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Abstract 
Organometallic intermediates participate in many multi-catalytic enantioselective transformations directed by a 
chiral catalyst, but the requirement of optimizing two catalyst components is a significant barrier to widely adopting 
this approach for chiral molecule synthesis. Algorithms can potentially accelerate the screening process by 
developing quantitative structure-function relationships from large experimental datasets. However, the chemical 
data available in this catalyst space is limited. We report a data-driven strategy that effectively translates selectivity 
relationships trained on enantioselectivity outcomes derived from one catalyst reaction systems where an 
abundance of data exists, to synergistic catalyst space. We describe three case studies involving different modes 
of catalysis (Brønsted acid, chiral anion, and secondary amine) that substantiate the prospect of this approach to 
predict and elucidate selectivity in reactions where more than one catalyst is involved. Ultimately, the success in 
applying our approach to diverse areas of asymmetric catalysis implies that this general workflow should find broad 
use in the study and development of new enantioselective, multi-catalytic processes.   
 
 
Introduction 
Small organic molecules provide effective catalysis for a significant number of reactions and in particular, have 
been essential to advances in the preparation of stereochemically pure compounds.1-6 Often these transformations 
involve a single chiral catalyst that activates either substrate (nucleophile or electrophile) and in some cases both.7-

11 However, some transformations are still challenging or completely unobtainable using one catalyst systems. 
Accordingly, synergistic catalysis (also referred to as co-operative or multi-catalysis) in which more than one catalyst 
is involved in the activation of substrates is an important technique.12-14 This approach has been immensely 
enabling for the discovery of new enantioselective, catalytic processes. Indeed, there are many examples of 
powerful classes of reactions that were developed upon the reliance of combining an organocatalyst with a metal.15-

22 Unfortunately, implementing this valuable tactic in asymmetric synthesis is often met with the formidable 
challenge of optimizing two catalyst components (as well as other reaction parameters) to achieve high levels of 
enantioselectivity.23,24 While ideal reaction conditions have conventionally been discovered through empiricism, 
recent applications of data-driven reaction optimization have demonstrated that algorithms can streamline this 
process. For example, prior efforts from Denmark,25 Doyle,26 and Sigman27 have highlighted how quantum 
descriptors, regression analysis, and chemical data from distinct reaction classes can be applied to correlate and 
predict experimental outcomes. Because multi-catalysis have been developed for individual reactions, datasets are 
difficult to combine meaning the data available to search for underlying chemical relationships in the multi-catalyst 
domain is scarce, presenting a significant limitation in applying these techniques.  

 
On the basis of our recent efforts to deploy comprehensive multidimensional analysis to develop and leverage 
general mechanistic models,28,29 we became interested in investigating if our workflows can be embedded in the 
optimization and quantitative prediction of reaction systems involving multiple catalysts (Figure 1A). The success 
of this approach is contingent on the ability to transfer the stereochemical information from one or more reactions 
facilitated by a single catalyst to another similar process that involves two catalyst systems (Figure 1B). Although 
multi-catalyst reaction designs share some common mechanistic features with single catalyst systems (e.g. optimal 
chiral catalyst structure), comparative studies that would reveal reaction specific contacts and general connections 
have not been performed. Such investigations would be valuable for formalizing mechanistic principles and 
considering the limits of model generality. As a result, despite the practical appeal of an approach that would 
preclude the requirement for explicit chemical data on synergistic reaction systems, the applicability domain of such 
statistical models would be challenging to estimate. We envisioned that the general mechanisms of stereoinduction 
in asymmetric catalysis should extend to multi-catalyst reaction strategies that focus on combining a chiral catalyst 
with a reactive intermediate that is generated from a second achiral catalyst species. Because these types of 
transformations aren’t significantly affected by the presence of a second catalyst, they should be particularly 
amenable to this type of framework that uses data from one or more reactions to predict the result of a similar 
system.  



In contemplating the various types of chiral catalysts and reactions that can participate in multi-catalysis, the 
effective assessment of this workflow should ideally involve more than one chemical system. Since statistical 
models describing the nucleophilic additions to iminiums catalyzed by chiral phosphoric acids and phosphates are 
easily accessible through previous reports these were both identified as suitable case studies for an initial 
evaluation. The second criteria in selecting a predictive platform is determining a chiral catalyst system that has 
been widely used in synergistic catalyst space such that significant validation data exists. Consequently, we 
identified reactions involving secondary amines as a third study. To this end, we develop and deploy multivariate 
linear regression (MLR) as a transferability method to achieve quantitative predictions and mechanistic analysis in 
diverse synergistic catalyst space (Figure 1C).  

 

 
 
 

 

 
 

 
 

 
 

 
 

 
 
 

 
 
Figure 1. Application of statistical modeling workflow to multi-catalysis. (A) Transferring mechanistic patterns 
derived from a general reaction class for prediction in synergistic catalyst space. (B) Workflow for MLR analysis 
and further application in reaction systems involving more than one catalyst. (C) Overview of the study’s goals to 
vet the techniques on three catalyst systems involving distinct catalytic modes of activation.   
 
 

Results & Discussion 
A. Assessment of Previously Reported Statistical Models. Rather than evaluate reactions involving multi-
catalysts directly, we pursued a transfer learning strategy wherein we curated enantioselectivity data from various 
transformations deploying a single catalyst chemotype responsible for stereoinduction. By focusing reaction 
selection on those operating under a common catalytic mode of activation, reactions can be connected via general 
selectivity features revealed by regression analysis and a predictive model assembled. Since existing statistical 
models in chiral Brønsted acid30 and anion catalyst space29 are available for experimentation we first evaluated 
their ability to extrapolate to reactions facilitated by two catalysts. It should be noted that these models were applied 
without alteration to the identified parameters or data sets from their published forms.  

In seeking an ambitious and relevant first test, we selected the hydrogenation of imines using molecular 
hydrogen (Figure 2).31 Since this process cannot be simply facilitated solely by chiral organic molecules,32 
approaches have focused on two catalyst systems. Beller and co-workers demonstrated that Knölker’s complex, a 
simple achiral iron hydrogenation catalyst, can be used in combination with a chiral Brønsted acid to provide 
enantioenriched secondary amines. Considering the overlap in structural features of the reaction components we 
anticipated that a previously generated statistical model constructed of chiral phosphoric acid catalyzed additions 
of nucleophiles to imines could be deployed to predict the reaction outcomes (Figure 2A).30 In the previous study, 
reaction performance was first evaluated using a comprehensive model built from the entire data set constructed 
of reactions that proceeded through two different pathways, an E (+ee) or Z (-ee) transition state. While prediction 
errors were typically larger with this model, its use is imperative to determine the stereochemistry of the final product 
and the pathway under operation, allowing predictions to be refined with mechanism specific models (E or Z). 
While, the comprehensive model does not naturally allow prediction of stereochemistry, the product configuration 
can be assigned by applying the simple models in Figure 2A. These are based on the amine product generated 
from an E or Z TS and catalyzed by the (S)-CPA. The steps for ee prediction include: 1) locating the ground state 
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of the targeted reaction variable by DFT, 2) obtaining the key molecular features necessary for prediction, and 3) 
submitting these to both mathematical equations. For consistent results, the same level of theory that was used to 
optimize the organic nucleophiles should be applied to optimize the iron complex (organometallic nucleophile), 
however, the M06-2X density functional that was originally implemented is not applicable for molecules containing 
metals.33 Instead, we employed M06/def2TZVP calculations which are suitable for organometallic systems and 
when tested against a subset of nine nucleophiles geometry minimizations provide the same value for the key bond 
angle and Sterimol B5 nucleophile terms when compared to M06-2X/def2TZVP (average deviation calculated to 
be 0.8° and 0.02 Å, respectively).  Confident that this adjustment would not significantly impact the results we  
optimized the iron complex with this set of computational conditions and collected the necessary Sterimol B5 and 
angle nucleophile parameters for prediction from this structure. In other words, this computational method 
comparison suggested that a predictive model built from M06-2X descriptors could be used to predict the impact of 
hydrogenation reactions given the key nucleophile parameters calculated at the M06 level. Next, we evaluated the 
twenty reported hydrogenations involving aromatic imines catalyzed by TRIP. Both the catalyst and most of the 
imines were part of the published training set making the nucleophile (achiral iron complex) the only component 
not to be explicitly included. Each result was predicted using the comprehensive model, with an average absolute 
ΔΔG‡ error of 0.64 kcal/mol (14 examples within 5% ee) and correctly assigned the absolute stereochemistry as S, 
demonstrating the ability of the model to extrapolate effectively to an organometallic nucleophilic intermediate 
(Figure 2B). A slightly improved outcome is observed using the Z-imine mechanistic model with a 0.48 kcal/mol 
average error (15 examples within 5% ee). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Prediction in chiral phosphoric acid catalyst space. (A) Key information on the published chiral Brønsted 
acid reaction models. A general amine product shows the stereochemical outcome predicted if the reaction 
proceeds via the E or Z TS and catalyzed by an (S)-CPA. (B) Extrapolation of previously reported chiral Brønsted 
acid imine reaction model to the iron catalyzed hydrogenation. 

 
 Inspired by the results obtained by analyzing the hydrogenation of imines, we selected to further evaluate 
the generality in our observations by interrogating chiral phosphate catalyzed reaction systems.29 In considering 
this we noted that the addition of naphthols to gold(I) activated allenamides exhibited overlapping transition state 
features with our previously built statistical model i.e. combines an iminium with a nucleophile in the presence of a 
chiral phosphate (Figure 3).34 As with the chiral phosphoric acid study, to deploy the published chiral phosphate 
model to predict the impact of utilizing an organometallic intermediate as a reaction component, the sensitivity of 
the previously identified parameters to computational method must be taken into account. Because we expected 
natural bond orbital (NBO) charges to be sensitive to the computational methods employed, we re-optimized each 
iminium intermediate at the M06/def2TZVP level to ensure all electrophilic components (organic and 
organometallic) were treated uniformly. After replacing the iminium parameters (NBO, Sterimol B1 and 
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polarizability) calculated at M06-2X/def2TZVP with those acquired from M06/def2TZVP optimized structures, the 
statistical model was re-created in MATLAB using the same enantioselectivity data and identified parameters from 
the previous publication (Figure 3A). This model could then be deployed to predict the organometallic data set 
(Figure 3B). However, this is a more challenging scenario, as the structural overlap between the training and the 
prediction set is slightly reduced. More specifically, the reaction components to be predicted are not explicitly 
included in the training data but belong to general subclasses of iminiums, naphthols, and chiral phosphates. Next, 
the key iminium parameters (NBO, Sterimol B1 and polarizability) were collected from the electrophilic gold complex 
for prediction. Again, accurate predictions were construed with the statistical model with an average absolute ΔΔG‡ 
error of 0.33 kcal/mol (4 examples within 2% ee and 6 examples within 5% ee). The presence of a methyl group 
had the most detrimental effect on selectivity (4% ee experimental, -11% ee predicted) and excitingly, this could be 
accurately captured by the model. While superficially surprising that the model can successfully anticipate 
significant enantioselectivity changes due to minor substrate modifications (i.e. switching a phenyl for a methyl), 
close examination of key parameters in the model reveals that the lower enantioselectivity for this substrate can be 
attributed to the more positive NBO (Figure 3C,  gold intermediate A).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Prediction and mechanistic interrogation in chiral phosphate catalyzed reaction systems. (A) Key 
information on the published chiral phosphate reaction models. (B) Application of the previously reported chiral 
phosphate iminium reaction model to the gold catalyzed dearomatization of naphthols. (C) Interpretation of key 
NBO charges to describe poorly performing substrates. 
 
Furthermore, the ability of the model to accurately reflect the outcomes with different substrates may allow for 
effective and efficient reaction scope exploration. Perhaps the most powerful analysis of the model is illustrated by 
comparing the substrate profiles of the one (chiral phosphate only)35 and two (chiral phosphate combined with gold) 
catalyst systems. Remarkably, the optimal iminium intermediate was reversed between the two methods. In other 
words, the lead substrate with chiral phosphate catalysis failed to provide high enantioselectivities under the gold 
conditions and vice versa. Once again, the model clearly explains why certain substrates should be particularly 
amenable to different protocols. Under chiral phosphate catalysis the NBOS values are comparable and the 
difference in polarizability, the second important iminium term, explains the contrast in enantioselectivity. Under 
gold catalysis, the more negative NBO values associated with gold intermediate B, largely compensate for a slightly 
lower polarizability term, and the ee is increased (Figure 3C). 
 
B. Secondary Amine Model Development. After evaluating the two published statistical models in chiral 
phosphoric acid and phosphate catalyzed reaction space, the second stage of this study was directed at evaluating 
a wider set of synergistic reactions involving secondary amines. To accomplish this, a comprehensive MLR model 
that relates the features of all of the reaction components to the experimentally obtained enantioselectivity 
outcomes conveyed as DDG‡ for this catalyst class would be required (see SI for full details).  
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Despite the potential for extensive catalyst structure modulation, only a limited set of secondary amines have 
witnessed broad application. This is in contrast to the many other catalyst chemotypes employed in asymmetric 
synthesis where necessary and extensive optimization efforts have generated considerably sized catalyst libraries. 
Thus, the most significant challenge in the early stages of implementing our workflow was defining a useful data 
set containing both high and low enantioselectivities for model construction. Consequently, to supplement our data 
mining efforts on published data from scientific journals, we explored the use of publicly available Ph.D. theses 
which typically contain experimental data of high quality (i.e. satisfy the degree requirements) but remain 
unpublished presumably because the research objective of delivering the product in high enantioselectivity was not 
met.36 Throughout this literature evaluation, we strategically avoided two types of reaction examples. First we 
ignored reactions that showed product racemization to be strongly contributing to the overall enantioselectivity 
outcome (i.e. time and temperature sensitive).37,38 In the absence of strongly supporting experimental data, it is 
only possible to minimize rather than eliminate the influence of such effects in our analysis through the removal of 
unusual experimental results.39 Consequently, some proportion of variation between measured and predicted 
enantioselectivity values will likely be attributable to these factors in addition to experimental and analytical error. 
Secondly, we did not include examples that combined proline type catalysts with reactants that did not contain 
strongly electronegative atoms. In these cases, the structure of the reactant would make it difficult to determine if 
hydrogen bonding was directing its approach and therefore, hard to assign the mode of enantioinduction (in more 
detail below). 

On this basis, to construct a predictive model, an expanded inventory of 452 reactions with varied components 
was curated from multiple sources (for a list of references see SI). From this survey, we categorized the dataset by 
general catalyst structure which is a significant factor in determining the mode of enantioinduction (steric blocking, 
TSA or hydrogen bonding, TSB) wherein imidazolidinone40 and diphenylprolinol ethers41 are grouped by a +ee 
value and proline type catalysts, a -ee value (Figure 4A). Therefore, the sign of the ee represents one of two 
transition state (TS) categories, depending on the catalyst involved. This is important in understanding the product 
enantioselectivities, because reactant addition to the top or bottom face will produce opposite enantiomers. 
Accordingly, the statistical model will be able to determine whether the reaction proceeds through steric blocking 
(predicts +ee value) or hydrogen bonding modes of enantioinduction (predicts -ee value) and this information can 
be used to make predictions about the absolute configurations by using the qualitative pictures TSA or TSB. 
Furthermore, the TS-guided categorization strategy is useful in producing a well-distributed data set which would 
be hard to achieve by not taking into account the absolute product stereochemistry. Next, a diverse array of 
molecular descriptor values were collected from DFT optimized geometries to describe the overlapping structural 
features of each electrophile, nucleophile, catalyst, solvent, and co-catalyst.42,43 Because this model is being built 
with the sole aim of predicting reactions involving an organometallic intermediate, we naturally choose the 
appropriate computational methods from the beginning. This involved optimizing the reactant at the M06/def2TZVP 
level and all other components with M06-2X/def2TZVP. The commonality in substrate and catalyst substructure 
allowed collection of natural bond orbital (NBO) charges and Sterimol values from the conserved portions. However, 
the nucleophile had minimal structure overlap, thus, polarizability, highest occupied molecular orbital (HOMO), and 
lowest unoccupied molecular orbital (LUMO) energies, which do not rely on common substructures, were collected 
to describe this component. Unfortunately, the lack of consistency in the reaction conditions renders the 
identification of readily comprehensible and extensive parameter sets for the remaining components a challenge. 
For example, several reactions required Brønsted acid co-catalysts and employed solvent mixtures while many 
others did not. Guided by the proposed mechanism of catalysis, we postulated that in cases where the acid additive 
was absent, the proton could originate from another source, a reagent or catalyst, and relevant descriptors could 
be collected from these components. Because solute-solvent interactions with polar substances will likely dominate 
over those with non-polar molecules, we collected topological, two-dimensional descriptors from the solvent with 
the largest dielectric constant (see SI).44,45  

Prior to model building, the data set was partitioned into 80:20 training:validation sets using MATLAB’s 
deterministic equidistant splitting function. Linear regression algorithms were then applied to the training set (80% 
of the entire data set that incorporates both +ee and -ee reactions) to identify prospective correlations between the 
molecular structure of every reaction variable defined by the parameters collected in the previous step of the 
workflow and the measured enantioselectivity, DDG‡ (where DDG‡ = –RTln(e.r.) and T is the temperature at which 
the reaction was performed). Since the training set includes significant diversity in reaction component structure 
and mechanism, we anticipated that several descriptors would be required to achieve predictive correlations. Using 
forward stepwise linear regression46 we determined a model that includes solvent (black), substrate (blue), reactant 
(green), and catalyst (red) terms distributed over thirteen parameters to be appropriate. Despite the high R2 value 
and validation scores, a relatively small number of outliers appeared around 0 kcal/mol on the x-axis. Essentially, 
these correspond to a few reactions that provided almost racemic mixtures by experiment. Such unique reaction 
features will not conform to trends revealed by comprehensive MLR models as these operate by linking reactions 
via general connections i.e. structural effects that apply to the majority of reactions included in the data set . 

Previous computational studies show that the enantioselectivity arises from the geometry of the 
enamine/iminium double bond (s-trans or s-cis) and the approach of the reactant (top or bottom).47 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Comprehensive model development and validation. (A) Regression model trained on  361 data points 
and validated with the remaining 91. (B) Demonstration of mechanistic transferability by predicting enantioselectivity 
outcomes involving the hydroxylation and amination of aldehydes 
 
 
Therefore, it is possible that the mathematical model also reveals some of these mechanistic features despite the 
complex equation. Notably, the catalyst descriptors have the largest coefficients in the normalized equation, 
demonstrating that stereocontrol is dominated by catalyst architecture for this class of reactions. The presence of 
B5C1(up) lends to a straightforward analysis by implying that larger substituents at this position makes reactant 
approach to the  double bond from the top less possible. Additionally, large groups at C1 would direct the double 
bond to occupy the opposite side of the catalyst thereby favoring the formation of the s-trans isomer. We interpreted 
the inclusion of the NBOC1 term as a categorical descriptor that essentially highlights that proline type catalysts 
(typically negative NBOC1 and -ee) direct the reactant to the top via a hydrogen bonding interaction whereas steric 
blocking catalysts (usually positive NBOC1 and +ee) that incorporate large alkyl or aromatic groups at this position 
promote reaction on the opposite face. Importantly, the presence of B5C1(down) with a negative coefficient likely 
indicates that TSmajor is also sensitive to the catalyst features. In other words, larger substituents at this position 
may enhance repulsive interactions between catalyst and reactant in the TS that forms the major product, ultimately 
favouring the formation of the opposite enantiomer. Indeed, imidazolidinone catalysts that have two large groups 
at the C1 position generally provide lower levels of enantioselectivity supporting this assertion. The s-trans/s-cis 
isomer ratio also depends on the substrate and having inversely sized groups on either side of the carbonyl will 
strongly reinforce the preference for the s-trans. This is expressed by the LS model term and reflected in the lower 
enantioselectivities obtained for ketones compared to aldehydes. Because ketones are predominantly used in 
combination with proline (i.e. result in -ee reactions) the associated coefficient with LS is positive. The role of the 
reactant is described through polarizability which likely acts as a proxy for chemical size (see SI) and the HOMO 
energy. The relationship also includes three solvent parameters with relatively small coefficients suggesting most 
solvents are compatible and the assortment of optimal solvents is a reflection of reaction component solubility.48,49 
Overall and perhaps most intriguingly, the incorporated model terms suggest that catalyst substrate matching is not 
required explaining the generality in catalyst structure.    

Considering the goal of the prediction analysis is to transfer enantioselectivity trends of one catalyst systems to 
multi-catalysis, the next step in validating the secondary amine model the ability of extrapolating to new reaction 
types involving a single catalyst (Figure 4B). Thus, for each out-of-sample prediction platform, both the catalyst and 
substrate are contained in our training set (see SI for additional out-of-sample predictions). It should be noted that 
the model can only make predictions about the reaction enantioselectivity and not the diastereoselectivity if two 
chiral centers are created. This second aspect of selectivity arises from the orientation of the reactant substituents 
relative to those on the enamine/iminium and may be governed by a different set of molecular features. However, 
diastereoselectivity is typically not the experimental output that requires significant optimization and high levels are 
usually observed regardless of the reaction conditions. Thus, the prediction of diastereoselectivity is not crucial for 
reaction development providing the incentive to exclude this output from our regression analysis. As a first 
assessment, we evaluated the ability to predict nine hydroxylation reactions, involving an oxime and 
diphenylprolinol ether.50 This set was predicted accurately, with an average absolute ΔΔG‡ error of 0.12 kcal/mol 
(eight examples predicted within 5% ee). By using the simple reaction model, TSA, presented in Figure 4A the 
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absolute configuration is correctly assigned as R. As a second case study, the model was assessed in the same 
manner with seven proline catalyzed amination reactions involving an azodicarboxylate.51 Again accurate 
predictions were obtained with this statistical model (ΔΔG‡ error of 0.19 kcal/mol, six examples predicted within 5% 
ee) with the qualitative diagram, TSB confidently determining the stereochemical outcome to be R.   
 
C. Application to synergistic catalysis. With our secondary amine statistical model thoroughly validated, we next 
sought to test its performance in the prediction of synergistic reaction systems involving secondary amines (Figures 
5 and 6).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Applying the secondary amine regression model to predict reaction outcomes involving copper catalyzed 
intermediates. (A) Assessing prediction capabilities with the arylation of aldehydes. (B) Effective prediction of 
trifluoromethylation reactions.  
 
Because copper can both generate electrophilic and nucleophilic reactive intermediates complementing the 
reactivity profile of enamide and iminium catalysis,  there are a number of examples in the chemical literature where 
this type of merger is employed. We focused on the arylation and trifluoromethylation of aldehydes reported by 
MacMillan as representative systems involving enamide.52-53The predictions obtained from the model are shown in 
Figure 5 alongside the experimental results, and satisfyingly, the agreement was generally excellent. More 
specifically, the first case utilizes an aryl copper (III) species and a catalyst not included in the training set. With a 
novel catalyst/reactant pairing, an average ΔΔG‡ error of 0.27 kcal/mol over twenty examples was determined 
(Figure 5A). As exemplified in the second case, copper can also be employed as a Lewis acid to increase the 
reactivity of the electrophilic trifluoromethylation agent and in the presence of an imidazolidinone we predicted six 
reactions with an average ΔΔG‡ error of 0.22 kcal/mol (Figure 5B). Because the model only incorporates a single 
substrate parameter that essentially classifies if an aldehyde or ketone was employed, the model correctly predicts 
that large changes in aldehyde structure leads to small changes in the observed  ΔΔG‡ for both cases. As before, 
TSA displayed in Figure 4A can be applied to correctly assign the stereochemistry as S for both examples.   To test 
this approach on reactions proceeding via iminium intermediates, the copper catalyzed silyl addition was probed.54 
On collecting the key reactant HOMO parameters required for prediction we detected that the values were 
significantly different from those included in the training set. Based on the premise that we can predict reactions 
most similar to that of the training set, we hypothesized that proximity in the chemical space representation provided 
by mapping HOMO against polarizability (i.e. influential feature space) would correspond to accuracy in out-of-
sample prediction. Ultimately, our plot shown in Figure 6A suggested extrapolation to this reaction component would 
lead to large errors in predicting the enantioselectivity. This prompted us to search for an alternative descriptor that 
would capture the reactant in influential feature space. Since the HOMO-LUMO energy gap is correlative to the 
original parameter we generated property maps including this descriptor. Intriguingly, these indicated that the 
organometallic intermediate is now projected in the same feature space as the training set (Figure 6A). Next, we 
manually altered the model by replacing the HOMO energy term for the HOMO-LUMO difference and predicted the 
enantioselectivity outcomes (Figure 6B). Each result was predicted using the modified model, with an average 
absolute ΔΔG‡ error of 0.32 kcal/mol (ten examples within 10% ee) and correctly assigned the absolute 
stereochemistry as S (Figure 6C). This result is compelling in that we could rationally re-engineer the influential 
features to generalize the statistical model across diverse reaction space.    
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Figure 6. Applying the secondary amine regression model to predict reaction outcomes involving copper catalyzed 
intermediates. (A) Assessing prediction capabilities with the arylation of aldehydes. (B) Effective prediction of 
trifluoromethylation reactions.  
 
 
 
Conclusion 
Here, we describe three case studies involving different modes of catalysis that demonstrate the benefits of utilizing 
MLR as a transferability tool to predict and elucidate enantioselectivity outcomes in reactions where more than one 
catalyst is involved. Specifically, our strategy focused on revealing general mechanistic models produced through 
extensive data mining and advanced parameter sets. Because the selectivity discriminants were consistent across 
a reaction range, the resulting correlation could be leveraged for the translation of  experimental observations 
derived from reactions utilizing a single catalyst to another similar process that involves two catalyst systems. In 
general, we expect this transferability workflow to be valuable in data limiting situations, for example where 
practitioners have incomplete data sets either early in an optimization campaign or the complexity of reaction 
conditions makes it difficult to explore reaction component space completely. Consequently, our findings should be 
broadly applicable and beneficial for the prediction and interrogation of other catalytic systems widely applied in 
asymmetric synthesis.
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