
1 
 

HyFactor: Hydrogen-count labelled graph-based 
defactorization Autoencoder 
Tagir Akhmetshin[1, 2], Arkadii Lin[1], Daniyar Mazitov[2], Evgenii Ziaikin[2], 
Timur Madzhidov[2]*, and Alexandre Varnek[1]* 
[1] Laboratory of Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, 4, Blaise Pascal str., 
67081 Strasbourg, France 
[2] Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan 
Federal University, 18, Kremlyovskaya str., 420008 Kazan, Russia  

*e-mail: Timur.Madzhidov@kpfu.ru, varnek@unistra.fr  

Abstract 
Graph-based architectures are becoming increasingly popular as a tool for structure generation. 
Here, we introduce a novel open-source architecture HyFactor which is inspired by previously 
reported DEFactor architecture and based on the hydrogen labeled graphs. Since the original 
DEFactor code was not available, its new implementation (ReFactor) was prepared in this work 
for the benchmarking purpose. HyFactor demonstrates its high performance on the ZINC 250K 
MOSES and ChEMBL data set and in molecular generation tasks, it is considerably more 
effective than ReFactor. The code of HyFactor and all models obtained in this study are 
publicly available from our GitHub repository: https://github.com/Laboratoire-de-
Chemoinformatique/hyfactor 

Keywords 
Molecular design, Autoencoders, Deep learning, Generative models, Chemical databases  

Introduction 
Nowadays, Deep Neural Networks (DNNs) play an important and significant role in drug and 
materials discovery, being used for properties prediction [1], de novo design [2], and computer-
aided retrosynthesis [3]. One of the most widely used DNN architectures is Autoencoder 
(AE)[4] due to its ability to encode chemical structures in their latent representation as well as 
generate new compounds by decoding sampled latent vectors using a decoder subnetwork. 
For molecular generation, the majority of AEs are based on the Simplified Molecular Input 
Line-Entry System (SMILES). [5] This chemical language allows modellers to employ all the 
power of Natural Language Processing (NLP) techniques to solve chemical problems. 
Although SMILES seems suitable for de novo design tasks, the latent representation of text 
strings may not reflect chemical similarity relationships between underlying molecules.  
Graph-based AE (GAE) architectures [6] offer a valuable alternative to SMILES-based 
architectures. Within these approaches, a molecule is represented as a graph in which nodes 
and edges encode, respectively, atoms and chemical bonds. GAEs have three fundamental 
advantages over SMILES-based architectures. First, no specific order of graph traversal is 
required, which solves the problem of a canonical order often imposed for SMILES strings. 
Second, a graph object does not obey specific grammar rules, such as opening and closing 
brackets, cycles numbering, etc., which seriously limits the generation ability of networks 
(although a recently proposed SELFIES language [7] may partially improve that). Finally, 
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GAEs always sample graph objects, which, in turn, allows a meaningful errors analysis in terms 
of chemistry (i.e., detecting graph disconnectivity and valence errors). 
A molecular graph can be decomposed to a vector of atoms and bonds matrix, and modelled 
further using Graph Convolutional Networks (GCN)[8]. Once a latent vector is obtained, it can 
be decoded using various decoding techniques: single-shot and iterative generation. Single-
shot decoders generate atoms and bonds in a graph in a single pass.[6, 9] Their training is fast, 
but the simultaneous generation of atom vectors and bond matrices is technically 
challenging.[10] Iterative decoders, in contrast, create atoms and bonds sequentially one by 
one, so they can stop when a molecule is reconstructed.[11] The first class generates atoms’ 
vectors, from which atom types and connectivity are extracted separately. One example of such 
iterative generation is an autoregressive concept, when the generation of the next atom is based 
on previously created atoms.[12, 13] Another popular approach uses a recurrence-based 
generation, where the next atom is generated from a hidden (or difference) vector, which 
updates every step.[14] The second class of decoders uses a Markov decision process. They 
apply several actions, such as "creation of atoms" and "creation of bonds" to a given subgraph 
of a molecule to obtain an updated subgraph until the molecule is reconstructed.[11, 15] 
However, interative generation requires much more complex and slow network architecture 
than single-shot Autoencoders.[9] These and other limitations (e.g., high memory and time 
costs) prevent GAE architectures to become widely used. 
Recently, DEFactor GAE architecture was published by R. Assouel et al. [13] uses reccurent 
iterative decoder. The encoder in DEFactor is a multi-layer GCN, whereas the decoder 
combines the Long-Short Term Memory (LSTM) [16] cell for atomic vectors generation  with 
a new adjacency matrix defactorization procedure (see Method section for details). This 
approach allows one to model molecular graphs much more efficiently. Although the results of 
the benchmarking study reported in the original publication look promising, many important 
details, such as the number of convolutional layers in the encoder or the batch size, needed for 
re-implementation of this approach are missing. Therefore, we made an attempt to re-
implement and further improve the DEFactor architecture. The improved version of DEFactor 
is referred here as ReFactor (see the details in the Method chapter). It was tested in ZINC250K 
and ChEMBL v.27 data sets as well as MOSES benchmarking, and its efficiency was shown 
to be comparable to that of other GAE architectures.  
Moreover, we propose a methodological improvement that reduces the amount of GPU 
memory required to store the model as well as training time without loss of accuracy. The GCN 
employed by the encoder subnetwork in DEFactor computes the neighbours’ messages within 
each bond-type specific channel. As a consequence, it is necessary to store three or four bond-
type-specific adjacency matrices and specific trainable weight matrices (depending on whether 
an aromatic bond is considered an alternate of single and double bonds or a separate bond type). 
This takes a lot of memory and adds numerous mathematical operations to the corresponding 
computational graph in DEFactor. Here, we propose to use the number of hydrogens attached 
to each heavy atom instead of bond order. In fact, based on the number of hydrogens at every 
atom and the graph adjacency matrix, molecular structure can be reproduced. Also, it solves 
the problem of the standard representation of functional groups and aromaticity. A similar 
approach is used in the InChI molecule representation system [17]. In this case, a molecular 
graph can be represented by three objects: 1) a vector of atom types, 2) a vector of the numbers 
of attached hydrogens, and 3) a single binary adjacency matrix. By simplifying the encoder 
GCN, we can reduce the number of trainable weights by 50% (see Methods section). Moreover, 
by using hydrogen atom numbers instead of bond orders, functional groups standardization and 
aromatization steps can be omitted. This can enhance the network's generation ability. For 
example, the addition of an aromatic bond to an open-chain fragment could easily introduce an 
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error, and, in the opposite, the probability to generate an aromatic ring in a Kekule form is low 
if the model is trained to alternate single and double bonds in rings. 
Based on the above mentioned inventiones, we introduce a new hydrogen-count labelled graph-
based GAE architecture named HyFactor. Within this architecture, a DNN is combined with a 
set of heuristic rules on allowed atoms’ valences needed to do a conversion of a regular 
molecular graph to a hydrogen-count labeled graph (a graph where a certain number of 
hydrogens is assigned to each heavy atom) and back. It was compared to DEFactor and 
ReFactor architectures using ZINC250K,  ChEMBL v.27 and MOSES benchmarking data sets 
in the tasks of reconstruction and generation. It has been shown that ReFactor and HyFactor 
possess similar reconstruction rates, whereas HyFactor trains faster and requires less GPU 
memory. 
Therefore, in this work we present the two new graph-based AutoEncoder architectures that 
can be used for molecule encoding and generation tasks. In order to accelerate development in 
this area and create sustainable and reproducible algorithms, we are contributing proposed 
architectures to open-source. Additionaly, we provide weights of both architectures as well as 
tools to create and decode a new molecular representation, the hydrogen-count labeled graph. 
The code and all models are publicly available in our GitHub repository: 
https://github.com/Laboratoire-de-Chemoinformatique/hyfactor 

Methods 
Data and curation 

In this work, three data sources were used: a subset of ZINC database called ZINC250K [4], 
MOSES (v. 1.0) [18] data set, and ChEMBL database (v. 27) [19]. All sets were standardized 
using the following  procedures: 1) dearomatization, 2) isotopes removal, 3) stereo marks 
removal, 4) explicit hydrogens removal, 5) small fragments removal, 6) solvents removal, 7) 
salts strip, 8) neutralization of charges, 9) functional groups transformation, 10) selection of 
canonical tautomer form of molecule, 11) aromatization, 12) duplicates removal, 13) 
dearomatization. All stages of the standardization were done by ChemAxon JChem’s utilities 
[20]. Once structures were standardized, the order of atoms was defined from the canonical 
SMILES string produced by ChemAxon JChem.  
About 1.7K structures were removed from the ZINC250K data set as the result of the cleaning 
procedure. The cleaned set was split into training, validation (tuning), and test sets according 
to the previous article [21]. The test set was taken as 5K predefined molecules, and the 
remaining structures were randomly split into training and validation sets in ratio 9:1. Note that 
several duplicates were found in ZINC250K (see Table 1), due to the presence of stereoisomers 
in the data set. This may cause some overestimation of model performance for architectures 
reported earlier.  

Table 1. Results of ZINC 250K data set standardization.  

Filters Training and validation sets Test set 
Number 

of molecules 
 

244 455 5 000 

Duplicates within set 1612 1 
Duplicates between training and test 

sets  73 

Remaining molecules 242 770 4 999 
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The ChEMBL database was standardized by the same workflow as the ZINC250K data set. 
The initial database consisted of 1.9M molecules and it was reduced to 1.6M of standardized 
structures. The prepared data set was additionally analyzed in terms of the frequency of atom 
types (Figure S1). 60 unique atomic types (including information on atomic charge) were found 
in ChEMBL, and only 15 (C, O, N, S, F, Cl, N+, O-, Br, P, I, N-, B, Si, and Se) have been 
chosen according to the threshold of 1000. Next, compounds with less than 5 and more than 
50 heavy atoms have been removed due to their under-representation. The filtrated ChEMBL 
data set was then split into a training set (80% of data or 1.3M molecules) and a validation set 
(20% of data or 327K molecules). It was not divided into a test set because the amount of data 
in the validation set was sufficient to reliably assess the performance of the model. 
The MOSES data set was analyzed with the proposed standardization procedure; however, no 
mistakes were found. Therefore, it was used as it is. The original “training” set was split into 
training and validation sets in the 4:1 ratio. 
All chemical structures from each data set have been kekulized in order to avoid a need to 
introduce an additional aromatic bond type for ReFactor architecture. The latter would increase 
the size of the graph-based architecture, slow down the calculations and decrease the number 
of valid structures in sampling. 
After standardization of the data sets, they were analyzed in terms of heavy atoms count 
distribution (Figure 1).  

 

Figure 1. Heavy atoms count distribution in studied data sets 

Both the ChEMBL and ZINC250K data sets have a similar distribution of heavy atom count. 
However, the MOSES data set differs from both, and most of the structures lie in the range 
from 16 to 26 heavy atoms. 
Hydrogen-count labelled graph 

We propose to use a new molecular graph-based representation – Hydrogen-count labelled 
graph (HLG) (see Figure 2). In this graph, only the connections between atoms and the count 
of hydrogens connected to the atoms are taken into account. Also, the formal charge of an atom 
is used as a vertex label. This representation has already been tested with graph convolution 
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networks on quantitative structure-property relationship (QSPR) tasks.[22] In the latter work, 
the performance of HLG was similar to other representations, but it has not been compared to 
the classical molecular graph representation. 

 

Figure 2. Hydrogen-count labeled graph representation. Here the molecular graph (hydrogens are hidden) is 
converted into a graph with no edge features, while the nodes have two features - types of atoms and number of 
hydrogens. 

We convert the molecular graph to the HLG, and then to three numerical representations: 
adjacency matrix, atomic types which includes atom symbol and charge, and hydrogens count 
vectors (Figure 2). The conversion algorithm from molecular graph to HLG and backward is 
implemented with CGRtools toolkit.[23] 

DEFactor, ReFactor, HyFactor 

In this work, we propose ReFactor architecture which is a slight modification of DEFactor 
architecture [13] published by Assouel et al. earlier. We chose the DEFactor architecture 
because its concept of decoding incorporates the ideas of iterative decoders, making the 
generation procedure flexible and optimal. 
All three architectures (DEFactor, ReFactor, and HyFactor) are depicted in Figure 3. The 
encoder from the DEFactor architecture uses one-hot embeddings to represent atoms in a 
molecular graph, and consists of several layers of edge-specific graph convolution networks 
[8, 24] that can be expressed as follows: 

where Hl is atoms’ vectors after the lth graph convolution layer, Eb is a bond-type specific 
adjacency matrix, Db is the corresponding bond-type specific diagonal degree matrix, Wb and 

!!"# = ReLU '()*$
%#&+$*$

%#&!!,$
!-

$
+!!,'(!)

! / (1), 
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Wself are trainable matrices of weights for every bond type b and weights for self-channel, 
respectively, and ReLU is the rectifier activation function. The aggregation of atomic vectors 
is done by a Long short-term memory (LSTM) [16] unit followed by a one-layer perceptron 
(see Figure 3a) giving molecular latent vector. 

In the decoder, the molecular latent vector is unpacked into a set of atomic embeddings !0 , 
where each hi is predicted using LSTM layer. Thus, the entire matrix of atoms’ embeddings is 
restored. Next, it passes through two subunits in parallel, where the first one is represented by 
a Multi-layer Perceptron (MLP) with softmax output function that returns predictions on 
atoms’ types A0, and the second one is the multichannel defactorization procedure [25] needed 
to reconstruct the bond matrix. The latter is described by the authors as 

 
 

where +2$ is the reconstructed adjacency matrix for bond type b, !0  is the matrix of the recovered 
atoms’ embeddings hi, ,$ is a diagonal matrix of weights for the bond type b, and σ is a 
sigmoid output function. A certain probability is returned for each bond type between each pair 
of atoms, and the bond type with the highest probability is selected for reconstruction. A three-
steps procedure including teacher forcing has been used to speed up the training of DEFactor. 
Within each step, trainable weights of a certain part of the network were frozen, and then 
relaxed at the next step.  
The loss function used in DEFactor was a combination of categorical cross-entropy (CCE) for 
atoms predictions (3), and binary cross-entropy (BCE) for bonds predictions (4): 

L*+,-' = −
1
n(A ∗ log	(A0) (3) 

L$,./' = −
1
n&(=E$ ∗ log?E0$@ + (1 − E$) ∗ 	 log?E0$@A

0

1
 (4), 

where A is a one-hot matrix for atoms types, Ã is a predicted atoms types probability matrix, 
and n is the number of atoms in a molecule, E$ is the real adjacency matrix for bond type b. 
The ideas behind this architecture seemed promising, although the architecture was poorly 
described in the paper by Assouel et al [13]. For instance, the number of GCN layers as well 
as the dimensionality of the atoms’ embedding matrix was not mentioned. Thus, we 
reimplemented DEFactor architecture as much as possible and introduced some changes that 
improved its performance.  
Unless otherwise specified, the dimensionality of the atom embedding vectors, as well as all 
internal and latent vectors, was the same. Dimensionality of latent vectors refers to these 
dimensions. Parameters for each experiment are specified in Table S1 of Supporting 
Information. All layers were taken with standard parameters of Tensorflow package v. 2.6. if 
not additionaly mentioned.  
To stabilize the learning process, the GCN was upgraded with Layer Normalization (LN) layer 
among atoms features (parameter “axis=-2”) and masking of imaginary atoms (padding): 

+2$ = σ(!0,$!02 + bias) (2), 
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!!"# = Mask ∗ ReLU '()*$
%#&+$*$

%#& ∗ IJ(!!,$
! )- +

$
IJ(!!,'(!)

! )/ (5) 

In each experiment, the number of CGN layers was fixed at five. The dimensionality of the 
input and output vectors was the same. 
For atomic vector aggregation, LSTM units in DEFactor were replaced with bidirectional 
Gated Recurrent Units [26] (GRU; see Figure 3b). The output of GRU was passed to the dense, 
batch normalisation (BN) and ReLU activation layers to obtain the molecular latent vector. A 
teacher-forcing technique published in the original article was not applied since it had not led 
to performance improvement.  
In the decoder, atom vectors were generated by sequentially connected two GRU layers and a 
dense layer in between, headed by a RepeatVector layer (see Figure 3b). In such case, the input 
molecular latent vector was repeated N times (i.e., according to the maximal molecular graph 
size), passed through the first GRU and intermediate atom vectors were returned. These 
intermediate vectors were then concatenated with the repeated molecular vectors. They passed 
first through a perceptron layer with a ReLU activation function and then through the second 
GRU layer. Further, the hidden vectors of the second GRU were used as retrieved atoms’ 
embeddings. For the atoms reconstruction, the retrieved atoms’ embeddings were passed to 
two dense layers with output dimensions equal to the number of atom types. Activation of the 
first layer was ReLU, and activation of the second - Softmax function. During the bonds 
reconstruction step, the atoms’ embeddings were forwarded to a dense layer with output 
dimension of the latent vector divided by eight and ReLU activation and to the defactorization 
layer.  
These and other minor changes allowed us to handle molecules containing up to 50 heavy 
atoms with the ReFactor architecture (see Results and Discussion section).  
The HyFactor architecture was based on ReFactor. The main changes concern the steps of 
graph convolution and graph reconstruction from the atoms’ vectors (see Figure 3c). First, the 
HLG was transformed to the atoms’ (dimension of 64) and hydrogens’ (dimension of 4)  
embeddings. These embeddings were concatenated and passed through the dense layer with 
ReLU activation function. The graph convolution network was similar to that in ReFactor: 

!!"# = Mask ∗ ReLU K*%
#
&+*%

#
& ∗ LN?!!,.(345$,6'

! @ + LN?!!,'(!)
! @M (6) 

where E and D are adjacency and degree matrices of HLG, the other designations are the same 
as in eqn. 1 and 2. From the eqn. 6 it can be seen, that the number of the training parameters 
decreased in two times. 
With the graph reconstruction task, the difference from ReFactor was that the number of 
hydrogens and atom types were predicted using a softmax function after two dense layers with 
a ReLU activation in between. In the experiments we considered that the maximal number of 
hygrogens around atom is 3. The adjacency matrix was reconstructed using defactorization 
(eqn. 2) ignoring bond types (only one trainable diagonal ,$ matrix). 
The initialization of weights for each layer was done with HE normal initialization [27] and 
the training of the architecture was done with AdaBelief optimizer [28] with standard 
parameters. In order to maintain training stability, exponential learning decay was applied. 
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Figure 3. Architectures of different Autoencoders considered in this work: (a) DEFactor [13], (b) ReFactor and 
(c) HyFactor. BN refers to Batch Normalization layer and GRU – Gated Reccurent Unit. Parameters for each 
experiment are specified in Table S1 of Supporting Information. 
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Sampling procedure 

Since in current architectures no special restrictions on latent space distribution were posed, 
for the molecule generation procedure the latent vectors were sampled in the vicinity of the 
known molecules. In this case, few molecules from the training set were selected and their 
latent vectors were used as seeds in the generation process as it was done in [29] (Figure 4). 
During generation, the latent vectors were multiplied by noise vectors (i.e., random numbers 
generated from a probability density function of a known random distribution), followed by 
their decoding to a molecular graph.   
For the experiments, the probability density function of lognormal distribution was chosen. To 
effectively and systematically explore chemical space around the given seed, the “mean” 
parameter was set to 0 and the “standard deviation” was variable. Therefore, as the "standard 
deviation" parameter would rise, the probability of generating more dissimilar structures should 
increase. 

 

Figure 4. Sampling strategy for new structures in the Autoencoder latent space.  

Results and Discussion 
Reconstruction rate of different graph Autoencoders 
The performance of Autoencoders’ model is measured by the reconstruction rate representing 
a percentage of correctly reconstructed compounds out of the considered data set. 
Reconstruction rate values obtainedfor several SMILES-based and graph-based Autoencoders 
on the ZINC 250K reference set are reported in Table 2.  

Table 2. ZINC 250K results 

Architecture name Standardization 
Molecular  

representation 

Reconstruction rate, % 

Training set Validation set Test set 

TSGСD[10] - Molecular graph - - 90.5 

DEFactor[13] - Molecular graph - - 89.8 

JTVAE[14] - Molecular graph* - - 76.7 
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Re-balanced VAE[30] - SMILES - - 92.7 

All SMILES[31] - SMILES - - 87.6 

SDVAE[32] - SMILES - - 76.2 

ReFactor no Molecular graph 99.5 90.8 90.7 

ReFactor yes Molecular graph 99.7 90.0 90.0 

HyFactor no HLG 99.3 89.3 89.0 

HyFactor yes HLG 99.2 89.8 88.4 

* JTVAE uses hierarchical fragments instead of atoms to reconstruct the molecule 

In comparison to graph-based architectures, SMILES-based architectures show similar 
performance. The leading graph-based architecture (TSGCD) has a reconstruction rate that is 
only 2% lower than the best SMILES-based Autoencoder (Re-balanced VAE). The DEFactor 
architecture also shows high performance and is only 1% lower than the leading graph-based 
Autoencoder. Although it was found that the protocols for data set standardization were not 
sufficiently addressed in the publications on all the architectures presented. Thus, results for 
the ReFactor and HyFactor architectures are presented for both non-standardized and 
standardized data sets. In addition, results for training and validation sets for model overfitting 
analysis are given. 
The reconstruction rate for ReFactor, trained and tested on the non-standardized data set, is 
slightly higher than for the standardized data set. This fact supports our assumption that the 
performance of Autoencoder may be overestimated since training and test sets partially overlap 
in the non-standardised data set. Comparing the results of ReFactor with the original DEFactor, 
we see that on both standardized and non-standardized data sets our implementation 
outperforms the original architecture.  
HyFactor architecture has almost the same reconstruction rate on both sets as ReFactor. Hence, 
it can be concluded that the molecular representation used in HyFactor does not change the 
performance of the model while reducing the number of neural network parameters (from 12M 
to 10M).   
Generation ability of graph-based Autoencoders 
The Autoencoders are a class of generative neural networks, which are widely used to generate 
novel chemical structures. Thus, here we discuss the ability of proposed graph-based 
Autoencoders to generate molecules. For this purpose, MOSES benchmarking was used [18]. 
Original DEFactor architecture could not be benchmarked since the source code is not available 
and corresponding information is not given in original publication.  
The metrics included in the MOSES package are adopted for the distribution learning objective 
(see the supporting information for details). Even though the proposed generation method does 
not fit into the category of such methods, most of the metrics are applicable to sampled 
structures. Also worth noting is that distribution learning models generate various structures, 
while the proposed approach generates molecules around seeds. Therefore, it was not possible 
to select a subset of ten thousand structures for calculation of uniqueness, so it was calculated 
on the entire set.    
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For the generation tests ReFactor and HyFactor architectures were trained on 80% of the 
original MOSES training set. Both architectures achieved more than 99% of the reconstruction 
rate on the remaining 20% of the data used as validation set. Then, 10K compounds were 
randomly selected as seeds for sampling new structures. For each seed compound, 10 virtual 
structures were generated, so the total number of structures obtained should be 100K. The 
generation was based on log-normal distribution with a mean equal to zero and a variable 
standard deviation from 0.2 to 1.0 with a step of 0.2.  
A preliminary review of the results revealed that MOSES does not correctly handle a molecular 
graph consisting of several components (mixture of compounds) and some valence errors 
during metrics calculation. At the same time, they were generated quite frequently by the 
proposed graph architectures. To verify the results of benchmarking study, we performed the 
validity analysis including additional valence checks and disconnected graph check. The 
validity checks were implemented using the CGRtools package [23]. The results of the analysis 
of standard deviation parameter influence on validity, uniqueness and novelty of the generated 
structures is given in Table 3. 

Table 3. MOSES metrics calculated for the 100K structures generated with different standard deviations (STD) 

STD Validity Uniqueness Novelty 

 Original Modified* Original Modified* Original Modified* 

ReFactor 
0,2 0,997 0,996 0,656 0,105 0,074 0,042 
0,4 0,921 0,886 0,748 0,265 0,634 0,578 
0,6 0,698 0,503 0,948 0,730 0,875 0,814 
0,8 0,540 0,149 0,998 0,971 0,978 0,855 
1 0,516 0,022 0,961 1,000 0,999 0,983 

HyFactor 
0,2 1,000 0,9880 0,661 0,193 0,117 0,006 
0,4 0,989 0,7290 0,795 0,267 0,729 0,129 
0,6 0,940 0,1820 0,980 0,634 0,923 0,288 
0,8 0,886 0,0120 1,000 0,966 0,993 0,491 
1 0,822 0,0003 0,981 1,000 1,000 0,912 

* With additional valence and disconnected structures checks and uniqueness computed on the whole generated 
set 

Observing the results, it is evident that the percentage of new molecules and their uniqueness 
grow with increasing standard deviation for both models, but the validity drops. Nonetheless, 
when standard deviation is high, structures returned after validity check are characterized by 
high novelty and uniqueness. The probable reason is the discontinuity of the latent space that 
has lots of voids. It is quite common for regular Autoencoders without special regularization 
on latent space, like in variational Autoencoders [33], or application of latent vectors for 
additional task solving [34].  
Another observation is that the structures generated by ReFactor are more valid and novel than 
HyFactor’s molecules. It has been suggested that during systematic sampling with HyFactor, 
it is easier to fall into a void, where an invalid structure is present. Yet, both architectures 
achieved high reconstruction rates, so they should have similar generative capabilities. Thus, 
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if the sampled method is changed, it is possible to achieve better results for both HyFactor and 
ReFactor. We leave this issue for the future work.  
After analyzing the generation with variable standard deviation, it was decided to compare the 
molecules generated for an STD equal to 0.4 with the results for known Autoencoders. The 
results of MOSES benchmarking are given in Table 4. In the table, the most important metrics 
that can help us to analyze the generation ability of the proposed architectures are presented. 
The results for the all other metrics available in the MOSES package are given in Table S2. 

Table 4. Results of MOSES benchmarking compared to the known Autoencoders. The similarity metrics are 
given in comparison with the MOSES test set. The presented Autoencoders are SMILES-based, except JTVAE. 

Model Valid Unique 
10k Novelty FCD SNN Scaf IntDiv 

Combinatorial 
(BRICS frag) 1.000 0.991 0.988 4.238 0.451 0.445 0.873 

AAE 0.937 0.997 0.793 0.556 0.608 0.902 0.856 

VAE 0.977 0.998 0.695 0.099 0.626 0.939 0.856 

JTVAE 1.000 1.000 0.914 0.395 0.548 0.896 0.855 

ReFactor 0.4 std* 0,886 0,265** 0,578 1.743 0,547 0,847 0,868 

HyFactor 0.4 std* 0,729 0,267** 0,129 0.365 0,614 0,862 0,860 

* All metrics are calculated if valence errors and disconnected structures are excluded. 
** Uniqueness was calculated on the whole generated data set after filtration by validity. 

As graphs are discrete objects, it is expected that the latent space of a graph-based Autoencoder 
should also be discrete. In other words, invalid molecular graphs (for example, disconnected 
structures or structures with valence mistakes) are present in the space between the valid 
molecules. With the proposed sampling method, it is not possible to control the validity of the 
generated molecules, thus validity is lower than for other architectures (Table 4). The 
uniqueness and novelty is also lower than for other architectures, as we generate molecules in 
the vinicity of seed molecules. Therefore, validity, uniqueness, and novelty can be increased 
by updating the sampling method, which is outside of scope of this study. 
According to Table 4, scaffold similarity (Scaf) is low for each proposed architecture, so more 
scaffolds were generated than for other Autoencoders. This is an advantage of both 
architectures, as they can perfrom scaffold hopping, which is crucial during search of new drug-
like molecules. Moreover, HyFactor and ReFactor generate molecules with high internal 
diversity (IntDiv), indicating a broader variety of generated structures. These properties make 
them powerful tools for discovering new analogs of molecules that can be used for the creation 
of focused libraries. 
Another observation is that generated samples from ReFactor have the biggest Fréchet 
Chemnet Distance (FCD) and the smallest Similarity to a Nearest Neighbour (SNN). These 
values indicate that ReFactor's structures are more dissimilar than any other architecture. 
Hence, ReFactor can be helpful in the search for a novel scaffold or pattern task, where only a 
few molecules are known. 
Through the proposed generation approach, it is possible to examine how molecules are 
arranged in the latent space. It is expected that molecules generated close to the seed should 
have a similar chemical structure, and vice versa, if molecules are obtained far away from the 



13 
 

seed, they should be more dissimilar. Hence, it was decided to take one seed structure and use 
both models to generate several molecules with a range of standard deviation from 0.3 to 1.0 
with the step of 0.02. At each step, 10 molecules were generated followed by the validity and 
uniqueness check. These simulations resulted in 10 and 40 new generated structures in average 
from each structure for HyFactor and ReFactor, respectively. Several generated structures are 
shown in Figure 5. 
Before analysis all molecules were aromatized with ChemAxon toolbox. To measure similarity 
of new molecules, Tanimoto metric was applied. The similarity was calculated on atom-centred 
ISIDA fragments [35] was based on sequences of atoms and bonds of size from 2 to 4 atoms. 
Additionally, bonds within a cycle in a fragment were marked with a special symbol.  

 

Figure 5. Example of structures generated with ReFactor and HyFactor trained on the MOSES set. Molecules 
generated with standard deviation < 0.6 (> 0.6) lie within (outside) the dashed circle. Each number corresponds 
to pairwise Tanimoto similarity of a given generated structure with respect to the seed assessed with the ISIDA 
descriptors.  
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From Figure 5 it can be seen, that the sampled structures are similar to the seed molecule. It 
further proves that even if the latent spaces of the proposed Autoencoders are discrete, the 
arrangement of molecules in them is reasonable. However, in some cases there are some 
structures dissimilar to the seed molecule that can be generated with a small standard deviation, 
and vice versa, rather similar structures can be found in the list of molecules generated with a 
large standard deviation. 
Application on ChEMBL data set 

The Achilles' heel of graph-based Autoencoders is the reconstruction of molecules with a large 
number of atoms. Indeed, as the size of a molecule grows, the probability of error in the type 
of atom or bond increases. Therefore, in the next phase of experiments, the reconstruction 
ability of Autoencoders was studied on the ChEMBL data set containing molecules bearing up 
to 50 heavy atoms. The results of training are given in Table 5 and the specifications on training 
parameters can be found in Table S1. 

Table 5. Training results on the ChEMBL data set. 

Architecture Batch Vector 
length 

Number of training 
parameters, M 

Time 
per 
epoch*, 
min 

GPU 
Memory*, 
MB 

Reconstruction rate, % 

Encoder Decoder Training set Validation set 
ReFactor 1024 1024 35.7 14.8 ~ 24.3 ~ 22 845 99.8 95.2 

HyFactor  1024 1024 25.3 15.1 ~ 16.5 ~ 16 755 99.7 95.0 

* - measured in “mixed precision” mode, available in TensorFlow package. In this mode 16-bit floating-point 
type is used where it’s possible, otherwise 32-bit floating-point type is applied. 

According to Table 5, HyFactor uses 20% fewer training parameters than ReFactor in order to 
achieve a similar reconstruction rate, and, thus, its training is 33% faster than ReFactor. 
Although the overall reconstruction rate is high enough, the reconstruction error sharply 
increases for molecules containing more than 35 atoms and it reaches almost 30% for ReFactor 
and HyFactor for molecules containing 50 atoms (Figure 6a). The latter can be explained by 
small number of heavy molecules present in the training set (see Figure 1).  

 

Figure 6. Distributions of errors in molecules from the a) ChEMBL and b) E_ChEMBL validation sets and for 
ReFactor (gold) and HyFactor (blue) architectures trained on a) ChEMBL and b) E_ChEMBL training sets as a 
function of molecular size. 
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In order to confirm these suggestions, 460K virtual structures containing >35 atoms have been 
generated using the SynthI tool [36] and then added to the ChEMBL set. The enriched 
ChEMBL set (from now on referred to as E_ChEMBL) was then divided into training and 
validation sets in the ratio 4:1 (1.6M and 400K of molecules) respectively. Distribution of 
molecular size in the obtained data set is given in Figure S3 of Supporting Materials. Both 
architectures trained on the E_ChEMBL training set achieved reconstruction rates above 95% 
measured on the E_ChEMBL validation set. As a result, the enrichment of the ChEMBL data 
set allowed to significantly decrease the reconstruction error for heavy molecules (Figure 6b).  
By adding new molecules, one can expect the model to reconstruct molecules from the original 
ChEMBL set more accurately. The reconstruction rate of molecules from the original ChEMBL 
validation set was measured with Autoencoders trained on the E_ChEMBL training set to 
confirm this assumption. The results can be seen in Figure 7. 

 

Figure 7. Distributions of errors in molecules from the ChEMBL validation set and for the models trained on the 
E_ChEMBL training set as a function of molecular size. 

Comparing to Figure 6a, the decrease in reconstruction error of molecules bigger than 35 heavy 
atoms is dramatic both for ReFactor and HyFactor. The HyFactor has bigger errors in 
reconstruction, but the overall error is the same as for ReFactor (Figure 6b). This fact supports 
the assumption that the added molecules are helpful in learning ones from the original set. In 
conclusion, such combinatorial oversampling can be useful for generating novel structures and 
training robust models. 

Conclusions 
In this paper two graph-based Autoencoder architectures for molecule encoding and generation 
are presented. One of the architectures, named ReFactor, is an updated version of the previously 
published DEFactor architecture. Another Autoencoder, HyFactor, inherits approaches of 
ReFactor and is based on a new representation of the molecule, the hydrogen-count labelled 
graph.  
Both architectures showed the highest performance in reconstruction ability on the ZINC250K 
dataset comparing to existing SMILES- and graph-based Autoencoders. The standardization 
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of ZINC250K dataset allowed for a more accurate assessment of graph-based model 
performance.  
Moreover, HyFactor and ReFactor were successfully tested in learning of molecules with up 
to 50 heavy atoms from the ChEMBL data set. While the HyFactor architecture achieved the 
same reconstruction rate as ReFactor, it was more effective in terms of number of network 
parameters and training time. The analysis of the results showed that the number of molecules 
larger than 35 heavy atoms in the ChEMBL dataset was insufficient for the models to learn 
them. To solve this problem, virtual molecules were added which improved the learning of 
large molecules.  
Trained on MOSES dataset, both Autoencoders were used to systematically explore the 
chemical space around given molecules. From the calculation of MOSES metrics on the 
generated structures it was concluded that both architectures were able to generate diverse 
structures with various scaffolds. Although the validity and uniqueness of the generated 
structures was low, the autoecnoders outperformed previous architectures in terms of similarity 
metrics as well. To improve the validity of the generated structures, one of the future research 
directions might be the use of generative neural networks for latent vectors sampling. 
In conclusion, although these architecutres have some shortcomings, their potential is very 
high. By providing the open-source code, we hope that our developments will accelerate 
research in this area. 
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Supplementary information  
I. ChEMBL data set analysis 

 

Figure S1. Distribution of molecules from standardised ChEMBL v. 27 as a function of atoms’ types presence. 

II. Training parameters 

Table S1. Training parameters for each data set. The parameters are equal for both ReFactor and Hyfactor 
architectures. 

Dataset Latent 
dimension Batch 

Initital 
learning 

rate 

Max 
number of 

atoms 

Number 
of 

epochs 

Number 
of atom 
types 

Number of training 
parameters 

ReFactor HyFactor 

ZINC 
250K 512 256 0.001 39 100 15 12M 10M 

MOSES 512 1024 0.001 28 100 7 12M 10M 

ChEMBL 

& 
Enriched 
ChEMBL 

1024 1024 0.0008 50 150 15 50M 40M 

All calculations were made with NVIDIA QUADRO RTX 6000 GPU with CUDA drivers 
11.2. The version of Tensorflow was 2.6. All preprocessing, including transformations of 
molecular graphs to matrix representation, was done with CGRtools version of 4.1.33. The 
charts were done with Altair Python package [37, 38]. 
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III. MOSES benchmarking 

The MOSES benchmarking is a distribution learning bencmarking. The main goal is to create 
generative architecture, that will approximate distribution of real drug-like molecules over 
known distribution. In the best case, the model should generate valid, unique and novel 
structures, while the distribution of the generated molecules should be almost the same as real 
ones. 
To measure the quality of learned distribution, several metrics are considered in this tool:  

• Validity – a fraction of valid molecules compared to generated ones; 
• Unique 10K – a fraction of 10K first unique molecules from the valid ones; 
• Novelty - a fraction of novel generated molecules from unique ones; 
• Frag (fragment similarity) – a cosine similarity based on the occurrence of BRICS 

fragments in compared sets. Higher value means that both sets have similar fragments; 
• Scaf (scaffold similarity) – a cosine similarity based on the occurrence of Bemis-

Murcko scaffolds in compared sets. Higher value means that both sets have similar 
scaffolds; 

• SNN (Similarity to a Nearest Neighbor) – an average Tanimoto similarity calculated on 
Morgan fingerprints between a molecule from the generated set and its nearest neighbor 
from the reference set; 

• FCD (Fréchet ChemNet Distance) – a Wasserstein-2 distance computed on vectors 
produced by the last layer of ChemNet neural network between generated and reference 
sets. The lower values indicate that structures from compared sets should have similar 
biological properties; 

• IntDiv (Internal Diversity) – an average Tanimoto distance between molecules in the 
generated set based on Morgan fingerprints; 

• Filters – a fraction of molecules that pass MCFs (Medicinal Chemistry Filters) and 
PAINS (Pan-Assay Interfering compounds) medicinal filters. 

The data used in MOSES benchmarking based on ZINC Clean Leads collection. After 
standardizing and filtering, 1.9M molecules with non-charged atom types such as C, N, S, O, 
F, Cl, Br remained. The cleaned set was split into training, test and scaffold test (TestSF) sets 
in ratio 9:1:1. In the scaffold test set, there were molecules with unique Bemis-Murcko 
scaffolds that were not present in the training and test sets. 
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Table S2. MOSES benchmarking results 

Architecture Valid Unique 

FCD SNN Frag Scaf 

IntDiv Filters Novelty 

Test TestSF Test TestSF Test TestSF Test TestSF 

ReFactor 0.4 std 0,886 0,265 1.743 2.380 0.547 0.511 0.996 0.993 0.847 0.041 0.869 0.850 0,578 

HyFactor 0.4 std 0,729 0,267 0.365 0.871 0.614 0.566 0.999 0.998 0.862 0.003 0.860 0.959 0,129 
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Figure S2. Results of generation with variable standard deviation in range from the 0.3 to 1.0 with the step of 
0.02. V corresponds to Valid, U corresponds to Unique. 

IV. Enriched ChEMBL experiments 

N
um

be
r o

f g
en

er
at

ed
 m

ol
ec

ul
es

 th
at

 a
re

0.0

20k

40k

60k

80k

100k
Va

lid

0.0

20k

40k

60k

80k

100k

V 
&

 U
ni

qu
e

0.0

20k

40k

60k

80k

100k

VU
 &

 N
ov

el

0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Standard deviation

ReFactor
HYFactor

Architecture



23 
 

 

Figure S3. Heavy atoms count distribution in the ChEMBL (gray) and enriched ChEMBL (red) data sets. 

 

Figure S4. Distributions of errors in molecules from the ChEMBL validation set for ReFactor (gold) and HyFactor 
(blue) architectures as a function of molecular size. 
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Figure S5. Distributions of errors in molecules from the ChEMBL validation set for ReFactor (gold) and HyFactor 
(blue) architectures as a function of molecular size. 
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