sci Technol 1:045024 . https://doi.org/10.1088/2632-2153/aba947

8. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional
networks. 5th Int Conf Learn Represent ICLR 2017 - Conf Track Proc 1–14

9. Samanta B, De A, Jana G, Chattaraj PK, Ganguly N, Rodriguez MG (2019) NEVAE: A
deep generative model for molecular graphs. 33rd AAAI Conf Artif Intell AAAI 2019,
31st Innov Appl Artif Intell Conf IAAI 2019 9th AAAI Symp Educ Adv Artif Intell
EAAI 2019 33:1110–1117 . https://doi.org/10.1609/aaai.v33i01.33011110

10. Bresson X, Laurent T (2019) A Two-Step Graph Convolutional Decoder for Molecule
Generation. arXiv

11. Zhou Z, Kearnes S, Li L, Zare RN, Riley P (2019) Optimization of Molecules via Deep
Reinforcement Learning. Sci Rep 9: . https://doi.org/10.1038/s41598-019-47148-x

12. Jin W, Barzilay R, Jaakkola T (2019) Hierarchical Graph-to-Graph Translation for
Molecules. 1–14

13. Assouel R, Segler MH, Ahmed M, Saffari A, Bengio Y (2018) DEFactor: Differentiable
edge factorization-based probabilistic graph generation. arXiv 1–14

14. Jin W, Yang K, Barzilay R, Jaakkola T (2018) Learning multimodal graph-to-graph
translation for molecular optimization. arXiv 1–13

15. Kearnes S, Li L, Riley P (2019) Decoding molecular graph embeddings with
reinforcement learning. arXiv

16. Hochreiter S, Schmidhuber J (1997) Long Short-Term Memory. Neural Comput
9:1735–1780 . https://doi.org/10.1162/neco.1997.9.8.1735

17. Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D (2015) InChI, the IUPAC
International Chemical Identifier. Journal of Cheminformatics

18. Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, Golovanov S, Tatanov O, Belyaev S,
Kurbanov R, Artamonov A, Aladinskiy V, Veselov M, Kadurin A, Johansson S, Chen
H, Nikolenko S, Aspuru-Guzik A, Zhavoronkov A (2020) Molecular Sets (MOSES): A
Benchmarking Platform for Molecular Generation Models. Front Pharmacol 11:1–10 .
https://doi.org/10.3389/fphar.2020.565644

19. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey
S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: A large-scale
bioactivity database for drug discovery. Nucleic Acids Res 40:1100–1107 .
https://doi.org/10.1093/nar/gkr777

20. ChemAxon (2020) JChem
21. Kusner MJ, Paige B, Hemández-Lobato JM (2017) Grammar variational autoencoder.

34th Int Conf Mach Learn ICML 2017 4:3072–3084
22. Pocha A, Danel T, Maziarka Ł (2020) Comparison of Atom Representations in Graph

Neural Networks for Molecular Property Prediction
23. Nugmanov RI, Mukhametgaleev RN, Akhmetshin T, Gimadiev TR, Afonina VA,

Madzhidov TI, Varnek A (2019) CGRtools: Python Library for Molecule, Reaction, and
Condensed Graph of Reaction Processing. J Chem Inf Model 59:2516–2521 .

18

https://doi.org/10.1021/acs.jcim.9b00102
24. Simonovsky M, Komodakis N (2017) Dynamic edge-conditioned filters in

convolutional neural networks on graphs. Proc - 30th IEEE Conf Comput Vis Pattern
Recognition, CVPR 2017 2017-Janua:29–38 . https://doi.org/10.1109/CVPR.2017.11

25. Zitnik M, Agrawal M, Leskovec J (2018) Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics 34:i457–i466 .
https://doi.org/10.1093/bioinformatics/bty294

26. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio
Y (2014) Learning phrase representations using RNN encoder-decoder for statistical
machine translation. EMNLP 2014 - 2014 Conf Empir Methods Nat Lang Process Proc
Conf 1724–1734 . https://doi.org/10.3115/v1/d14-1179

27. He K, Zhang X, Ren S, Sun J (2015) Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification. In: 2015 IEEE International Conference
on Computer Vision (ICCV). IEEE, pp 1026–1034

28. Zhuang J, Tang T, Ding Y, Tatikonda S, Dvornek N, Papademetris X, Duncan JS (2020)
AdaBelief optimizer: Adapting stepsizes by the belief in observed gradients. arXiv 1–
29

29. Sattarov B, Baskin II, Horvath D, Marcou G, Bjerrum EJ, Varnek A (2019) De Novo
Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with
Generative Topographic Mapping. J Chem Inf Model 59:1182–1196 .
https://doi.org/10.1021/acs.jcim.8b00751

30. Yan C, Wang S, Yang J, Xu T, Huang J (2020) Re-balancing Variational Autoencoder
Loss for Molecule Sequence Generation. Proc 11th ACM Int Conf Bioinformatics,
Comput Biol Heal Informatics, BCB 2020. https://doi.org/10.1145/3388440.3412458

31. Alperstein Z, Cherkasov A, Rolfe JT (2019) All SMILES variational autoencoder. arXiv
32. Dai H, Tian Y, Dai B, Skiena S, Song L (2018) Syntax-directed variational autoencoder

for structured data. arXiv 1–17
33. Kingma DP, Welling M (2014) Auto-encoding variational bayes. 2nd Int Conf Learn

Represent ICLR 2014 - Conf Track Proc 1–14
34. Winter R, Montanari F, Noé F, Clevert D-A (2019) Learning continuous and data-driven

molecular descriptors by translating equivalent chemical representations. Chem Sci
10:1692–1701 . https://doi.org/10.1039/C8SC04175J

35. Varnek A, Fourches D, Horvath D, Klimchuk O, Gaudin C, Vayer P, Solov’ev V,
Hoonakker F, Tetko I, Marcou G (2008) ISIDA - Platform for Virtual Screening Based
on Fragment and Pharmacophoric Descriptors. Curr Comput Aided-Drug Des 4:191–
198 . https://doi.org/10.2174/157340908785747465

36. Zabolotna Y, Volochnyuk DM, Ryabukhin S V, Gavrylenko K (2021) SynthI : a new
open-source tool for synthon-based library design. 1–16

37. VanderPlas J, Granger B, Heer J, Moritz D, Wongsuphasawat K, Satyanarayan A, Lees
E, Timofeev I, Welsh B, Sievert S (2018) Altair: Interactive Statistical Visualizations
for Python. J Open Source Softw 3:1057 . https://doi.org/10.21105/joss.01057

38. Satyanarayan A, Moritz D, Wongsuphasawat K, Heer J (2017) Vega-Lite: A Grammar
of Interactive Graphics. IEEE Trans Vis Comput Graph 23:341–350 .
https://doi.org/10.1109/TVCG.2016.2599030

19

Supplementary information
I. ChEMBL data set analysis

Figure S1. Distribution of molecules from standardised ChEMBL v. 27 as a function of atoms’ types presence.

II. Training parameters

Table S1. Training parameters for each data set. The parameters are equal for both ReFactor and Hyfactor
architectures.

Dataset Latent
dimension Batch

Initital
learning

rate

Max
number of

atoms

Number
of

epochs

Number
of atom
types

Number of training
parameters

ReFactor HyFactor

ZINC
250K 512 256 0.001 39 100 15 12M 10M

MOSES 512 1024 0.001 28 100 7 12M 10M

ChEMBL

&
Enriched
ChEMBL

1024 1024 0.0008 50 150 15 50M 40M

All calculations were made with NVIDIA QUADRO RTX 6000 GPU with CUDA drivers
11.2. The version of Tensorflow was 2.6. All preprocessing, including transformations of
molecular graphs to matrix representation, was done with CGRtools version of 4.1.33. The
charts were done with Altair Python package [37, 38].

C O N S F Cl N[+1] O[-1] Br P I N[-1] B Si Se Other

Atom type

0

1

2

3

4

5

6

At
om

's
ty

pe
 o

cc
ur

en
ce

, l
og
₁₀

sc
al

e

20

III. MOSES benchmarking

The MOSES benchmarking is a distribution learning bencmarking. The main goal is to create
generative architecture, that will approximate distribution of real drug-like molecules over
known distribution. In the best case, the model should generate valid, unique and novel
structures, while the distribution of the generated molecules should be almost the same as real
ones.
To measure the quality of learned distribution, several metrics are considered in this tool:

• Validity – a fraction of valid molecules compared to generated ones;
• Unique 10K – a fraction of 10K first unique molecules from the valid ones;
• Novelty - a fraction of novel generated molecules from unique ones;
• Frag (fragment similarity) – a cosine similarity based on the occurrence of BRICS

fragments in compared sets. Higher value means that both sets have similar fragments;
• Scaf (scaffold similarity) – a cosine similarity based on the occurrence of Bemis-

Murcko scaffolds in compared sets. Higher value means that both sets have similar
scaffolds;

• SNN (Similarity to a Nearest Neighbor) – an average Tanimoto similarity calculated on
Morgan fingerprints between a molecule from the generated set and its nearest neighbor
from the reference set;

• FCD (Fréchet ChemNet Distance) – a Wasserstein-2 distance computed on vectors
produced by the last layer of ChemNet neural network between generated and reference
sets. The lower values indicate that structures from compared sets should have similar
biological properties;

• IntDiv (Internal Diversity) – an average Tanimoto distance between molecules in the
generated set based on Morgan fingerprints;

• Filters – a fraction of molecules that pass MCFs (Medicinal Chemistry Filters) and
PAINS (Pan-Assay Interfering compounds) medicinal filters.

The data used in MOSES benchmarking based on ZINC Clean Leads collection. After
standardizing and filtering, 1.9M molecules with non-charged atom types such as C, N, S, O,
F, Cl, Br remained. The cleaned set was split into training, test and scaffold test (TestSF) sets
in ratio 9:1:1. In the scaffold test set, there were molecules with unique Bemis-Murcko
scaffolds that were not present in the training and test sets.

21

Table S2. MOSES benchmarking results

Architecture Valid Unique

FCD SNN Frag Scaf

IntDiv Filters Novelty

Test TestSF Test TestSF Test TestSF Test TestSF

ReFactor 0.4 std 0,886 0,265 1.743 2.380 0.547 0.511 0.996 0.993 0.847 0.041 0.869 0.850 0,578

HyFactor 0.4 std 0,729 0,267 0.365 0.871 0.614 0.566 0.999 0.998 0.862 0.003 0.860 0.959 0,129

22

Figure S2. Results of generation with variable standard deviation in range from the 0.3 to 1.0 with the step of
0.02. V corresponds to Valid, U corresponds to Unique.

IV. Enriched ChEMBL experiments

N
um

be
r o

f g
en

er
at

ed
 m

ol
ec

ul
es

 th
at

 a
re

0.0

20k

40k

60k

80k

100k
Va

lid

0.0

20k

40k

60k

80k

100k

V
&

 U
ni

qu
e

0.0

20k

40k

60k

80k

100k

VU
 &

 N
ov

el

0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Standard deviation

ReFactor
HYFactor

Architecture

23

Figure S3. Heavy atoms count distribution in the ChEMBL (gray) and enriched ChEMBL (red) data sets.

Figure S4. Distributions of errors in molecules from the ChEMBL validation set for ReFactor (gold) and HyFactor
(blue) architectures as a function of molecular size.

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of heavy atoms

0.0

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k
N

um
be

r o
f m

ol
ec

ul
es

ChEMBL
enriched ChEMBL

Data set

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of heavy atoms

0%

10%

20%

30%

40%

50%

Fr
ac

tio
n

of
 w

ro
ng

ly
 re

co
ns

tru
ct

ed
 m

ol
ec

ul
es

ReFactor
HYFactor

Architecture

24

Figure S5. Distributions of errors in molecules from the ChEMBL validation set for ReFactor (gold) and HyFactor
(blue) architectures as a function of molecular size.

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of heavy atoms

0%

10%

20%

30%

40%

50%
Fr

ac
tio

n
of

 w
ro

ng
ly

 re
co

ns
tru

ct
ed

 m
ol

ec
ul

es

ReFactor
HYFactor

Architecture

