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Abstract

We introduce a novel multi-level enhanced sampling strategy grounded on Gaussian

accelerated Molecular Dynamics (GaMD). First, we propose a GaMD multi-GPUs-

accelerated implementation within the Tinker-HP molecular dynamics package. We

introduce the new "dual-water" mode and its use with the flexible AMOEBA polarizable

force field. By adding harmonic boosts to the water stretching and bonding terms, it

accelerates the solvent-solute interactions while enabling speedups thanks to the use of

fast multiple–timestep integrators. To further reduce time-to-solution, we couple GaMD

to Umbrella Sampling (US). The GaMD—US/dual–water approach is tested on the 1D

Potential of Mean Force (PMF) of the solvated CD2–CD58 system (168000 atoms)

allowing the AMOEBA PMF to converge within 1 kcal/mol of the experimental value.

Finally, Adaptive Sampling (AS) is added enabling AS–GaMD capabilities but also the

introduction of the new Adaptive Sampling–US–GaMD (ASUS–GaMD) scheme. The

highly parallel ASUS–GaMD setup decreases time to convergence by respectively 10

and 20 times compared to GaMD–US and US. Overall, beside the acceleration of PMF

computations, Tinker-HP now allows for the simultaneous use of Adaptive Sampling

and GaMD-"dual water" enhanced sampling approaches increasing the applicability of

polarizable force fields to large scale simulations of biological systems.
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Introduction

Understanding interactions within biomolecules is crucial for many topics such as drug dis-

covery. Some structural modifications, sometime undetected by experiment, can drastically

change the nature of the physics ruling interacting complex systems. For this reason, predict-

ing the long timsecale conformational dynamics of proteins is a long standing challenge within

the conventional Molecular Dynamics (cMD) community.1–6 It requires accurate models able

to capture the true potential energy hyper-surface and long simulations to both access the

large biological processes time-scale and satisfy the ergodicity principle.7 Accelerating MD

has been therefore a central field of research in the last decades.8–11 Beside these develop-

ments, several additional strategies have been pursued overs the years to further speed up

the simulations. They include the extensive use of High Performance Computing (HPC)

ressources4,12 and the optimization of GPU–accelerated modeling platforms.13–15 Alterna-

tively, an intensive algorithmic work has been undertaken, introducing techniques such as

multiple–time–step integrator schemes16,17 or collective variables-driven molecular dynam-

ics methods.18,19 The latter have been found useful in enhanced sampling and free energy

calculation.20–25 Although such methods are powerful as they can estimate free energies of

binding or the stability of secondary and quaternary structures of proteins,26,27 the free en-

ergy estimations can suffer from biases either generated by the initial choice of the collective

variable (CV) or by the existence of multiple CV within the mechanism process (e.g dual

mechanisms).28 For these reasons, collective variable–free methods have become increasingly

popular.29 Among them, the recent Gaussian accelerated Molecular Dynamics (GaMD) has

shown great promises due to its high sampling acceleration, its user–friendly tunable pa-

rameters and its minor additional computational cost.30 GaMD accelerates conformational

sampling by adding a harmonic boost to the potential energy. Coupled with the second order

cumulant expansion, GaMD allows us to compute unbiased properties by using an accurate

reweighting procedure through cumulant expansion to the second order.

Although new generation many-body polarizable force field (PFFs) are more accurate in
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describing biomolecular interactions,31–34 they are computationally more challenging than

traditional approaches. Therefore, to overcome these limitations, we provide here a novel

general multi–level enhanced sampling strategy, that we apply to the PFF AMOEBA. To

do so, we combine together the Tinker–HP massively parallel multi-GPUs platform15 to a

highly scalable GaMD implementation (level 0 ) and to additional enhanced sampling tech-

niques based on recent developments of the field. As a first speedup, we propose an extension

of the GaMD formalism with a new GaMD mode enabling the use of flexible water mod-

els such as AMOEBA35,36 and fast multiple–time–step integrators17 (level 1 ). We then

discuss the explicit coupling of such GaMD approach to Umbrella Sampling (US)37 and

Adaptive Sampling (AS)6 techniques (level 2 ). To demonstrate their applicability to PFF,

these physics-based hybrid enhanced sampling strategies are then applied to the Potential

of Mean Force (PMF) study of a large biological complex CD2–CD58 interacting via salt

bridges with the AMOEBA force field. Finally, we combine all together within the Adaptive

Sampling–US–GaMD method (ASUS–GaMD) scheme (level 3 ).

Method: introducing the GaMD "dual water" mode.

GaMD is a potential-biasing method for unconstrained enhanced sampling without the need

to set predefined CV. It smooths the potential energy surface by adding a harmonic boost

potential as described in the seminal paper11. Its general framework makes it suitable for

the development of hybrid schemes and variants, such as replica-exchange umbrella sampling

GaMD (GaREUS),38 Ligand GaMD (LiGaMD)39 and Peptide GaMD (Pep-GaMD).40

If the system potential energy is lower than a threshold energy E, a harmonic potential

energy boost is applied to smooth the potential energy surface. By denoting q ∈ R3N the

configurations, when the system potential energy U(q) is lower than a threshold energy E,

a boost, which depends on U(q) is added:

U ′(q) = U(q) + ∆UGaMD(U(q)) (1)
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with ∆UGaMD(U(q)) the external harmonic potential boost

∆UGaMD(U(q)) =

 0 U(q) ≤ E

1

2
k(E − U(q))2 U(q) < E

(2)

and k the harmonic force constant. The two adjustable GaMD parameters k and E are auto-

matically determined following the original procedure described in ref30. The boost intensity

can be managed thorough a user–specified uper limit labeled as σ0 (e.g 10kBT ) predefined

before the simulation. To ensure accurate reweighting with the cumulant expansion the

∆UGaMD standard deviation, σ∆V , should satisfy σ∆V < σ0
30,41,42. GaMD provides different

modes: the boost is either applied on the total potential GaMD–pot, on the dihedral po-

tential GaMD–dih, or on both at the same time GaMD–dual43,44. Recently, another mode

was introduced:LiGaMD which adds the boost to a ligand non bonded interactions,39 accel-

erating the sampling of ligand-protein interactions. It is known that interactions involving

water are essential for such systems and that protein stability processes are controlled by

water-protein interactions.6,45,46 To accelerate these interactions, one would like to use the

GaMD–dual mode on the non bonded interactions of water molecules. However, such boost

requires the evaluation of the complete non bonded energies and, in the context of multi-

timestep integrators such as BAOAB–RESPA117 where they are split between short and long

range, these are only available at outer (large) timestep. This type of integrators enables the

use of larger time steps and thus a direct acceleration of molecular dynamics. For example,

the BAOAB–RESPA1 is based on a RESPA (Reference System Propagator Algorithm16)

three-level splitting of forces (bonded, short-range non- bonded and long-range non-bonded)

within the Leimkuhler’s BAOAB discretization of Langevin dynamics.47 It allows up to a 7

folds acceleration for polarizable point dipole molecular dynamics.17 But the fluctuations of

the associated bias are such that it has to be evaluated at shorter timesteps, so that the whole

procedure is not compatible with multi-timestep integrators such as BAOAB–RESPA1. For

similar reasons, the GaMD–dual mode with a bias applied to the complete potential en-
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ergy is not compatible with even simple RESPA integrators in which the potential energy is

split between bonded and non bonded terms. Therefore, GaMD–dual mode becomes rapidly

limited by the simulation time. To overcome this issue, we developed a new mode, GaMD–

dualwater (denoted GaMD–dualwat), which adds a boost to the protein dihedral potential

energy term and the water stretching and bending terms, this time fully compatible with

RESPA and RESPA1 like integrators, allowing water molecule to be more flexible and thus

favoring their conformational changes.

∆UGaMD−dw(U(q)) = ∆Udihedral
protein (U(q)) + ∆U stretch

water (U(q)) + ∆U bend
water(U(q)) (3)

This mode is enabled by the flexibility of the AMOEBA 03 water model35 but is not com-

patible with rigid water models such as TIP3P48 commonly used with the CHARMM and

AMBER force field.49 This framework allows to further reduce the computational cost gap

between PFFs and nPFFs. This new mode, in addition to the other GaMD–dih and GaMD–

dual modes, is now available within the Tinker–HP software.12,15 In the following, we first

tested its GPU scalability and performance on the STMV system (≃1 066 624 atoms), and

its sampling efficiency is demonstrated on simulations of the alanine dipeptide and the CD2-

CD58 complex. A technical appendix is present at the end of the manuscript and provides

the formalism of the method and the associated debiasing equations.

Results and discussion

Level 0: Efficiency and GPU scalability

The GaMD implementation is such that only a small computational and communication (in

parallel) overhead is added compared to cMD. The GaMD–dih and GaMD–dualwat have
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Figure 1: GaMDdih and GaMDdualwat scaling performance on 1/2/4 V100 GPUs (i.e.
corresponding to a full node of the Jean Zay machine) on STMV (1 066 624 atoms) with the
AMOEBA force field and the BAOAB–RESPA1 10 fs multiple–time–step integrator. The
cMD reference, in blue, allows to evaluate the GaMD impacts on the code communications.
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been considered on the STMV system (1 066 624 atoms) with the AMOEBA PFF and the

10 fs outer time–step HMR BAOAB–RESPA1 multiple–time–step integrator.17 V100 GPUs

from the national Jean Zay supercalculator have been used for all the benchmark computa-

tions. Similar scalability studies have been performed on the Jean Zay multi-CPUs (Figure

S1). The AMOEBA GPU simulations were performed on a single node as the multi-node ex-

tension of the AMOEBA PFF within the Tinker–HP package is still under development.On

1 and 2 GPUs (Figure 1), the GaMD data communications are negligible, 1%. On 4 GPUs,

the communications are increasing and the performance decreases by 7%. Overall, the use of

GaMD only slightly alters the performance. This high scalability opens the door to simulate

at a high-accuracy large complex biomolecular systems with PFFs.

Level 1: GaMD–dualwat with PFFs

We compared GaMD–dih, GaMD–dual and GaMD–dualwat sampling acceleration on the

exploration of the relevant basins of the alanine dipeptide (e.g αr, αL and PII). The alanine

dipeptide is solvated in a cubic 20 Å water box. We used the many-body AMOEBABIO18

PFF.50,51 The system was minimized with a RMS of 1 kcal/mol and sampled within the

NPT thermodynamic ensemble with the Bussi thermostat52 and a MonteCarlo barostat53

at 300 K and 1 atmosphere. We used the Velocity Verlet integrator and a 1 fs time–step.54

Smooth Particle Mesh Ewald (SPME) algorithm was employed to compute non–covalent

interactions55 with a real space cutoff equal to 7 Å and a Van der Waals cutoff set to 9 Å.

For AMOEBA the convergence criteria for multipoles was set to 10−5. After short testing

simulations, we found an optimal value of 3 kcal/mol for GaMD–dih and GaMD–dual σ0, in

accordance with ref11, and 4 kcal/mol for GaMD–dualwat (see Figure S2, Table S1 and S2).

We ran 3 independent simulations of 60 ns for each mode. The different sampled basins are

also compared to a 1 µs cMD AMOEBA reference.
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a) b)

c) d)

Figure 2: 2D PMF (in kcal/mol) of the alanine dipeptide obtained in AMOEBA for a)
GaMD–dih mode (3x60ns) b) GaMD–dual mode (3x60ns) and c) GaMD–dualwat mode
(3x60ns) d) Alanine dipeptide representation with the corresponded Φ and Ψ angles.
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Reweighted, see Technical Appendix, free energy surfaces obtained from these simulations

are depicted on Figure 2 and show that GaMD–dual captures well the αr (50°,25°), αL (-75°,-

25°) and PII (-75°,150°) basins. These results are consistent with the 1 µs cMD trajectory

(see Figure S3 in SI) depicting these three basins. While the GaMD–dih mode captures

the αr basin after 150 ns, the GaMD–dualwat captures it in 100 ns (SI Figure S4). We

also observe a sampling acceleration between GaMD–dual and GaMD–dualwat compared

to the reference 1 microsecond cMD. To characterize the GaMD boost harmonicity, its dis-

tribution anharmonicity γ is calculated as in.30 γ serves as an indicator of the sampling

convergence and reweighting procedure accuracy. Depicted on Figure S5 in SI GaMD–dih as

well as GaMD–dual depicts high anharmonicity with respectively 0.252 and 0.016 compared

to GaMD–dualwat with 0.0005. Additionally, we see a steep anharmonicity convergence to

less than 10−3 for GaMD–dualwat while being relatively stable at 2 × 10−1 for GaMD–dih

(SI Figure S4). In comparison the anharmonicity is about 0.001 with GaMD–dih and AM-

BER99SB. PFFs thus increase the statistical noise and stress the importance of using low

anharmonicity GaMD modes. In that sense, GaMD–dualwat appears more suitable than

GaMD–dual for PFFs simulations with an anharmonicity equal to 0.0005. As stated before,

another advantage of GaMD–dualwat is that it can be coupled to multiple–time–step such

as BAOAB–RESPA117 in contrast to the GaMD–dual mode that remains limited to single

timestep integrators. Comparative results of GaMD–dualwat with both integrators can be

found in Figure S6 of the SI. Its coupling with multiple–time–step clearly compensates the

slightly lower sampling performance compared with GaMD–dual. The sampling enhance-

ment brought by the GaMD–dualwat can be partly related to how it affects the diffusion of

water: we report in Table S3 of the SI the self diffusion coefficients of bulk water computed

within a same setup (same size of box and same integrator) and observe that it is increased

with the GaMD–dualwat mode compared to the simple GaMD–dih one, favoring global con-

formationnal changes due to water reorganization. While the added sampling efficiency is

already significant for the alanine dipeptide, we expect it to be larger on more complex and
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larger biological systems such as CD2CD58 where water reorganization plays a bigger role.

Combined with a highly-parallel GPUs infrastructures and multiple–time–step integrators,

the GaMD–dualwat should allow to help reaching very high-resolution conformational space

of large molecular systems. In addition to the sampling acceleration it provides, the low as-

sociated anharmonicity drastically reduces the statistical noise associated with reweighting.

a) b)

Figure 3: PMFs of a) GaMD dualwat (3x60=180ns)and b) AS–GaMD dualwat (5x25=125ns)
simulations for the alanine dipeptide. For the GaMD dualwat simulations we performed 3
independent simulations of 60ns using 1fs timestep with the verlet integrator. The AS–
GaMD dualwat simulations were performed using the BAOAB–RESPA1 10fs multi timestep
integrator and 5 AS iterations of 5x5ns with a square term.

Level 2: Speeding-up simulations with the parallel AS–GaMD scheme

We further coupled our newly introduced GaMD mode to additional enhanced sampling

strategies. Recently, we developed a new adaptive sampling technique (AS) which was shown

to allow massive sampling of the SARS–CoV–2 Main Protease conformational space.56 We

coupled these two methodologies together, yielding the AS–GaMD method. The principle

is similar to the AS, the only modification being that each cMD at each iteration is now a

GaMD simulation. The double bias coming from both AS and GaMD implies that a suitable

and careful reweigthing scheme has to be introduced to reconstruct unbiased free energy

surface. All mathematical tools for the reweigthing scheme are provided in the Technical
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Appendix. We applied this methodology to the same system, the alanine dipeptide using

the same GaMD simulation protocol. At each iteration, we projected the structures on the

two main dihedral angles space. To push the limit of the AS–GaMD sampling capability we

combined a modified version of the AS selection scheme with the BAOAB–RESPA1 multi-

timestep integrator. The probability law for selection of new structures was taken as the

inverse of the square of the probability density on the reduced space which further amplifies

the exploration of undiscovered region.

On Figure 3, we represented the 2D PMF obtained with both AS–GaMD/BAOAB–RESPA1

and GaMD/VERLET simulations. For AS–GaMD/BAOAB–RESPA1 we performed 5 iter-

ations of 5x5ns GaMD–dualwat simulations for a total simulation time of 125ns. As in the

previous section, the GaMD/VERLET is composed of 3 independent simulation of 60ns

(180ns total). In 30% less simulation time and 5 times less computational time, thanks to

the natural AS parallelism, the coupled AS–GaMD/multi-timestep integrator scheme greatly

enhance the exploration of the free energy surface. We observed that the αL region is al-

ready captured at the first iteration, i.e with only 25 ns (SI Figure S7). In addition, other

states, next to the αL region, are captured within tens of ns and are still not seen after the

whole GaMD simulation. This AS–GaMD/multi-timestep coupling can thus represent an

important gain for the sampling of biomolecular systems.

Level 3: Pushing the limit of PMF convergence with GaMD–US and

ASUS–GaMD

US has been widely used and is mathematically robust but it is still suffer from several

issues.57–59 In addition to the choice of the CVs, it is also difficult to estimate the PMF con-

vergence as it is system dependent. Good indicators to check if convergence is reached are:

the overlap between neighboring windows and the evolution of the PMF curve as a function

of the simulation time per window. To accelerate the sampling within each window, Oshima

et al. recently combined GaMD with replica-exchange and US.38 Here, we first only applied
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a) b)

Figure 4: c) PDB 1QA9 CD2CD58 representation with CD2 and CD58 subcomplexes rep-
resented respectively in blue and red using the newribbons representation. Residues at the
interface considered in the COM distance between the two subcomplexes are represented in
blue and red for respective basic and acid residues using the CPK representation. VMD
software was employed to generate the structure. PMFs obtained with US, GaMD–US and
ASUS–GaMD are depicted in a) and their respective anharmonicity in b).
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a GaMD boost in each US window in order to enhance the sampling in the orthogonal space.

To demonstrate the PMF convergence acceleration, we studied the dissociation of the salt

bridges interface within the CD2CD58 complex. This system, made of several salt bridges

and hydrogen bondings interactions, was already studied by some of us.28 Although it has

been shown that PFFs allow a better description of the salt bridges interactions, their com-

putational cost has long hindered the study of such large system. Since the portability of

Tinker-HP on multi-GPU and the global acceleration of the PFFs, reaching such system is

now easily achievable. To start this study we took the same CD2CD58 complex as in our

previous work28 but we solvated it in a waterbox of 100 × 100 × 100 Å. Counterion were

added to neutralize the system. We used the AMOEBABIO18 PFF.50,51 The system was

minimized with a RMS of 1 kcal/mol in the NVT thermodynamic ensemble with the Bussi

thermostat.52 Temperature was set to 300 K while pressure was set to 1 atmosphere. We

used the multiple–time–step BAOAB–RESPA1 with a 10 fs timestep with the Hydrogen

Mass Repartionning scheme (HMR)17 and Smooth Particle Mesh Ewald (SPME) algorithm

to compute electrostatic and polarization interactions55 with a real space cutoff of 7 Å and

a Van der Waals cutoff of 9 Å. The convergence criteria for polarization was set to 10−5.

39 US windows were generated, ranging from 1 to 20 Å with a width of 0.5 Å between

them. CV was chosen as the distance between the center of mass formed by the interfacial

residues isolated by Bayas et al. on CD2 and CD58 (Table 1 in ref60). A spring constant

of 10 kcal/mol.Å2 was employed to restrain the system along the chosen CV. Each window

was run for 5 ns for equilibration and then for 50 ns. Histogram overlap as well as the PMF

curve as a function of the simulation time allocated per window were employed to check the

convergence of the simulations (SI Figure S9). The final US PMF show a slow decrease of

the free energy barrier with the simulation time, suggesting a slow convergence to about

12.5 kcal/mol. Binding affinity was found to be experimentally around 7.1 ± 0.03 kcal/mol,

suggesting that our simulations are not converged.60 In order to improve sampling within

each window a new US was performed similar to the previous US protocol but now with
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an additional GaMD–dualwat potential applied in each window. The GaMD parametriza-

tion protocol and reweighting procedure are described in the Technical Appendix and in SI

(Figure S8 and Table S4). The optimized GaMD–dualwat parameters σ0 are equal to 1 and

3 kcal/mol for respectively dihedral and dual water modes. Figure 4 shows the difference

between standard US and GaMD–US. The GaMD–US PMF and boost harmonicity converge

at 40 ns per window (SI Figure S10 A/, B/ and C/). The predicted free energy barrier is

now within the 1 kcal/mol of the experiment. It shows that GaMD–dualwat, even without

presence of Replica Exchange, could considerably improve PMF convergence of large sys-

tems. It also demonstrates that salt bridges and, more generally protein-protein interactions

are well described with PFFs. Further, as demonstrated in Debiec et al.,61 the improved

accuracy of non-PFFs in describing these interactions requires the implicit incorporation of

solvent polarization, underscoring the importance of polarization effects in these contexts.

To further push the sampling, we coupled together GaMD, AS and US (ASUS–GaMD). We

provide two reweighting schemes that either use modified Multistate Bennett Acceptance

Ratio (MBAR) equations or the Rao-Blackwell estimator. The mathematical expressions

are general and can be used with any weighted dynamics. Starting from an initial US sim-

ulation (≃ few ns), each window is decomposed in several AS independent trajectories with

an additional GaMD–dualwat potential boost (GaMD). Here, we ran 2 iterations of 5×5

ns GaMD–US per window. The PMF evolution can be found in SI (Figure S11) while the

resulting PMF is depicted on Figure 4. We observe that ASUS–GaMD reach GaMD–US

in one iteration, showing the sampling acceleration impact provided by the AS part within

ASUS–GaMD. Note that the rough aspect of the PMF obtained with the methods involving

a GaMD bias comes from the debiaising of the boost potential, as can be seen in previous

work involving US and GaMD.38 Although a careful reweighting is needed for the different

AS, GaMD and US layers, the overall ASUS–GaMD approach inherits the strong adaptive

sampling advantages of being pleasantly parallelizable and considerably accelerates the PMF

convergence.
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Conclusions

Combined with the use of modern GPUs, these sampling techniques allow to drastically

reduce time to solution in PFFs evalution of PMFs. Although it is difficult to truly quantify

the final speedup (i.e. a PMF convergence remains partially system-dependant), one can

see in Figure S12(SI) that if we extrapolate the US convergence, ASUS–GaMD converges

1.4 times faster. Thanks to the native parallelism inherited from AS, the PMF evaluation

can be done in one fifth of the simulation time yielding a speedup of 7. If we consider that

convergence was already reached with a 25ns per window setup, this factor grows to 14.

ASUS–GaMD can thus reduce to days computation that would have taken months. This

work also allows to invoke any variant of the combined approaches, offering therefore access

to GPU-accelerated GaMD-adaptive sampling (AS–GaMD) simulations that will be helpful

to further extend conformational space studies of proteins6 To conclude, these methodologies

will contribute further to allow high-resolution sampling of large biological systems up to

millions of atoms using polarizable force field.
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Technical Appendix

We denote by ξ(q) the reaction coordinate along which we performed the US simulation and

q the configuration. Here, a configuration means the positions q ∈ R3N of all the atoms of

the system. The imposed US bias potential is

UUS
j (q) = K(ξ(q)− ξj)

2 (4)

with K the force constant.

We combined the AS, US and GaMD such that each US window j ∈ [[1, ...,M ]], ξ1, ..., ξM , is

parallelized and accelerated by adaptive sampling replicas and GaMD boost potential:

U ′′
j (q) = U(q) + UGaMD(q) + UUS

j (q) (5)

We denote by (qj,n)n∈1,N the N configurations generated by the AS replicas of US window

j and (ωj,n)n∈1,N their respective AS weights. These normalized weights are defined as

ωj,n =
Nvj,n∑N
m=1 vj,m

so that
∑N

n=1 ωj,n = N with vj,n the unnormalized AS weights. The canonical

average of an observable φ is estimated by

⟨φ⟩′′j =
∫
φ(q)e−βU ′′

j (q) dq∫
e−βU ′′

j (q) dq
≃
∑N

n=1 φ(qj,n)ωj,n∑N
n=1 ωj,n

=
1

N

N∑
n=1

φ(qj,n)ωj,n (6)

In practice, to get a smooth reweighted PMF, the reaction coordinate ξ is discretized in K

bins around values x1, ..., xK . We want to estimate for each k ∈ [[1, ..., K]] its free energy, up

to an additive constant,

F (xk) = − 1

β
lnP(ξ(q) ∈ Bin(xk)), (7)
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where q is distributed according to the density probability law e−βU∫
e−βU , i.e.

F (xk) = − 1

β
ln

∫
1ξ(q)∈Bin(xk)e

−βU(q) dq∫
e−βU(q) dq

= − 1

β
ln⟨φk⟩ (8)

with φk = 1ξ(q)∈Bin(xk).

1st step: GaMD with cumulant expansion

We, first, remove the GaMD bias. Here, we want to find a relation between ⟨φ⟩ and ⟨φ⟩′

where the prime average represents the canonical average over the potential U ′ = U+UGaMD.

Starting from the canonical average, we notice :

⟨φ⟩ =
∫
φ(q)e−βU(q) dq∫
e−βU(q) dq

=

∫
φ(q)eβU

GaMD(q)e−βU ′(q) dq∫
eβUGaMD(q)e−βU ′(q) dq

=
⟨φeβUGaMD⟩′

⟨eβUGaMD⟩′
(9)

By applying this with φ = φk,

F (xk) = − 1

β
ln

⟨φke
βUGaMD⟩′

⟨eβUGaMD⟩′
= − 1

β
ln⟨φke

βUGaMD⟩′ + C = F ′(xk)−
1

β
ln

⟨φke
βUGaMD⟩′

⟨φk⟩′
+ C

(10)

where C is a constant and F ′(xk) is the free energy F ′(xk) = − 1
β
ln⟨φk⟩′. To reduce the

estimator variance, we used the cumulant expansion to the second order,

ln
⟨φke

βUGaMD⟩′

⟨φk⟩′
≃ β

⟨φkU
GaMD⟩′

⟨φk⟩′
+

β2

2

(
⟨φk(U

GaMD)2⟩′

⟨φk⟩′
−
(
⟨φkU

GaMD⟩′

⟨φk⟩′

)2
)

(11)

By combining with equation (10), the free energy is rewritten as

F (xk) ≃ − 1

β
ln⟨φk⟩′−β

⟨φkU
GaMD⟩′

⟨φk⟩′
− β2

2

(
⟨φk(U

GaMD)2⟩′

⟨φk⟩′
−
(
⟨φkU

GaMD⟩′

⟨φk⟩′

)2
)
+C (12)
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2nd step: AS modified MBAR

Finally, we want to express ⟨φ⟩′ w.r.t the AS weights in each US window j ∈ [[1, ...,M ]]. This

can be done in two ways either using the MBAR or the Rao-Blackwell estimator.

Modified MBAR

Let’s define

c′j =

∫
e−βU ′′

j (q) dq, F ′
j = − 1

β
ln c′j (13)

The prime comes from the use of the MBAR on the reference energy U ′ of the previous

section. The starting point is to use the MBAR identity (ref62 equation 5) and notice

c′i⟨eβU
′′
j αi,j⟩′′i =

∫
e−βU ′′

j (q)e−βU ′′
i (q)αi,j(q) dq = c′j⟨eβU

′′
i αi,j⟩′′j (14)

which holds for arbitrary functions q −→ αij(q) with i, j ∈ [[1, ...,M ]]. Notice that each

window generated the same number of configurations N . The MBAR estimator has been

proven to be optimal by using

αi,j(q) =
1/c′j∑M

k=1 e
−βU ′′

k (q)/c′k
(15)

and by summing over j

c′i

M∑
j=1

〈
e−βU ′′

j /c′j∑M
k=1 e

−βU ′′
k /c′k

〉′′

i

=
M∑
j=1

c′j

〈
e−βU ′′

i /c′j∑M
k=1 e

−βU ′′
k /c′k

〉′′

j

(16)

We obtain a set of M equations for all i ∈ [[1, ...,M ]]

c′i =
M∑
j=1

〈
e−βUi(q)∑M

k=1 e
−βUk(q)/c′k

〉′′

j

(17)
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Using equation (6) we obtain the estimators

ĉ′i =
1

N

M∑
j=1

N∑
n=1

ωj,ne
−βUi(qj,n)∑M

k=1 e
−βUk(qj,n)/ĉ′k

(18)

and finally with eq (13)

F ′
i = − 1

β
ln

(
1

N

M∑
j=1

N∑
n=1

ωj,ne
−βUi(qj,n)∑M

k=1 e
β(F ′

k−Uk(qj,n))

)
(19)

which must be solve self-consistently.

Modified Rao-Blackwell estimator

Recently, Ding et al.63,64 derived the MBAR equations using Rao-Blackwell (RB) estimator.

The RB theorem characterizes the transformation of a crude estimator into a better estima-

tor that has smaller mean-squared-error w.r.t to the dataset.

We wish to calculate the i ∈ [[1, ...,M ]] relative free energies F ∗
i of M thermodynamic states

sampled independently, with potential Ui. To compute the relative free energies, the system

should be sampled according to Boltzmann distribution. We note qi,n the n ∈ [[1, ..., Ni]]

configurations sampled from state i. To compute the relative free energies of the M ther-

modynamic states, the configurations qi,n are combined and considered as samples from the

generalized ensemble pi(q) ∝ e−β(Ui(q)+bi) where bi is an unknown biased energy. This biased

energy was introduced63 to adjust the relative weight of state i to be proportional to Ni,

leading to

Fi = F ∗
i + bi = − 1

β
ln

Ni

N
(20)
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where N =
∑M

i=1Ni. From this equation we can then use the RB estimator

Fi = − 1

β
ln pi = − 1

β
ln

1

N

M∑
j=1

N∑
n=1

pi(qj,n)

= − 1

β
ln

1

N

M∑
j=1

N∑
n=1

ωj,ne
−β(Ui(qj,n)+bi)∑M

k=1 e
−β(Uk(qj,n)+bi)

(21)

Combining with equation (20):

1 =
1

N

M∑
j=1

N∑
n=1

ωj,ne
−β(Ui(qj,n)+bi)∑M

k=1 e
−β(Uk(qj,n)+bi)

(22)

Thus, the unbiased free energy F ∗
i can be calculated using equation (20) after solving (22)

for bi. Equation 22 has major interests: (1) it is more stable, (2) it reduces the number of

floating point operations and (3) the problem is reduced to minimizing a convex function.

Indeed, if we define

gi(b1, ..., bM) =
1

N

M∑
j=1

N∑
n=1

ωj,ne
−β(Ui(qj,n)+bi)∑M

k=1 e
−β(Uk(qj,n)+bi)

− 1 (23)

then solving (22) is equivalent to finding the zeros of (g1, . . . , gM). Moreover, we can remark

that the function gi = ∇bif where the function f is given by

f(b1, ..., bM) = − 1

N

M∑
j=1

N∑
n=1

ωj,n ln

(
M∑
k=1

e−β(Uk(qj,n)+bi)

)
−

M∑
j=1

b,j, (24)

which means solving (22) is equivalent to finding the critical points of f . Ding et al. shown

that f is convex so the problem is reduced to minimizing this function which can be done

with the L-BFGS method. The reweighting procedure, that use part of the FastMBAR code,

takes few minutes on a single GPU. In this work we used the latter procedure thanks to its

GPU efficiency.
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3rd step: ASUS-GaMD reweighting

With either using the MBAR or the RB estimator procedure, we can extract the, still biased,

free energies. The final step is to derive an expression of ⟨φ⟩′ w.r.t either ĉ′k or F ′
k. By setting

c0 =
∫
e−βU ′(q) dq and using (6),

c0⟨φ⟩′ =
∫

φ(q)e−βU ′(q) dq =
M∑
i=1

∫
φ(q)e−βU ′(q)e−βU ′′

i (q)/c′i dq∑M
j=1 e

−βU ′′
j (q)/c′j

=
M∑
i=1

〈
φ∑M

j=1 e
−βUj(q)/c′j

〉′′

i

≃ 1

N

M∑
i=1

N∑
n=1

φ(qi,n)ωi,n∑M
k=1 e

−βUk(qj,n)/ĉ′k

(25)

in other words,

c0⟨φ⟩′ ≃
1

NM

M∑
i=1

N∑
n=1

φ(qi,n)ri,n (26)

with ri,n the weight of configuration q(i, n)

ri,n =
Mωi,n∑M

k=1 e
−βUk(qi,n)/ĉ′k

(27)

c0 is unknown but does not depends of k ∈ [[1, ..., K]] so equation (12) can be rewritten as

F (xk) ≃ − 1

β
ln⟨c0φk⟩′−β

c0⟨φkU
GaMD⟩′

c0⟨φk⟩′
−β2

2

(
c0⟨φk(U

GaMD)2⟩′

c0⟨φk⟩′
−
(
c0⟨φkU

GaMD⟩′

c0⟨φk⟩′

)2
)
+C ′

(28)

with

c0⟨φk⟩′ ≃
1

NM

M∑
i=1

N∑
n=1

ri,n1ξ(qi,n)∈Bin(xk)

c0⟨φkU
GaMD⟩′ ≃ 1

NM

M∑
i=1

N∑
n=1

UGaMD(qi,n)ri,n1ξ(qi,n)∈Bin(xk)

(29)
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