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ABSTRACT:  

This report uses Monte Carlo simulations to connect stochastic single-molecule and ensemble surface 

adsorption of molecules from dilute solutions. Monte Carlo simulations often use a fundamental time 

resolution to simulate each discrete step for each molecule. The adsorption rate obtained from such a 

simulation surprisingly contains an error comparing to the results obtained from the traditional method. 

Simulating adsorption kinetics is interesting in many processes such as mass transportation within cells, 

the kinetics of drug-receptor interactions, membrane filtration, and other general reaction kinetics in di-

luted solutions. Thus, it is important to understand the origin of the disagreement and find a way to correct 

the results. This report reviews the traditional models, explains the single-molecule simulations, and in-

troduces a method to correct the results of adsorption rate. For example, one can bin finer time steps into 

time steps of interest to simulate the fractal diffusion, or simply introduce a correction factor for the sim-

ulations. Then two model systems, self-assembly monolayer (SAM) and biosensing on the patterned sur-

face are simulated to check the accuracy of the equations. It is found that the adsorption rate of SAM is 

highly dependent on the conditions and the uncertainty is large. While the biosensing system is relatively 

accurate. This is because the concentration gradient near the interface varies significantly with reaction 

conditions for SAMs while relatively stable for the biosensing system.  

KEYWORDS: Single-Molecule Diffusion, Theory of Single-Molecule Adsorption, Langmuir Adsorption, 
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Introduction 

Molecules in diluted solution are moving constantly and randomly under no flow. A major contributor of 

this motion, diffusion (Fig. 1), is fundamentally relevant in many fields such as cell biology, biosensing, 

separation, fluidic dynamics, reaction kinetics, catalysis, and batteries.1–9 The ensemble kinetics of diffu-

sion has been summarized by Fick’s laws of diffusion.2,3 For example, the diffusion of materials in a 

diluted solution from a high-concentration reservoir into a tubing space forms a time- and space-depend-

ent concentration gradient function C(x, t),2,3 derives from the heat equation formulated by Joseph Fourier 

in 1822:3 

𝜕𝐶(𝑥,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
[𝐷(𝑥, 𝑡)

𝜕𝐶(𝑥,𝑡)

𝜕𝑥
]   (1) 

where t is time (unit s), x is the distance away from the interface (m), C(x, t) is the concentration gradi-

ent (molecules m-3), and D(x, t) is the time-and-space-dependent diffusion coefficient (m2 s-1), a con-

stant under many conditions. Note these units are for the 1D simplification of a 3D diffusion when the 

diffusions of the other two dimensions do not matter. For a real 1-D diffusion, C will have the unit mol-

ecules m-1. 

 

Fig. 1. A brief early history of the random walk theory of diffusion and adsorption. Left showing the 

fractal nature (self-similarity over time) of diffusion and right showing selected early literature review. 
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 The special case with constant D has a formal analytical solution:2 

𝐶(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡  (2) 

where C(x, t) (unit mol/m3) is the concentration of the molecules at space x (m) from origin x = 0 and time 

t from initial time t = 0 when all molecules are at the origin. Equation 2 is a 1D Gaussian distribution 

function with the standard deviation 𝜎 = √2𝑛𝐷𝑡 where number of dimension n =1 for 1D diffusion, and 

is normalized to the unit in all x space, i.e. at any giving snapshot of t, 𝐴 ∫ 𝐶(𝑥, 𝑡)
∞

−∞
𝑑𝑥 = 1 (original 

number of molecule, e.g. 1 mole, in area A) where A = 1 is a unit area (m2).  

Statistically, connecting the ensemble diffusion with single-molecule diffusion probability func-

tion using the ergodic principle, this concentration profile represents the probability density function 

(PDF) of a single molecule diffusing from the origin into space over time. It is a very important achieve-

ment in history that Stokes and Einstein come up with a single-particle random walking model to predict 

the diffusion constant of particles that are doing Brownian motion.10 The diffusion constant D for mole-

cules, colloids, proteins, or much bigger particles in a solution can be estimated by the Stokes-Einstein 

equation:11,12 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
  (3) 

Where kB is the Boltzmann constant, T is temperature, η is the viscosity of the solvent, and r is the radius 

of the particle. For a molecule approximated to a small ball, r can be estimated from the molecular weight 

𝑀𝑤 =
4

3
𝜋𝑟3𝜌 (kg/m3), where ρ is the density of the neat molecule in the solid or liquid state. All SI units.  

An interesting application of this diffusion theory is to predict the adsorption rate of molecules in 

a diluted solution to a solid surface. In 1937, Langmuir and Schaefer came up with an equation to predict 

the adsorption rate at the short-time limit (a continuous model).13 Langmuir and Schaefer obtained ad-

sorption kinetics by directly integrating the Fick’s 2nd law equation at a surface assuming to absorb any 

molecules that have “crossed” it.13,14 The time-dependent concentration gradient at the surface is   

(
𝜕𝑐

𝜕𝑡
)

𝑠
=

−𝐷𝐴𝑐𝑏

√𝜋𝐷𝑡
    (4) 

Integrating this equation over time, Langmuir and Schaefer gave the following equation:13 

𝛤(𝑡) = 2𝐴𝑐𝑏√
𝐷𝑡

𝜋
           (5) 

Where Γ(t) (unit mol) is the number of molecules adsorbed on an area of surface A (unit m2) at time t (s), 

cb (mol m-3) is the concentration of the adsorbate in the bulk solution, and D is the diffusion constant (m2 

s-1).  

In 1946, Ward and Tordai added a back-diffusion term in the equation to account for the adsorption 

during the longer period (Fig. 1):14 

𝛤(𝑡) = 2𝐴𝑐𝑏√
𝐷𝑡

𝜋
− 𝐴√

𝐷

𝜋
∫

𝑐(𝜏)

√𝑡−𝜏
𝑑𝜏

√𝑡

0
  (6) 

where c(τ) is the sub-surface molar concentration of the adsorbate near the surface (mol m-3), and τ is a 

dummy variable with the unit of time (s).  
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Because our current measuring techniques, especially various chemical imaging methods, have 

discrete integration times,4,6,22–24,9,15–21 finding the correlation between the continuous and discrete solu-

tions of adsorption is important. The difficulty of understanding lies in the self-similar fractal nature of 

diffusion and its probability density function. From a finite-difference point of view, the broadening of 

the ensemble diffusion profile is a combination of the broadening of a smaller fraction of the earlier pro-

files (Fig. 2). This creates a question on directly using the combined ensemble curves (Equation 2) to 

calculate the adsorption probability of a molecule from the bulk to the surface. The non-Gaussian diffu-

sion is often observed in a confined space or near a surface further complicated the problem.7,16 The 

adsorption of the molecules is greatly affected by the reabsorption of the reflected molecules.8 It is be-

coming important for us to re-evaluate the theory of adsorption under ideal conditions to reduce the dif-

ficulty in building or understanding more complicated models. 

 

Fig. 2. (A) Self-similar fractal nature of the ensemble 1D diffusion expressed with the Crank–Nicolson 

method. Localized molecules at time 0 diffuse into a Gaussian concentration profile at desecrated time 

τ over space x. Subgroups of these molecules (two examples are colored red and blue) then further 

diffuse into the profiles at time 2τ, where combining all molecules gives the black probability profile 

(Equation 2). This process continues till time t of interest. If τ is further divided into a smaller fraction 

of time τ’, a self-similar process evolves between the discrete times of nτ and nτ’.  (B) A simple method 

in obtaining the adsorption rate is by integrating the overall probability function and ignoring the fractal 

nature of the diffusion. Snapshot of particles (dots) showing at their origins and scheme of their 1D 

diffusing PDFs (Gaussian) over space at time Δt (colored curves). The probability of each particle hit-

ting an imaginary interface perpendicular to its diffusing direction is shown in the red-colored error 

functions ignoring its fractal nature and the mirror effect. Right, a scheme to integrate all the error 

functions. 
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In this report, we are comparing this theory with the results of Monte Carlo simulations to revisit 

the correlation between the continuous theoretical models with the discrete simulation results.25 An addi-

tional task of the comparison is to gain insights into a gap between the theory and experiments.24,26–32 

Namely, the Ward-Tordai equation is widely used to measure the effective diffusion constant from the 

experimental data.14,32 However, the effective diffusion constant is often several orders of magnitude dif-

ferent from the value predicted by the Stoke-Einstein equation.14,32 These complexities have limited the 

applications of the Ward-Tordai equation (Equation 5) in many fields such as chemistry, biochemistry, 

biophysics, biotechnologies, and chemical engineering.29,30 For example, it is critical to predicting how 

long it takes for a drug molecule to be adsorbed on the surface of a cell and how long it takes to diffuse 

to the target binding site inside a cell. It is also important to predict how long we should wait for a typical 

biosensing platform such as a glucose sensor and a surface plasmon resonance sensor. Predicting the 

diffusion of a molecule to the surface is also essential to calculate the corrosion rate of a pipe and the 

reaction rates in a heterogeneous catalytic system. 

 

Results and discussion 

In a typical measurement, we often monitor the accumulated molecule adsorbed on the surface 

with a time resolution τ as the integration time of each measurement step, e.g. a frame of a movie. As-

suming the locations of the molecules are known at the beginning of each frame, whose diffusion proba-

bilities will create broadening profiles described by Equation 2 by replacing the t with ∆t = τ (Fig. 3). If 

we integrate the error functions of all these profiles in the bulk solution (Fig. 3 and SI), this will represent 

the adsorption simulated using the same discrete-time resolution:  

𝛤(𝑖𝑛 ∆𝑡) = 𝐴𝑐𝑏√
𝐷∆𝑡

𝜋
              (7) 

Comparing Equation 5 with Equation 7, we can see that the discrete solution has a two-fold 

reduction in predicting the adsorption by ignoring the fractal diffusion that happens within ∆t. When we 

zoom in the time of the frame at when a molecule hits the surface, the probability function collapses into 

a binary state: it either adsorbs which truncates the average PDF, or it reflects which increase the proba-

bility of the adsorption in the next moment by the same amount as the truncated error function. We can 

call this doubling a “mirror effect” which analogies to the Zeno's paradoxes. As such, the overall proba-

bility of adsorption is twice the sum of the error functions shown in Fig. 3: 

𝛤(𝑖𝑛 ∆𝑡) = 2𝐴𝑐𝑏√
𝐷∆𝑡

𝜋
   (8)  

Equation 5 assumes the adsorption continues from frame to frame and the concentration gradient near 

the surface continuously evolves (the concentration decreases over time since molecules are absorbed by 

the surface), while Equation 8 assumes the concentration gradient evolves during the single frame and 

then recovered to the original at the beginning of the next frame. Equation 8 can be used to predict the 

number of collisions of the molecules to a non-stick surface with care being taken for choosing the length 

of ∆t. The average rate of solute colliding the wall measured in ∆t is 

〈𝑟〉(𝑚𝑒𝑎𝑢𝑠𝑟𝑒𝑑 𝑖𝑛 ∆𝑡)  = 2𝐴𝑐𝑏√
𝐷

𝜋∆𝑡
 (9) 

Equation 9 is confusing that the rate of collision depends on the observation time. As such, we run Monte 

Carlo simulations to reproduce the result of Equation 8 on a reflective surface and Equation 5 on an 

adsorptive surface.  
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Fig. 3A shows Monte Carlo simulations of molecules moving in a 1D space that bounced/reflected 

from both ends. Equation 7 is reproduced from the Monte Carlo simulation using a single PDF. Equation 

8 is reproduced by binning >1000 simulation steps to mimic the finer fractal diffusion by combining the 

PDFs with sub-frame resolution (Fig. 3B). The time-dependent collision rate is confirmed to cause by the 

repetitive collision of the same molecule in a measuring cycle if observed at a finer time resolution. A 

real mirror effect, doubling crossing probability, is also observed at an imaginary interface in the bulk. 

See SI for a discussion of Fig. 3A-B results. 

Fig. 3C shows Monte Carlo simulations of molecules moving in a 1D space that bounced/reflected 

from one end and adsorbed on the other. Because one adsorption per simulated step has been satisfied in 

such a simulation, no binning is required to reproduce the adsorption kinetics predicted by Equation 5. 

We can also visualize the evolution of the concentration gradient near the adsorptive surface and the bulk 

over time (Fig. 3D). This gradient is originally rationalized in developing the Langmuir-Schaefer and 

Ward-Tordai equations that the adsorption rate drops over time. 

   

Fig. 3. Metropolis Monte Carlo simulation of 1D diffusive molecules in (A, B) a cylindrical volume 

that bounces the molecules at both ends and (C, D) bounces on the ceiling but “absorbs” on the floor.   

(A) The trajectory of a randomly chosen molecule over time. (B) Averaged number of molecules collide 

with the walls (wall, blue), passing the interface from one direction (cr-d, red), or either direction (cr-

nd, yellow) within the binned observation time. Multiple collisions from the same molecule in one cycle 

are counted once. The number in the y-axis is normalized to the predicted values using Equation 7. (C) 

Number of molecules adsorbs on the floor over time overlayed with the predicted values using Equa-

tion 5. (D) Molecular concentration gradient evolving in the rod volume over time. (E) Scheme of 

finding characteristic Δt to calculate the adsorption frequency when the sub-surface concentration is 

the same as the bulk concentration, i.e. the short-time limit right after a fresh surface is exposed to the 

solution. 
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 Comparing the two simulations in Fig. 3, a confusing question raises: during a discrete measure-

ment, what ∆t one should choose to calculate the “initial” rate of the adsorption? The initial rate is com-

monly used in the kinetic analysis in the literature. During the first discrete measuring cycle, time 0-Δt, 

do we consider an evolving sub-surface-bulk concentration gradient or do we consider a uniform concen-

tration across the bulk as time 0?  

We can do a mind experiment with molecules aligned perfectly in space shown in Fig. 3E. To 

maintain the same molecular distribution within the time Δt, the average location of the molecule should 

be the same as the distance between two molecules, i.e. the net effect is they just switch positions during 

this time: 

𝑑0 =
1

√𝑐𝑏
3 =

∫ 𝑧𝑒
−𝑧2

4𝐷∆𝑡𝑑𝑧
∞

0

∫ 𝑒
−𝑧2

4𝐷∆𝑡
∞

0 𝑑𝑧

= √
4𝐷∆𝑡𝑐1𝐷

𝜋
   (10) 

where d0 and z are shown in Fig. 3E. Thus, the characteristic integration time ∆tc1D to calculate the aver-

age adsorption rate with no sub-surface concentration gradient is: 

∆𝑡𝑐1𝐷 =
𝜋𝑑0

2

4𝐷
   (11)  

 Thus, the average initial adsorption rate can be calculated by Equation 9: 

〈𝑟〉 = 2𝐴𝑐𝑏√
𝐷

𝜋∆𝑡𝑐1𝐷
= 4𝜋−1𝐴𝑑0

−4𝐷     (12) 

This equation has the correct unit s-1 for the dimensional analysis and is consistent with another calculation 

assuming the molecular exchanging time ∆tc1D is the average adsorption time for the characteristic surface 

area d0
2. That is 

〈𝑟〉 =
𝐴

𝑑0
2

1

∆𝑡𝑐1𝐷
= 4𝜋−1𝐴𝑑0

−4𝐷     (13) 

In short, ∆tc1D is the characteristic (1D) diffusion-limit time for the adsorption. Shorter than this 

time, the high average hitting rate and the low total number of adsorptions predicted by Equations 8 and 

9 are due to the isolated but repetitive collision of the same molecules on the surface. Longer than this 

time, the same molecule might have diffused away beyond the first nearby layer and diffuse back to the 

surface which should have been counted as “different” molecules if the sub-surface concentration has 

been maintained, i.e., Equation 9 has lower-estimated the collision frequency longer than this time. Thus, 

at the very beginning of the adsorption, ∆tc is the time between the molecules that have just collided with 

the surface and diffused away to the first nearest neighbor layer. 

Equation 13 derived from the single-molecule approach is consistent with the results from the 

ensemble method. Equation 13 predicts values that are consistent with the diffusion-limited steady-state 

flux of Pt nanoparticles on an ultramicroelectrode (UME).33 When diameter of UME is r = 10 µm, cb = 

25 pM, and D = 1×10-12 m2 s-1, the critical adsorption rate is calculated 0.37 s-1. This rate is consistent 

with the value calculated value 0.4 s-1 using the semiempirical steady-state flux equation.34,35 

If a 3D diffusion is considered and the molecules are hexagonal close packed, then from the Equa-

tion S12 in the SI, one can assume during the critical time the molecule has exchanged once with each 

12 nearest neighbors making the total number of exchange 12: 

2𝐴𝑐𝑏√
𝐷∆𝑡𝑐

𝜋
= 2 ∗ 4𝜋𝑑0

2𝑑0
−3√

𝐷∆𝑡𝑐3𝐷

𝜋
= 12 (14) 



8 

 

Thus, 

∆𝑡𝑐3𝐷 =
9𝑑0

2

4𝜋𝐷
  (15) 

And 

〈𝑟〉 = 2𝐴𝑐𝑏√
𝐷

𝜋∆𝑡𝑐3𝐷
=

4

3
𝐴𝑑0

−4𝐷        (16) 

Which is almost the same as the 1D argument. The difference might from the different assumption on 

molecular nearest neighbor packing models. 

The 4/3 order dependence of rate on concentration is very weird and I initially also think it is 

wrongly derived. For the adsorption, Equation 9 already shows that it should be the first-order dependent 

on the concentrations, thus, the 4/3 order dependence in Equation 13 is only for the initial rate at a short 

period when the symmetry is just broken by introducing the plane in the solution. It is unlikely to observe 

this dependence in a real adsorption experiment when a concentration gradient will develop. The depend-

ence can be re-expressed to a 2nd order dependence on the 2D concentration of the solute which make 

sense for the symmetry downgrading from 3D to 2D at the beginning. It is a useful initial assessment of 

the order of rate that is independent of the observation integration time, especially for experiments on a 

system with a small absorption area surrounded by a much larger inactive area and/or with a fast flow 

rate.4,6,7,9,23,25,36–39 However in the bulk solution, the 4/3 order dependence of the diluted concentration on 

the collision order is surprising. In the physical chemistry textbooks, 1st order dependence for high con-

centration gas reaction is supported by the collision theory, where collision frequency is a first-order 

function of concentration. This fraction order is consistent with previous simulations on the fractal nature 

of reaction kinetics that obtain abnormal reaction orders for simple reactions.40  

In the literature, the Ward-Tordai equation often gives several orders of magnitude differences 

between the measured effective diffusion constant and that predicted by the Stokes-Einstein equation. 

Thus, it is interesting to simulate the adsorption of molecules on a surface using the typical Langmuir 

surface adsorption model. We are simulating two systems, self-assembled monolayers (SAMs) and 

binding of molecules to a patterned surface. SAMs are used in many fields for surface functionalization 

and the latter is often used in biosensing systems, where both need a simple equation to predict the ad-

sorption kinetics. 

The Langmuir adsorption of SAM without energy barriers is simulated using the Gillespie algo-

rithm, a computer-based Monte-Carlo simulation method.41,42 Specifically, the bulk solute molecules 

with simulated 1D diffusion adsorb on empty sites and are rejected on occupied sites on the surface 

(Fig. 4A). A Ward-Tordai (WT) adsorption curve is observed with both the adsorption and back-diffu-

sion simulated (Fig. 4B, green curve). These simulations are empirically consistent with typical experi-

ments on SAMs, mostly saturate in a few minutes under similar conditions.43 The Ward-Tordai curve 

can be approximated to an exponential decay function with deviations at the early and late part of the 

curve: 

𝛤1 =
𝐴

𝑎
(1 − 𝑒−𝑘1𝑡)  (17)    

Where A is the total surface area simulated, a is the average size of a binding site, t is time, and k is the 

effective rate constant on the surface. The effective rate constant can be pulled out from fitting and la-

beled as k1, and the fitted curve is labeled Γ1 (Fig. 4B, orange curve).  
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If an ideal stirring has been introduced that maintains the bulk concentration with no gradient at 

the front edge of the surface, an exponential decay curve Γ2 with the same model as Γ1 but with much 

faster rate constant k2 than k1 would have been observed (Fig. 4B, red curve) with the rate constant, 

𝑘2 = 4𝜋−1𝑎𝑐𝑏
4/3𝐷           (18) 

Surprisingly, Equation 5 often considered short-time limited in the literature, overlaps with the 

simulated data most of the time till ~80% of saturation (Fig. 4B, Γ3). Equation 5 has not considered the 

shrinking active binding area of the SAMs (due to increasing adsorption coverage) and the slowing-

down evolution speed of the concentration gradient (due to the back-diffusion) near the surface over 

time. Coincidentally, these two effects cancel with each other during most of the adsorption time. 

 The difference larger than three orders of magnitude between k1 and k2 (Fig. 4C) explains the 

over six orders of magnitude variations of the effective diffusion constant calculated from the Ward-

Tordai equation on experimental data which is still confusing nowadays in the literature.14,32 We can 

speculate an answer from the simulation results that because convection, flow, and stirring naturally oc-

cur under typical experimental conditions, greatly changing the formation of the concentration gradient 

near the surface. 

 

Fig. 4. Monte Carlo (Gillespie algorithm) simulation of the formation of SAMs, and biosensing on a 

patterned surface. (A) Simulation scheme of SAMs. (B) A selected simulating curve (green) overlapped 

with three fitting and calculated curves explained in the main text. (C) The ratio between the fitted rate 
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constant vs the predicted rate constant with an ideal stirring for different bulk concentrations was sim-

ulated. (D) Scheme for the biosensing platform simulated, a 10 nm radius circle with 150 binding sites. 

(E) Adsorption curves with different bulk concentrations. The black curve is the fitting overlaid on the 

colored belt representing the standard deviation of 10 simulations. (F) Fitted rate constants. (G) Ratio 

between two times the fitted rate constant to the predicted rate constant over different bulk concentra-

tions simulated. Derivation of the adsorption equation from 1D to 3D is detailed in the supporting in-

formation. 

 

We can simulate the initial slope predicted by Equation 9 with a much higher consistency with 

experimental results than SAMs for a special case. We simulate a typical biosensing system on a patterned 

surface and/or under significant flow (Fig. 4D-G) when the sub-surface concentration of the solution does 

not change much throughout adsorption. This is simulated with a 3D diffusion model (see SI for detailed 

derivation and simulation conditions). Fig. 4D shows the simulation scheme with a 10 nm radius adsorp-

tion spot (with 150 binding sites, each occupies ~2 nm2) on the wall of a 1000 µm3 cubic volume. The 

rate constants are fitted with Equation 14 and shown in Fig. 4F.  

By replacing the ensemble area with the single-molecule binding area, Equation 9 predicts rate 

constants: 

𝑘3 =  2𝑎𝑐𝑏√
𝐷

𝜋∆𝑡
     (19) 

where a (m2) is the area of each binding site, cb (# m-3) is the bulk concentration, D (m2 s-1) is diffusion 

constant, and ∆t is the step time 0.001 s. 

Twice the simulated binding constant k1 (Equation 17) is compared to the theoretical values k3 

(Equation 19) (Fig. 4G). Twice is chosen to correct the fractal diffusion being ignored during the simu-

lation when the majority of the surface is reflective. We can conclude from the consistency between the 

two values that Equation 9 holds for such simulations (Fig. 4G), suggesting that this equation is applica-

ble in the biosensing and the drug delivery fields. These simulations are consistent with experimental 

results reported in the literature where single-molecule adsorption of dye molecules on immobilized DNA 

is measured,44 or protein-surface adsorption within an order of magnitude.24  

These simulations also suggest that the reverse argument is true, that is, for binding of diffusive 

solute molecules to isolated targets on a surface, Equation 5 can be used to measure the diffusion constant 

of the solute, overcoming the several orders of magnitude variation observed in the measurements of 

SAMs. 

 

Conclusions 

In summary, the surface adsorption kinetics represented by the Langmuir-Schaefer equation and 

the Ward-Tordai equation have been reproduced using Monte Carlo simulations. The fractal nature of 

diffusion is examined and simulated. A unique conclusion suggested by the single-molecule approach is 

that there is a characteristic integration time ∆tc for the equations which has never been a consideration 

for the ensemble approaches, a missing piece of the Ward-Tordai equation. That is, the characteristic time 

distinguishes the over-estimated multiple collisions from the same molecule shorter than this time and the 

lower-estimation of the collisions longer than this time. We can draw some interesting specific conclu-

sions from the Monte Carlo simulations. For example, when we measure the collision events of probe 

molecules in the bulk solution to a small target area on a flat surface, the frequency of seeing such events 
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is depending on the measuring time resolution and how the surface reacts with the probes. With the results 

obtained from the simulations, we may start to use the simple continuous and discrete equations carefully 

in various fields such as calculating the collision frequency of molecules in a diluted gas or liquid solution, 

membrane penetration, self-assembly, and biosensing. Widely use of these equations in these fields has 

yet been seen in the literature. It may also find applications in finer simulations such as molecular dynam-

ics simulations to skip non-interested mass transportation steps among the solvent. More careful simula-

tions and experiments should be carried out in the future to further test the limit of these equations. Nev-

ertheless, I hope you agree that the single-molecule approach pictured in this report is easier to understand 

than the ensemble equations of diffusion.  

 

METHODS 

The Monte Carlo simulation is carried out on a laptop equipped with an Intel i7 CPU (2.2 GHz) and 16 

Gb of memory. A basic version of MATLAB 2014b is used for all simulations. A single CPU is used for 

all simulations. A previously coded exponential regression fitting algorithm jcfit45 (Github) is used to fit 

the curves. The two major random functions to generate the step motion of each molecule are from 

MATLAB, rand() creating evenly distributed random numbers, and randn() generating Gaussian distrib-

uted random numbers. Detail parameters and settings for the simulations are listed in the text and the 

supporting information. The single-molecule diffusion of the solute molecules in confined semi-infinite 

volumes and their collisions to the walls are simulated. Inter-molecular collisions are not simulated. Typ-

ical computer time used for the simulations is from a few seconds to a few hours. See the last sections of 

the supporting information for two example source codes in MATLAB. 
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