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ABSTRACT 

Integration of statistical learning methods with structure-based modeling approaches is a contempo-

rary strategy to identify novel lead compounds in drug discovery. Hepatic organic anion transporting 

polypeptides (OATP1B1, OATP1B3, and OATP2B1) are classical off-targets and it is well recog-

nized that their ability to interfere with a wide range of chemically unrelated drugs, environmental 

chemicals, or food additives can lead to unwanted adverse effects like liver toxicity, drug-drug or 

drug-food interactions. 

Therefore, the identification of novel (tool) compounds for hepatic OATPs by virtual screening ap-

proaches and subsequent experimental validation is a major asset for elucidating structure-function 

relationships of (related) transporters: they enhance our understanding about molecular determinants 

and structural aspects of hepatic OATPs driving ligand binding and selectivity. 

In the present study, we performed a consensus virtual screening approach by using different types 

of machine learning models (proteochemometric models, conformal prediction models, and XGBoost 

models for hepatic OATPs), followed by molecular docking of preselected hits using previously es-

tablished structural models for hepatic OATPs. Screening the diverse REAL drug-like set (Enamine) 

shows a comparable hit rate for OATP1B1 (36% actives) and OATP1B3 (32% actives), while the hit 

rate for OATP2B1 was significantly higher (66% actives). Percentage inhibition values for 44 se-

lected compounds were subsequently determined using dedicated in vitro assays, and guided the pri-

oritization of several highly potent novel hepatic OATP inhibitors: six (strong) OATP2B1 inhibitors 

(IC50 values ranging from 0.04 to 6 µM), three OATP1B1 inhibitors (2.69 to 10 µM), and five 

OATP1B3 inhibitors (1.53 to 10 µM) inhibitors, were identified. Strikingly, two novel OATP2B1 
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inhibitors were uncovered (C7, H5) which show high affinity (IC50 values: 40 nM and 390 nM) com-

parable to the recently described estrone-based inhibitor (IC50 = 41 nM). 

A molecularly detailed explanation for the observed differences in ligand binding to the three trans-

porters is given by means of structural comparison of the detected binding sites and docking poses. 

 

INTRODUCTION 

The organic anion transporting polypeptides OATP1B1, OATP1B3, and OATP2B1 are commonly 

expressed at the basolateral membrane of hepatocytes. They are involved in the hepatobiliary 

transport of various compounds, such as bile salts, bilirubin, hormones (and their conjugated forms), 

nutrients, and xenobiotics (including a many drugs). Hepatic OATPs exhibit broad substrate speci-

ficity with partially overlapping substrate/inhibitor profiles. Several specific compounds for 

OATP1B1 (e.g., pravastatin) (1), OATP1B3 (e.g., cholecystokinin octapeptide) (2), and OATP2B1 

(e.g., erlotinib) (1), have been identified. Similar ligand profiles across the three transporters might 

be attributed to the degree of their sequence similarities; while OATP1B1 and OATP1B3 share about 

80% sequence identity, OATP2B1 is phylogenetically more distant (∼30% sequence identity with 

OATP1B subfamily, Supplementary Table 1). 

Given their high expression levels at the sinusoidal membrane of hepatocytes, OATPs are being in-

creasingly recognized for their contribution to normal liver function, such as enterohepatic circulation 

of bile salts or metabolism of bilirubin (3,4). Defects in the expression and function of these trans-

porters might affect proper liver physiology, which can result in manifold clinical consequences. For 

example, impaired uptake of bilirubin leads to elevated concentration of bilirubin in the blood, which 

in turn can result in the manifestation of Rotor syndrome (5). Rotor syndrome is a rare, conjugated 

hyperbilirubinemia, induced by simultaneous mutations in SLCO1B1 and SLCO1B3 genes. 
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OATP-mediated drug-drug interactions are another reason why all three hepatic OATP transporters 

are listed among the clinically relevant transporters in the White Paper by the International Trans-

porter Consortium (ITC) and also by U.S. Food and Drug Administration (6). However, little is 

known about their structural aspects of ligand recognition and selectivity (especially in the case of 

OATP2B1). Examining novel therapeutic candidates for their possible interaction with hepatic 

OATPs is a recommended safety assessment strategy in the early phase of drug discovery. In addition, 

having new (selective) ligands to be used as tool compounds would help to further elucidate the bio-

logical role of these transporters. 

Integrating artificial intelligence with structure-based approaches into a single virtual screening pipe-

line is a promising strategy to detect novel compounds in a more efficient (and therefore less cost-

intensive) manner than the sole use of simpler ligand-based approaches (such as simple QSAR mod-

els) or the sole use of docking approaches (7). A very good overview of the different flavors of ML-

based virtual screening approaches successfully employed by other researchers is given in a recent 

review by Kimber et al. (8). 

The most comprehensive screening study for hepatic OATPs done so far was performed by Karlgren 

et al. (1). In that study, 225 drug-like compounds were tested for their activity on OATP1B1, 

OATP1B3, and OATP2B1. Out of these, 91 OATP inhibitors with different or overlapping profiles 

across the three hepatic OATPs were identified. Among those, some specific OATP1B1 (pravastatin, 

IC50 = 3.6 µM), and OATP2B1 (erlotinib, IC50 = 0.55 µM) inhibitors, were found. The authors 

combined in vitro (i.e., single point inhibition experiments, IC50 values determination, in vitro to in 

vivo extrapolations using the maximal transport activity) and in silico (i.e., binary classification, in 

vivo uptake clearance prediction) models to perform such an extensive screening study.  

 In another screening study, several OATP1B1 inhibitors with Ki values ranging from 0.06 to 6.5 µM 

were identified and proteochemometric models were subsequently developed utilizing in vitro data. 

(9) The authors subsequently performed prospective validation using a random forest model. 
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Finally, Khuri et al. identified novel OATP2B1 inhibitors by applying a combination of random forest 

modelling and structure-based virtual screening (VS) (10). At the first stage, a random forest model 

was used to screen DrugBank (11). Then, multiple comparative structural models corresponding to 

distinct transporter conformational states were subjected to docking calculations, which has led to the 

prioritization of 33 putative OATP2B1 inhibitors. Of these, three compounds were confirmed as 

OATP2B1 inhibitors. 

In our recent study, we explored potential binding modes of steroid-like compounds in the three he-

patic OATPs by means of a rigorous computational pipeline combining exhaustive sampling of pro-

tein template conformations by using elastic network models, model generation on the basis of mul-

tiple conformers, and ensemble docking and prioritization of the final models on the basis of ligand 

enrichment. Our computational and experimental strategy to validate the findings has proven suc-

cessful in delivering meaningful explanations for efficacy and selectivity of a set of known (publicly 

available) and novel (in house synthesized and experimentally tested) steroidal inhibitors of OAP1B1, 

OATP1B3, and OATP2B1 (12). 

 

In the present study, we made use of the already established and successfully deployed structural 

models for using them in a predictive fashion. For this purpose, a data set of inhibitors and substrates 

of the three hepatic OATPs collected from the public domain and published earlier by our group (13) 

served in order to train a set of machine-learning (ML) models including different techniques: proteo-

chemometric (PCM) models, conformal prediction (CP) models, and XGBoost models. These models 

were subsequently used to screen the diverse REAL drug-like set (a subset of ENAMINE REAL with 

21M compounds). In a consecutive step, the previously established structural models for the three 

hepatic OATPs have been used to prioritize hits from the ML-based screening. 

Here we show that a consensus virtual screening approach yields very successful with hit rates of 

36%, 32%, or 66% in the case of OATP1B1, OATP1B3, or OATP2B1, respectively. Measurements 

(percentage inhibition) for a data set of 44 novel compounds were determined and guided the selection 
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of the most promising compounds for IC50 determination. For six strong OATP inhibitors, binding 

mode hypotheses have been studied in more detail delivering insights into molecularly detailed ex-

planations for ligand affinity and selectivity. Structural comparison of the detected binding sites 

across the three transporters unraveled remarkable differences in the localization of aromatic residues 

in OATP1B1/OATP1B3 vs. OATP2B1 delivering a potential explanation for ligand selectivity. In 

summary, the machine-learning based virtual screening approach identified six novel OATP inhibi-

tors. 

 

MATERIALS AND METHODS 

All data, code, workflows, and models used or created in this study are available from an open GitHub 

repository: https://github.com/AlzbetaTuerkova/VirtualScreening 

An overview of the employed VS pipeline is visualized in Figure 1. 

 

 

Figure 1. Schematic overview of the integrative ML-based VS strategy, compound prioritization, and 

experimental testing of the selected hits.  
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Datasets used 

Data sets for OATP1B1, OATP1B3, and OATP2B1 substrates/non-substrates and inhibitors/non-in-

hibitors were previously retrieved from five different data sources (ChEMBL, UCSF-FDA TransPor-

tal, DrugBank, Metrabase, IUPHAR) previously (13). The number of enumerated compounds per 

transporter is listed in Table 1. Supplementary Figure S1 shows the number of active compounds 

for the respective transporters as well as numbers of compounds with multi-target activity. Classifi-

cation into active and inactive measurements was achieved by setting a cutoff at 10 μM (anything 

below the cutoff is annotated as “active”) and considering different bioactivity endpoints (Ki, IC50, 

EC50, Km, percentage inhibition). OATP datasets were standardized via the Atkinson standardization 

protocol (available at https://wwwdev.ebi.ac.uk/chembl/extra/francis/standardiser/). 

 

Table 1. Number of unique compounds per transporter used in this study (compounds might appear 

annotated to more than one target). 

 

Activity class OATP1B1 OATP1B3 OATP2B1 

Actives 360 225 78 

Inactives 1017 1063 171 

Total Number 1377 1288 249 

Actives/Inactives  1:2.8 1:4.7 1:2.2 
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Multiple sequence alignment 

In order to prepare the protein sequences for PCM modeling, multiple sequence alignment of all 

human OATPs was performed using the PROMALS3D server (available at http://pro-

data.swmed.edu/promals3d/promals3d.php) (14). Further, the PSIPRED tool (available at http://bio-

inf.cs.ucl.ac.uk/psipred/) was used to predict secondary structures of hepatic OATPs (15). In order to 

identify putative transmembrane helices of OATPs, the OCTOPUS tool (available at http://octo-

pus.cbr.su.se/index.php) served to predict their membrane topology (16). The generated multiple se-

quence alignment with highlighted transmembrane regions is provided in Supplementary File S1. 

 

Conformal prediction models 

CP is a framework for deriving machine learning models, e.g., QSAR models, at a predefined level 

of significance, i.e., error rate (17). A conformal predictor will make valid predictions on new test 

compounds corresponding to the user-defined significance level provided that the data is exchangea-

ble. In a binary classification problem, a set of class labels are assigned to new compounds by com-

paring them to calibration set classifications with known classes (active and inactive). 

A new compound is assigned a class label if the prediction outcome for the compound is higher than 

the set significance level, i.e., similar enough to the corresponding predictions for the calibration set 

compounds for the two classes A (active) and I (inactive), respectively. Thus, for a binary classifica-

tion problem there are four possible outcomes. A new compound can be assigned to either of the two 

classes, assigned to both classes (both classification) or none of the classes (empty classification). 

Compounds assigned to the empty class are considered out-of-domain of the model for which reliable 
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prediction cannot be produced. This includes taking the applicability domain into account as part of 

the framework (18). 

To assess the similarity between the new compound and the respective calibration set compounds for 

each class a similarity (conformity) measure must be defined. In this work the percentage of trees in 

the random forest ensemble predicting each of the two classes (class probability) is used as that meas-

ure. 

The assignment to a class is then performed by comparing the class probability against the corre-

sponding sorted list of class probabilities for the calibration set (in descending order) associated with 

each Random Forest (RF) model. The predicted class probabilities for classes A and I of the new 

compound is placed in the sorted list of calibration set probabilities for the respective classes A and I 

thus adding one entry to the list for each class. The position of the new compound in each of these 

two sorted lists is determined and the fraction of calibration set compounds with lower probabilities 

is calculated. This fraction is then compared to the significance level set by the user. For a new com-

pound to be assigned a class the calculated fraction must be larger or equal to the set significance 

level. 

Validity and efficiency are two measures that indicate the performance of a conformal predictor. The 

predictor is valid if the percentage of errors does not exceed the set significance level. This is actually 

taken for granted since exchangeability of the dataset is assumed. In conformal prediction a prediction 

is considered correct if it includes the correct predicted class label, which means that both predictions 

are always correct and, vice versa, empty predictions are never correct (i.e., always erroneous). The 

conformal prediction efficiency is calculated as the percentage of the total number of single class 

predictions, regardless of whether they are correct or not, in relation to the total number of predicted 

compounds. Validity and efficiency are calculated for each of the 2 classes. Using 2 calibration sets, 

one for each class, CP guarantees validity for both classes. This form of CP is referred to as Mondrian 

CP. 
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We have used the RF algorithm (19) for deriving the underlying models in our conformal predictors. 

The models were developed using Python, Scikit-learn (20) version 0.20.4, and the nonconformist 

package (21) version 1.2.5. Binary classification models were built based on RF using the Scikit-

learn RandomForestClassifier with 100 trees and all other options set at the default value. 

Model Development. The available datasets were randomly divided into a proper training set (70 %) 

and calibration set (20%). The RF model was derived using the proper training set and the calibration 

set used for predicting the conformal prediction p-values of the new compounds (test sets). 

20 pairs of proper and calibration sets were generated and used to predict the test sets (Aggregated 

CP). (22) This produced 20 CP p-values for each class and each predicted compound. The median p-

value for each class of each predicted compound was then used to determine the final class assign-

ment. 

Proteochemometric and QSAR models 

For the PCM and Random Forest (RF) models, the data was trained on the complete dataset. For these 

compounds, the following properties were calculated: AlogP, Molecular Weight, Number of H do-

nors and Acceptors, Rotatable Bonds, Number of Atoms, Rings, Aromatic Rings and Fragments, 

NPlusO count, Molecular Solubility, Surface Area, Polar Surface Area and Polar SASA. In addition, 

functional extended connectivity fingerprints were added (FCFP_6) to define the compounds more 

precisely. (23) This data was fed into a gradient boosting method named XGBoost in the Pipeline 

Pilot 2018 suite, with the following settings: [Max Trees: 100, Learning Rate: 0.3, Max Depth: 7, 

Data fraction: 1.0, Descriptor Faction: 0.7, gbtree as booster function and seed 12345]. For the PCM 

models, additional protein descriptors were calculated using Z-scales (24) using the first 3 Z-scales 

per amino acid. (25) 
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Combined models 

The created models were separated into several categories. First, for both CP and XGBoost predic-

tions, models were created that either include or did not include protein descriptors (PCM models vs. 

QSAR models). Subsequently, models were created that predicted activity on OATP1B1, OATP1B3 

and OATP2B1 together (thereafter called “general models”). Then, predictions were made on single 

targets, whereby new models were trained for each of the OATPs. For the XGBoost models this 

meant that a consolidated model was formed with the three individual models. This resulted in sixteen 

separate prediction sets (eight from CP and eight from XGBoost modeling). 

Performances of the models were estimated by performing internal five-fold cross-validation (CV). 

Machine learning-based pre-screening 

A dataset of untested compounds was constructed to test the aforementioned ML models for potential 

hits. Data was collected from the diverse REAL drug-like set (Enamine) (26) and filtered for the vir-

tual HTS collection and provided with calculated FCFP_6 fingerprints resulting in a dataset of 

1,963,425 compounds. The predicted values for all compounds were ranked by affinity for each 

model type, and were deemed active on any of the OATP proteins if this value was higher than 6.5 

log units (approximately 300 nm). From this ranking, we selected the top 250 predicted actives from 

each of the 16 models (where possible) and combined them (by duplicate removal) to a list of 3,291 

compounds that were used in the subsequent structure-based VS step. 

Structure-based virtual screening 

Comparative modeling. Recently, we constructed comparative protein models of OATP1B1, 

OATP1B3, and OATP2B1 (12). Briefly, leveraging fold-recognition methods, a suitable template 

was detected (Fucose transporter in an outward open conformation, PDB ID: 3O7Q). Elastic network 
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models calculated for the template structure via normal mode analysis served to sample protein con-

formational space. Finally, ensemble docking into multiple conformations helped to identify the most 

suitable structure for VS of hepatic OATPs.  

Comparison of the central binding site found in the three OATP transporters was done by calculating 

volumetric maps by using the POVME plugin (version 3.0) in PyMol (27). 

Molecular docking of ML-based pre-selected hits. Potential interaction sites in OATP1B1, 

OATP1B3, and OATP2B1 transporter structures were mapped via the small molecule mapping server 

FTMap (available at https://ftmap.bu.edu/serverhelp.php) (28). Grid parameters of the search space 

were defined accordingly: Grid center coordinates X,Y,Z[43.13, 44.03, 41.23], grid points X,Y,Z[15, 

15, 15] with 1 Å spacing. Pre-selected compounds from ML models were docked with AutoDock 

Vina 1.1.2 (29) (exhaustiveness of the global search was set to 10) into the identified binding region. 

Prioritization of the identified hits. Three different classes of compounds were defined after the ML-

based screening step: category “G1” (hits from OATP1B1 ML-models), category “G2” (hits from 

OATP1B3 ML-models), and category “G3” (hits from OATP2B1 ML-models). To be able to come 

up with a shorter list of compounds to be experimentally tested, compounds were first sorted accord-

ing to their docking score. The top 30 ranked compounds per class (G1, G2, G3) were kept. Next, 

physico-chemical properties (SlogP, TPSA, SMR, number of rotatable bonds, and AMW) were cal-

culated since these features were previously recognized as important molecular determinants for he-

patic OATP activity (13). Therefore, our intention was to check whether the newly identified hits are 

falling within the range of known OATP ligands (see Supplementary Table S2). Ligands with prop-

erties falling into the outlier regions were filtered out. In a subsequent filtering step, the chemical 

diversity of the retained hits was examined as follows: similarities between pairs of compounds were 

calculated; the size of the Maximum Common Substructure (MCS) of the compound pairs was de-

fined as a similarity metric; a distance matrix was used to hierarchically cluster the compounds; the 

complete linkage method was applied to perform hierarchical clustering. Compounds were assigned 
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to a common cluster with the distance threshold of 0.5. A single compound per each cluster was 

retained. Selection of a single representative per cluster was guided by the docking scores of the 

respective compounds by taking into account the compounds’ ability to preferentially interact with 

just one of the three transporters. Finally, 15 compounds per category (G1, G2, G3) were retained for 

the final compound set (45 compounds in total; Supplementary Table S3). Interestingly, none of the 

45 selected compounds was also predicted by the general models which motivated us to not include 

the predictions of this fourth class of compounds. 

Identification of six compounds for IC50 value determination at multiple compound concentra-

tions 

The set of 45 compounds was further narrowed down by a manual selection procedure. We based our 

selection on three criteria: 1) high potency in the single concentration measurements, 2) tendency to 

show selectivity for one of the transporters, and 3) chemical diversity within the set of the six final 

hits. 

In vitro determination of inhibitory potential 

Generation and maintenance of cell lines. A431 cells overexpressing OATP1B1, OATP1B3 or 

OATP2B1, or their mock transfected controls were generated previously (30), and were maintained 

in Dulbecco's modified Eagle medium (DMEM, Gibco, Thermofisher Scientific, Waltham, MA, US) 

supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 units/mL penicillin and 100 

µg/mL streptomycin. Expression and function of OATPs in the cell lines was checked regularly. 

Transporter inhibition measurements. Interaction with OATP1B1, OATP1B3 or OATP2B1 was 

tested in an indirect transport assay using pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium 

salt, H1529, Sigma, Merck, Budapest, Hungary) as test substrate (31, 32) A431 cells overexpressing 

OATP1B1, OATP1B3 or OATP2B1, or their mock transfected controls were seeded on 96-well plates 
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in a density of 8 x104 cells per well in 200 µl cell culture medium 1 day prior to the transport meas-

urements. After 16-24 hours the medium was removed, the cells were washed three times with 200 

µl PBS (phosphate buffered saline, pH 7.4) and preincubated for 5 minutes at 37oC with 50 µl uptake 

buffer (125 mM NaCl, 4.8 mM KCl, 1.2 mM CaCl2, 1.2 mM KH2PO4, 12 mM MgSO4, 25 mM MES 

[2-(N-morpholino)ethanesulfonic acid and 5.6 mM glucose, pH 5.5) with or without the tested com-

pound. During the initial screen, the compounds were tested in three different concentrations, 1, 10 

or 100 µM, though in some cases due to poor solubility the maximum concentrations were 20 or 50 

µM. Each test compound was dissolved in DMSO (that did not exceed 0.5% in samples); solvent 

controls were also applied. Final hit compounds (n=6) were then tested at 8 different concentrations 

(see Figure 2). Transport reaction was started by the addition of 50 µl uptake buffer containing py-

ranine in a final concentration of 10 µM (OATP1B1) or 20 µM (OATP1B3 and OATP2B1), and the 

cells were further incubated at 37oC for 15 minutes (OATP1B1 and OATP2B1), or 30 minutes 

(OATP1B3). The reaction was stopped by removing the supernatant. After repeated washing with 

ice-cold PBS, fluorescence was determined in an Enspire plate reader (Perkin Elmer, Waltham, MA) 

with excitation/emission wavelengths of 460/510 nm. OATP-dependent transport was calculated by 

extracting fluorescence measured in mock transfected cells and normalized to the fluorescence signal 

obtained in the absence of the tested compounds (100%). Experiments were repeated in at least 3 

biological replicates.  

Determining IC50 values. In the first 3-point screen compounds were categorized based on their con-

centrations needed for 50% inhibition. In the more detailed 8-pont inhibition measurements IC50 val-

ues were calculated by Hill1 fit, using the Origin Pro 2018 software (OriginLab Corporation, North-

ampton, MA, USA.). 
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RESULTS AND DISCUSSION 

The designed computational strategy - combining ML models with molecular docking - allowed com-

pound selection at various steps. 

ML-based compound selection 

Two main PCM models were made with the collected data, one for conformal predictions and one 

for XGBoost, with the internal CV scores reported in Table 2. These two main models were then 

modified to either predict compound affinity for each specific protein or for all proteins at the same 

time. However, this did not change the internal CVs of the PCM models, as the base model was 

unaltered. In the case of the single transporter models, all internal CV were reported. First, a general 

model was created, that would check if a compound was active on all three OATPs at the same time. 

Then, three selectivity models were created, where the chosen OATP was deemed as active and the 

remaining two were specifically inactive.  

As seen from the internal CV of the various generated ML models (Table 2), they are in general 

performing well for all different modeling tasks and flavors of model building with ROC values be-

tween 0.66 (CP model for OATP2B1) and 0.9 (general XGBoost PCM model). Looking a bit more 

closely at the performances it becomes obvious that the general models as well as the models for 

OATP1B1 and OATP1B3 perform better than the ones for OATP2B1 which can be easily explained 

by the significantly smaller data sets used for training the latter models (approximately 5 times smaller 

data set than for the other two transporters; see Table 1). Also, both algorithms (CP and XGBoost) 

were able to handle the imbalanced nature of the input data sets very well (between approximately 

1:2 and 1:5; see Table 2) 
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Model ROC-value Sensitivity Specificity 

CP PCM model 0.762 0.773 0.750 

CP OATP1B1 0.773 0.777 0.769 

CP OATP1B3 0.800 0.833 0.767 

CP OATP2B1 0.664 0.726 0.602 

XGBoost PCM model 0.903 0.916 0.702 

XGBoost models OATP1B1 0.847 0.867 0.651 

XGBoost models OATP1B3 0.872 0.909 0.565 

XGBoost models OATP2B1 0.764 0.799 0.627 

Table 2. Internal cross-validation results of the final CP models and XGBoost models. Shown are the 

5-fold ROC values and the calculated sensitivity and specificity from the confusion matrix. In each 

column the highest value is highlighted in bold.  
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ML-based compound selection 

For both, QSAR and PCM models bioactivities were predicted for the constructed Enamine com-

pound set and subsequently ranked on highest confidence of an active compound (QSAR) or highest 

predicted activity value (PCM). Table 3 summarizes the numbers of predicted active compounds for 

the filtered Enamine data set by utilizing the 16 different models. Of these, the top 250 were selected 

from each of the 16 models, wherever possible. These compounds were then pooled together, any 

duplicates were removed, which left 3,291 compounds ready for the next selection step. 

 

Table 3: Numbers (and percentages of the complete Enamine set of 1,963,425 compounds) of pre-

dicted active compounds delivered by each of the sixteen models. 

Method XGBoost - Active (% of total) CP - Active (% of total) 

PCM all 64,251 (3.72%) 124,599 (6.35%) 

PCM (OATP1B1 only) 76,563 (3.90%) 141 (0.01%) 

PCM (OATP1B3 only) 23,909 (1.22%) 0 (0.00%) 

PCM (OATP2B1 only) 343 (0.02%) 704,646 (35.89%) 

QSAR all 63,140 (3.23%) 193,303 (9.85%) 

QSAR (OATP1B1 only) 170,892 (8.73%) 925 (0.05%) 

QSAR (OATP1B3 only) 52,011 (2.66%) 1,209 (0.06%) 

QSAR (OATP2B1 only) 19,412 (0.99%) 2,047 (0.10%) 
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There are discrepancies between the two main prediction methods, however it is difficult to assess 

which of these methods is better in predicting active compounds, as the amount is not indicative of 

the quality of these predictions. CP has a lower number of predicted actives in total, with both PCM 

OATP1B1 and OATP1B3 selective models falling below the threshold of 250 predicted actives (Ta-

ble 3). Difficulties in identifying actives by the CP-PCM selective models are likely caused by close 

sequence similarity of OATP1B1 and OATP1B3. As a result, considerably more active compounds 

were found for OATP2B1. This is the opposite result as observed for the XGBoost-PCM models, 

where the two closest proteins are much higher in the number of predicted active compounds com-

pared to OATP2B1 (Table 3). We speculate that in a proteochemometric setting, both gradient boost-

ing and conformal predictions are needed to define compounds of interest. 

The single QSAR models seem to work well in a gradient boosting setting, but not so well in a con-

formal prediction setting. The percentages found in the gradient boosting setting are indicative of the 

amount of information available in the initial training set. The number of predicted actives by the 

QSAR-CP models seem low, especially compared to the general QSAR model and they do not follow 

this training data trend. We theorize that, to date, there is not enough information contained in the 

OATPs data sets to generate confident selective models. 

Molecular docking-based compound prioritization  

To narrow the field for potential inhibitors further, a docking selection was performed on these 3,291 

compounds as described in the Methods section. After the structure-based VS step, 45 compounds 

were prioritized (Supplementary Table S2) on the basis of docking scores and class membership 

(15 compounds per each class – G1, G2, G3). Docking scores for the docked compounds were ranging 

from -10.7 to -2.8 kcal/mol for OATP1B11, from -9.9 to -0.3 kcal/mol for OATP1B3, and from -8.7 

to -0.5 kcal/mol for OATP2B1, respectively. For the prioritized list of 45 compounds, docking scores 

were ranging from -9.7 to -8.8 kcal/mol for OATP1B1 (G1 class), from -9.9 to -8.5 kcal/mol for 

OATP1B3 (G2 class), and from -8.7 to -7.8 kcal/mol for OATP2B1 (G3 class), respectively.  

Experimental validation 
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Initial experimental screens (of 44 compounds; one compound had to be excluded because it could 

not be delivered) detected 36% OATP1B1 (16 actives, 28 inactives), 32% OATP1B3 (14 actives, 27 

inactives, 3 activated the transport), and 66% OATP2B1 (29 actives, 15 inactives) compounds with 

an IC50 value ≤ 10 µM (Table 4). Interestingly, the trends that we observed for the ML-based predic-

tions hold true - our computational strategy seems to be better suited to predict highly active 

OATP2B1 ligands, although for the training of these models the smallest data set was available. There 

are some factors which might have influenced this trend: the OATP2B1 data set was the least imbal-

anced data set of the three (with an imbalance ratio of appr. 1:2), thus its capability to correctly predict 

the active (minority class) when using the model for external prediction is likely higher than for the 

models of the other two targets (with a significantly higher imbalance ratio). Another factor might be 

the smaller chemical diversity of the OATP2B1 training set compounds which likely turned the model 

into a specialized predictor for a particular set of chemically similar compounds. Computing the av-

erage tanimoto similarity of each of the training set compounds (for every transporter) to the 45 pri-

oritized compounds (on basis of FCFP_6), indeed a higher similarity was retrieved for OATP2B1 (Tc 

= 0.3) vs. the other two transporters (both Tc = 0.28). 

Finally, OATP2B1 is structurally least similar to the other two transporters which might lead to a 

competitive advantage over the phylogenetically more similar transporters (OATP1B1 and 

OATP1B3) when protein information is included in the feature matrix (PCM setting). 

 

The novel OATP dataset of 44 compounds includes structures covering a different area of chemical 

space compared to the structures with OATP bioactivity data gathered from the public domain (13). 

Specifically, newly measured OATP inhibitors are structurally dissimilar at the scaffold level, as ev-

idenced by the comparison of their Murcko scaffolds, compared to previously known ligands (chem-

ical structures of the compounds are depicted in Supplementary Figure S2). 

IC50 measurements of the six compounds that were further prioritized by our manual selection proce-

dure (see Methods for details) are listed along with their chemical structures in Figure 2 and Table 
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5. Strikingly, in this selection we could identify six (strong) OATP2B1 inhibitors (IC50 values ranging 

from 0.04 to 6 µM), as well as three OATP1B1 inhibitors (2.69 to 10 µM), and five OATP1B3 in-

hibitors (1.53 to 10 µM) inhibitors. Among these, two novel OATP2B1 inhibitors were discovered 

(C7, H5) that  show activity comparable to the highest affinity inhibitor reported in literature - estra-

1,3,5(10)-trien-17-on-2-yl)phosphonate (IC50 = 41 nM) (33). Both compounds do also show a rea-

sonable inhibitory effect on OATP1B3, however with 18-fold (H5) and 135-fold (C7) lower affinity. 

Therefore, particularly compound C7 deserves special attention when it comes to the more detailed 

analysis of molecular interactions. Other compounds measured transport inhibition experiments 

showed remarkable selectivity for OATP2B1, whereas with lower affinity towards OATP2B1 (G4 

and B4). The remaining two compounds (E3 and E5) did prove to act as pan inhibitors on all three 

hepatic OATPs. 

 

Table 4. Table showing the inhibitory effect of 44 compounds measured in the initial screens. Five 

categories were determined: 50% inhibition observed below 1 µM, 50% inhibition between 1 and 10 

µM, 50% inhibition above 10 µM, and no effect on transport (colored dark gray). In addition, several 

compounds were identified as transport activators (colored blue). 
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IC50 (µM) IC50 (µM) IC50 (µM)
OATP1B1 OATP1B3 OATP2B1

A2 1-10 1-10 1-10
A3 1-10 >10 1-10
A4 no effect no effect >10 
A5 no effect no effect >10 
A6 no effect >10 >10 
A7 no effect Activated 1-10
B2 no effect >10 >10 
B3 >10 >10 1-10
B4 >10 1-10 1-10
B5 >10 Activated 1-10
B6 >10 >10 >10 
B7 1-10 >10 1-10
C2 1-10 10 1-10
C3 1-10 >10 1-10
C4 >10 no effect >10 
C5 >10 no effect >10 
C6 1-10 1-10 1-10
C7 10 1-10 <1
D2 >10 >10 >10 
D3 no effect no effect >10 
D4 10 10 1-10
D5 >10 >10 10
D6 >10 10 1-10
D7 >10 no effect >10 
E2 >10 1-10 1-10
E3 1-10 1-10 1
E4 10 >10 1-10
E5 1-10 10 1
E6 >10 >10 1-10
F2 10 >10 1-10
F3 >10 >10 >10 
F4 >10 Activated >10 
F5 1-10 1-10 1-10
F6 >10 >10 1-10
G2 1-10 1-10 1-10
G3 10 >10 1-10
G4 no effect no effect 1-10
G5 >10 1-10 1-10
G6 no effect no effect >10 
H2 >10 >10 1-10
H3 1-10 10 1-10
H4 no effect no effect no effect
H5 >10 >10 <1
H6 no effect no effect >10

Compound code
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Figure 2. Graphs showing full dose-response curves for the six selected inhibitors (top) and the chem-

ical structures of the respective selected hits (bottom). 
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Table 5: IC50 values determined from full-dose response curve measurements for the six selected 

compounds. Best values for each protein (column) are shown in bold. 

IC50 (µM) 

 OATP1B1 OATP1B3 OATP2B1 

H5 ~25 6.95 0.39 

G4 no effect no effect ~6 

E5 7.61 7.50 1.48 

C7 > 10 5.4 0.04 

E3 2.69 1.53 1.32 

B4 ~10 ~10 2.37 

 

Insights from Molecular Docking 

For each transporter, three to four possible binding sites were identified via FTMap server, as de-

scribed in the Methods section. Predicted binding sites are visually depicted in Supplementary Fig-

ure S3. Interestingly, binding cavities in all three transporters were found in the same region, lined 

by TMH1, TMH2, TMH4, TMH5, TMH7, TMH8, and TMH11. Concrete residues belonging to this 

region in the three transporters are listed in Table 6. 

 

Table 6. Amino acid residues contributing to the predicted binding site in each respective transmem-

brane helix (TM). 
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TM OATP1B1 OATP1B3 OATP2B1 

2 LEU78 LEU78 THR99 

4 VAL189 VAL189 GLN207 

5 ASN213 ASN213 PHE231 

5 ALA216 GLY216 THR234 

5 MET217 MET217 MET235 

7 GLN348 GLN348 LEU383 

7 VAL349 VAL349 SER384 

7 TYR352 PHE352 ALA387 

7 PHE356 PHE356 ALA391 

8 ILE385 THR385 SER420 

10 ALA549 ALA549 CYS576 

10 GLY552 GLY552 HIS579 

11 MET577 MET577 MET604 

11 ARG580 ARG580 ARG607 
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Docking poses and the respective protein environments of the active subset of the prioritized 44 com-

pounds (16 OATP1B1 actives; 14 OATP1B3 actives; 29 OATP2B1 actives when considering activity 

cut-off <= 10 uM) were examined in more detail in order to gain insights into driving factors for 

activity (and potentially also selectivity) at a molecular level. 

Volumetric maps are showing a remarkable difference in the localization of aromatic residues when 

comparing the binding sites of OATP1B1/OATP1B3 and OATP2B1 (Supplementary Figure S4). 

By closer inspection of the respective binding regions (lined by TMH5, TMH7, TMH10, and 

TMH11), several replacements of aromatic to aliphatic residues can be observed in 

OATP1B1/OATP1B3 compared to OATP2B1 and vice versa (see Figure 3). Specifically, 

TYR352/PHE352 in OATP1B1/OATP1B3 at TMH7 are replaced by ALA387 in OATP2B1, PHE356 

in OATP1B1/OATP1B3 at TMH7 is replaced by ALA391 in OATP2B1, and GLY552 in 

OATP1B1/OATP1B3 at TMH10 is replaced by HIS579 in OATP2B1. Other amino acid substitutions 

include ASN213 in OATP1B1/OATP1B3 at TMH5 being replaced by PHE231 in OATP2B1, 

VAL556/ILE556 in OATP1B1/OATP1B3 at TMH10 being replaced by PHE583 in OATP2B1, and 

SER576 in OATP1B1/OATP1B3 at TMH11 being replaced to PHE603.  
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Figure 3: Localization of aromatic residues in OATP1B1 (blue structure), OATP1B3 (magenta struc-

ture), and OATP2B1 (green structure) impacts pocket geometry and accessibility. (A) Side view of 

TMH5, 7, 10, and 11. (B) Specific amino acid residues in close-up view. 

 

Calculation of the electrostatic potential and mapping the surface onto the binding site shows the 

substitutions at TMH7 that are crucial for ligands to become partially accommodated in the sub-cavity 

located in the C-terminal domain (Figure 4). Accession of the C-terminal sub-cavity in OATP1B1 

and OATP1B3 is blocked due to the presence of aromatic residues at positions 352 (TYR/PHE) and 

356 (PHE). In contrast, the electrostatic surface of OATP2B1 shows a small region at the 

TMH7/TMH8 interface which can be accessed from the central cavity of the transporter (Figure 4 

and Supplementary Figure S5). Indeed, the strong OATP2B1 inhibitors identified in this study do 

structurally fit into the accessible surface in OATP2B1 (Figure 4). Further, the replacement of 

HIS579 in OATP2B1 at TMH10 to GLY552 in OATP1B1/OATP1B3 has an additional effect on 
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ligand recognition in the C-terminal domain, as it further restricts the space where ligands can bind 

to. Since HIS579 in OATP2B1 is pointing towards the center of the transporter cavity and thus re-

stricts the translocation pore of the transporter, it raises the question whether HIS579 could adopt 

different rotameric states, which in turn could have a significant impact on ligand binding. Therefore, 

rotamer analysis was performed to model alternative side chain orientations of HIS579. The proba-

bility of adopting different rotamers seems low due to observed steric clashes with neighboring resi-

dues (see Supplementary Figure S6). We therefore conclude that our structural model for OATP2B1 

is likely to depict the correct orientation of HIS579.  

 

 

Figure 4. (A) Mapped electrostatic potential shows an accessible cavity between TMH7 and TMH8 

in OATP2B1. (B) Docked poses (top view) for the most potent OATP2B1 actives (codes: B4, C7, 

E3, E5) are showing shape complementarity to the OATP2B1 binding site. Several residues (SER420 

or SER384) in TMH7 and TMH8 are forming H-bonds with the docked ligands (indicated by yellow 

dashed line). In addition, H-bonds are formed with E95 (TMH2) and R607 (TMH11). HIS579 inter-

acts with the presented ligands in the lower part of the central binding region, hence is not visible in 

this visualization. 
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Calculation of protein-ligand interaction fingerprints (PLIFs) led to the identification of key residues 

which interact with the newly measured compounds (Supplementary Figure S7-9). The most fre-

quent residues in OATP1B1 (ASN213, MET217, GLN348, ALA549, GLY552, ARG580), and 

OATP1B3 (VAL189, ASN213, MET217, GLN348, ALA549, GLY552, MET577, ARG580) are 

largely overlapping. The very high similarity of protein-ligand interactions between the two trans-

porters might be attributed to their high sequence similarity (~80%). Interestingly, some of these 

residues also appeared to be implicated in the binding of steroid analogs as reported in our previous 

paper (12). These findings provide a consistent picture about the structural determinants of ligand 

recognition in the central cavity, as already shown in our previous study for OATP1B1 and OATP1B3 

transporters (12). However, OATP2B1 shows molecular interactions with different residues, such as 

MET235, SER384, SER420, SER572, ALA575, CYS576, HIS579, and ARG607. Interestingly, the 

majority of the frequently interacting residues in OATP2B1 are non-conserved across the three he-

patic OATP members (such as SER420, CYS576 and HIS579). HIS579 has already been confirmed 

by mutational experiments to be crucial for OATP2B1 ligand (34). 

The novel active hepatic OATP ligands (see Table 5) were studied in further detail with respect to 

their binding modes in the respective transporter(s). Since all six compounds are showing inhibitory 

activity on OATP2B1 (ranging from 0.04 uM for compound C7 to appr. 6 uM for compound G4), 

we first analyzed docking poses of all ligands in OATP2B1. In general, all ligands are accommodated 

in a way that one end of the ligand is stabilized at the TMH7/TMH8 interface, while the other end of 

the ligand is tilted via a flexible linker to reach the interface between TMH7 and TMH11 in an ‘L-

shaped’ fashion (Figure 4B and Supplementary Figure S10). Furthermore, compounds B4 and E3 

are forming pi-pi interaction (parallel-displaced type) with HIS579 (Supplementary Figure S10). 

For other compounds investigated here, HIS579 does not directly form pi-pi interactions but rather 

acts as a mechanical barrier that disables the ligand to get bound more deeply to the inner (cytoplas-

mic) part of the C-terminal binding site. Interestingly, mutations of HIS579 led to altered uptake of 
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estrone-3-sulfate, pravastatin, rosuvastatin and sulfasalazine as demonstrated by Hoshino et al in 2016 

(34). 

Further, the six compounds can be categorized into three different activity classes as follows: Cate-

gory (1) are pan inhibitors (compound E3 and E5); category (2) are dual OATP1B3/OATP2B1 in-

hibitors (compounds H5 and C7) which at the same time happen to be the strongest OATP2B1 in-

hibitors identified in this study; and category (3) OATP2B1 selective inhibitors (compound B4 and 

G4). It is noteworthy that we were unable to find compounds showing preferential inhibition for 

OATP1B1 or OATP1B3. 

Category (1) of active compounds with pan inhibitory activity (compound E3 and E5), are showing 

a more or less consistent binding behavior in OATP1B1 and OATP1B3 being positioned below 

TYR352/PHE352. Compound E3 interacts with GLY552 and GLN348 (OATP1B1) and ARG580 

(OATP1B3) and shows formation of intramolecular pi-pi interactions which probably increases lig-

and stability in the binding pocket. For OATP2B1, compound E3 shows a pi-pi interaction with 

HIS579 and a hydrogen bond interaction with SER384 (Figure 5, Supplementary Figure S11). In-

terestingly, GLY552, GLN348, and ARG580 have already been shown to be implicated in steroid 

analog binding in our previous study (12) and ARG580 has been shown previously to be implicated 

in transport activity of both OATP1B1 (35) and OATP1B3 (36). The intramolecular interaction in 

compound E3 was also found in OATP2B1, albeit not in the most populated pose cluster. 

Compound E5 shows greater differences in bioactivity values (7.61 µM for OATP1B1, 7.50 µM for 

OATP1B3, 1.48 µM for OATP2B1) which might be explained by a mechanical stabilization effect 

through interaction with TYR352 in OATP1B1 and PHE352 in OATP1B3, as well as by HIS579 in 

OATP2B1. In OATP2B1, compound E5 is shifted more towards the upper part of the C-terminal 

domain due to different constitution of aromatic and small residues in TMH7 (Figure 3, Supplemen-

tary Figure S11B). In OATP1B1 and OATP1B3, however, compound E5 is bound in such a way 

that its plane aromatic ring is mechanically stabilized by TYR352 (face to face interaction), while the 

fluoro substituents are reaching into the hydrophobic region lined by ILE353 and VAL349 (Figure 
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5). Interestingly, ILE353THR substitution is a known single nucleotide polymorphism that leads to a 

decrease in OATP1B1 activity (37). 
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Figure 5: Prominent interactions of compounds E3 and E5 in OATP1B1 (blue structure), OATP1B3 

(magenta structure), and OATP2B1 (green structure). Hydrogen bonds are indicated by yellow 

dashed lines. Poses shown here represent the most populated poses per compound identified by hier-

archical pose clustering. 

 

Category (2) compounds H5 and C7 are dual inhibitors of OATP1B3 and OATP2B1. In addition, 

compound C7 is also the strongest OATP2B1 inhibitor of this study (40 nM) and therefore it is of 

particular interest to study binding poses. Hydrogen bond formation between SER420 in OATP2B1 

and compound C7 and an additional H-bond with GLN207 (replaced by VAL189 in OATP1B1 and 

OATP1B3) was observed. Interestingly, SER420 in OATP2B1 is replaced by THR385 in OATP1B3 

and by ILE385 in OATP1B1. Although, in our study no direct interaction of compound C7 with 

OATP1B3 was observed we hypothesize that THR385 could adopt a corresponding hydrogen bond 

interaction with ligand, given to its chemical similarity with SER420, whereas the presence of ILE385 

in OATP1B1 increases the hydrophobicity of the binding pocket and disables formation of hydrogen 

bonds. Similarly, compound H5 shows hydrogen bond interactions with GLN207 and SER420 in 

OATP2B1, thus leading to the same hypothesis, as in case of compound C7 (Supplementary Figure 

S12). 

Compounds B4 and G4 are belonging to the category (3) of “selective” OATP2B1 ligands where 

compound G4 shows no effect on OATP1B1 and OATP1B3 with moderate activity on OATP2B1 

(around 6 µM) while compound B4 shows stronger activity on OATP2B1 (2.4 µM) but borderline 

activity on OATP1B1 and OATP1B3 as well (around 10 µM). For both compounds a consistent 

binding pattern in OTP2B1 is observed showing hydrogen bond interactions with SER420 (ILE385 

in OATP1B1 and THR385 in OATP1B3) and additionally an interaction with HIS579 (GLY552 in 

OATP1B1/OATP1B3). It seems likely that ligand selectivity can be attributed to the additional inter-

action with HIS579 which is lacking in case of the other two transporters (where HIS579 is replaced 
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by GLY552). In addition, HIS579 is acting as a mechanical barrier forcing the ligand to get accom-

modated in the upper half of OATP2B1. 

 

SUMMARY AND CONCLUSIONS 

In silico identification of novel OATP inhibitors confirmed by experimental validation is a promising 

approach which can be exploited to guide the design of novel chemical probes. Such compounds can 

be used as tools to study the physiological role of these clinically important transporters. In this study, 

the diverse REAL drug-like set was initially screened by a combination of different machine learning 

models including proteochemometric models and conformal prediction models. By consensus rank-

ing of the identified hits from the ligand-based screening, 3,291 compounds could be identified that 

were further docked into the OATP1B1, OATP1B3, and OATP2B1 structural models to prioritize 44 

compounds for subsequent transporter inhibition assay experiments. By this procedure, 29 new active 

compounds (activity threshold ≤ 10 μM) with either selective, dual, or pan inhibitory activity were 

identified. Interestingly, the strongest OATP2B1 inhibitor (compound C7, IC50 =40 nM), shows sim-

ilar affinity to the strongest OATP2B1 inhibitor that was recently reported in literature (33). These 

findings indicate that the developed integrative modeling pipeline, combining AI-based and structure-

based methods, is capable of identifying highly active compounds. Interestingly, our computational 

pipeline seems better suited to predict OATP2B1 inhibitors since it detected twice as many hits for 

OATP2B1 vs. the other two transporters. One of the reasons might be the higher phylogenetic differ-

ence of OATP2B1 to the other two transporters which is included in the proteochemometric de-

scriptors used for some of the ML models. While we can observe that the PCM produces less hits in 

the virtual screen and a has lower ROC value in CV, it would seem that the resulting model has higher 

predictive capabilities.  

Docking poses of the novel OATP inhibitors were closely inspected in order to delineate potential 

molecular reasons for ligand interaction and selectivity. A remarkable difference comparing the con-

stitution of the OATP1B1/OATP1B3 vs. OATP2B1 binding sites was detected. It is characterized by 
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diverging localization of aromatic residues in the inner cavity extending into the C-terminal domain. 

We have shown that the identified “L-shaped” inhibitors fit well into the OATP2B1 binding site as a 

result of their shape complementarity. Overall, the study presented here delivers novel OATP inhib-

itors with various OATP overlapping profiles, providing molecular insight into the C-terminal bind-

ing region of hepatic OATPs. 
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