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ABSTRACT

The chemical and structural properties of atomically precise nanoclusters are of great interest in numerous
applications, but the structures of the clusters can be computationally expensive to predict. In this work,
we present the largest database of cluster structures and properties determined using ab-initio methods
to date. We report the methodologies used to discover low-energy clusters as well as the energies, relaxed
structures, and physical properties (such as relative stability, HOMO-LUMO gap among others) for over
50,000 clusters across 55 elements. We have identified 589 structures which have energies lower than any
previously reported in the literature by at least 1 meV/atom, and we have identified 1340 new structures
for clusters that were previously unexplored in the literature. Patterns in the data reveal insights into the
chemical and structural relationships among the elements at the nanoscale. We describe how the database
can be accessed for future studies and the development of nanocluster-based technologies.

BACKGROUND AND SUMMARY

Small nanoclusters possess novel physical properties which differ from those of their bulk counterparts,
including discrete energy levels [1, 2], nonlinear optical properties [3], magnetism [4], high catalytic activity
[5-7], multiple absorption bands [7, 8], and enhanced photoluminescence [9-12]. These properties emerge
as a consequence of their small size and relatively high number of uncoordinated atoms on the surface,
and they can be tuned by altering the size and shape of the cluster [13, 14]. The past few decades have
shown significant progress in computational methods to predict these properties, but before a property
can be calculated it is necessary to first determine the atomic structure of the cluster. A number of
algorithms have been developed to predict the ground state atomic structure by comprehensively sampling
the potential energy surface (PES) of the cluster. These methods include genetic algorithms [15-17],
simulated annealing [18], particle swarm optimization [19], Bayesian optimization [20] and basin-hopping
[21] methods. In each of these methods, identification of the ground state structure is accomplished by
first calculating the energies of a large number of candidate structures and then selecting the structures
with the lowest energies.

Due in part to strong quantum finite-size effects, accurate determination of the relative cluster energies is
best accomplished using ab-initio calculations, and the number of low-energy configurational isomers is
estimated to grow exponentially with the number of atoms in the cluster [22, 23]. For these reasons
searching for the ground state atomic structure can be computationally demanding. An alternative
approach to identifying low-energy structures is to search through a reference database of known



structures. In recent years, materials databases for crystalline materials have transformed materials
research [24-28]. However, current nanocluster structure datasets are either unavailable to the public,
limited in scope, or primarily utilize lower levels of theory like interatomic potential models [29-32] and
tight binding models [33].

Here we present a database of low-energy cluster structures for 55 elements, for clusters of 3-55 atoms,
calculated using density functional theory (DFT) [34]. The database contains structures obtained through
an ab-initio genetic algorithm, an accelerated genetic algorithm using machine-learned interatomic
potentials, regression analysis of chemically similar elements, and a survey of the scientific literature. The
structures from the scientific literature include 3131 nanoclusters from the Cambridge Cluster Database
[33], which were identified using interatomic potentials. The 55 elements encompass different regions of
the periodic table, including alkali and alkaline earth metals, transition metals, post transition metals,
metalloids, and non-metals. Although we are continuing to add to this data set, to the best of our
knowledge, this dataset already constitutes the most extensive collection of computed cluster structures
at the DFT level of theory. The data set can be used to guide experimental synthesis of predicted
nanoclusters, to guide searches for low-energy clusters in different chemical environments, to
computationally screen for clusters suitable for a variety of applications, or to train machine learning
models. Since the structural energies were obtained using a consistent computational method, the data
also serves as a direct source for comparative benchmark studies of different DFT or other electronic
structure techniques within the context of atomic cluster modelling. All atomic structures and their
calculated properties are openly distributed, enabling researchers across the world to access it for free and
use it for further analysis.

METHODS

We have used the following methods to populate the Quantum Cluster Database with atomically precise
nanoclusters:

1. We have searched the literature for coordinates of previously-discovered candidate low-energy
clusters. The atomic structures and their literature sources are summarized in Table 1 and Sl Figure
S1.

2. We have used a genetic algorithm with ab-initio calculations. This method was primarily used to
identify some of the structures for elements that are computationally cheap as determined by the
number of valence electrons in the projector augmented wave potentials used (Table S1in Sl), such
as Mg, Li, Sb, Na, Ga, and Si. The details of the genetic algorithm method can be found in Sl section
1 as well as in reference [35].

3. We have used a genetic algorithm accelerated by actively learned moment tensor potentials
(MTP)[36-39] trained on-the-fly. This method has been used to find S clusters of sizes 51, 52, and
53 and we are currently using it to find additional clusters for B, P, and C.

4. We have used correlations in the total energies of different elements to predict low-energy clusters
for one element from known low-energy structures of chemically similar elements.

A brief description of each of these methods is provided below, with additional details in the Sl Section 1
and 2.



Low-energy structures mined from existing literature

Many of the clusters in the QCD have been studied before, including systematic DFT studies of small [40]
and large clusters [41] across different elements. We collected the atomic structures of clusters from
publications that provide atomic coordinates of reported low-energy structures, as calculated using DFT,
and from the Cambridge Cluster Database, which consists primarily of structures discovered using empirical
potentials. All structures from the literature were relaxed using our DFT settings as described in the section
on DFT calculations. In Table 1, we provide the literature references for these cluster structures grouped
by element.

Table 1 Clusters in current database that were extracted from the literature and their literature sources

Element | References Element | References
Ag [41-44] Nb [40, 41]

Al [41, 43-47] Ni [40-43, 46]
As Os [40, 41]

Au [40, 41, 44, 48-50] | P (45, 51]

B [52-56] Pb [42-44, 46, 57]
Ba [42-44, 46] Pd [40, 41, 58]
Be [59] Pt [40, 41, 60]
Bi Rb [42-44, 46]
C Re [40, 41]

Ca [42, 44, 46, 59] Rh [40, 41, 60]
Cd [40, 41, 61, 62] Ru [40, 41]

Co [40, 41, 63] S [64]

Cr [40-43, 46] Sh

Cs [42-44, 46] Sc [40, 41]

Cu [40-42, 46, 65] Se [66]

Fe [40-43, 67] Si [68-72]

Ga (41, 73, 74] Sn

Ge [75] Sr [42-44, 46]
Hf [40, 41] Ta [40, 41]

Hg [40, 41] Te

In [41] Ti [40, 41]

Ir [40, 41] Tl [41]

K [42-44, 46] V [40, 41]

Li [76] W [41-43, 46]
Mg [41, 45, 59, 77] Y [40, 41]
Mn [41, 45] Zn (61, 78]
Mo [40-43, 67] Zr (41, 61]

Na [41-43, 45, 79]




Low-energy structures from a genetic algorithm

Low-energy cluster structures were also identified by means of a genetic algorithm (GA)[80, 81], an
optimization algorithm based on natural evolution in which beneficial characteristics prevail over
successive generations. In our implementation, a GA run begins by populating a pool of clusters with
random structures and/or seed structures assembled from previous GA run. All cluster energies are
evaluated by relaxing the atomic positions using DFT[34]. Child clusters are generated from pool clusters
by using two types of operations: crossover, in which parts of each parent cluster are combined to form a
child cluster, and mutation, in which a subset of atoms of a cluster structure are randomly moved. If a child
cluster has lower energy than the highest-energy pool cluster and is not structurally equivalent to other
pool clusters, it replaces the highest-energy cluster of the pool. The cycle continues until the total number
of clusters in the GA run is at least 1000. Additional details of the genetic algorithm method can be found
in Sl section 1 as well as reference [82].

Learning on the Fly (LOTF)-GA

We have recently developed a way to accelerate the genetic algorithm using machine-learned interatomic
potentials trained on-the-fly using active learning [35-37].The machine-learned interatomic potentials are
used to quickly identify likely low-energy clusters, which are further relaxed locally by DFT to refine the
energies. This method has been used to identify low-energy structures for S clusters of size 51, 52, and 53.
Additional details about this method can be found in reference [35].

Correlations between energies for different elements

We have constructed additional low-energy cluster structures by taking advantage of the fact that for some
elements there are strong correlations between the total energies of geometrically similar cluster
structures. To identify these relationships, we created 55 representative cluster structure prototypes
(available in the SI) in a two-step process.

In the first step, we used the genetic algorithm to identify the low energy structures for clusters of 5, 10,
15 and 20 atoms of Al, Be, Li, Mg, Na, Si, Ta, and Ti clusters. These elements were chosen because they
cover different parts of the periodic table and are computationally inexpensive relative to others because
of the small numbers of valence electrons. The low energy configurations are provided in the supporting
information.

In the second step, we used these clusters as templates to create clusters of all the other elements. For
each target element, the interatomic distances in the cluster were scaled by the ratio of the nearest
neighbor distance of the target element and the template element. The nearest neighbor distances (Table
S2) are the bond distances in their most stable bulk form and are retrieved from the Materials Project [26].
To identify a chemically diverse set of elements, we used least-squares regression to express the unrelaxed
DFT-calculated cluster energies for each element as a linear combination of the energies of the remaining
54 elements. The residual errors for these fits provide a measure of the extent by which each element is
different from the other 54 elements. We selected the 13 elements with the highest errors: B, Ba, Be, Ca,
Cr, Cs, K, Li, Mg, Na, Rb, Sr, and Zn, as these are likely to have distinct ground state structures. We then
used the genetic algorithm to search for low-energy structures for clusters of 10, 15, 20, 25, and 30 atoms



for these 13 elements. The low-energy structures discovered by the genetic algorithm are shown in Figure
1, and their coordinates are provided in the supporting information. These 65 structures were used as
structural templates for determining relationships between structural energies among different elements.

To evaluate the diversity of the 65 template structures, we compared the clusters using a structural
similarity score as described in reference [83], where perfectly similar structures have a score of 0.0, and
we consider structures with a score above 0.3 to be dissimilar. Across the 5 different sizes and 13 different
elements, only five pairs have a similarity score less than 0.3, indicating that the remaining pairs of
structures are structurally distinct.

After discovering low-energy clusters with the genetic algorithm, we filled gaps on the database (i.e,,
elements and sizes where no clusters were available) using the correlations among the energies of the
elements. For a gap of a given element and size, we identified the most correlated element and used its 5
lowest-energy clusters of the same size as templates to generate new clusters that were likely to have low
energy. We followed the process of re-scaling the interatomic distances using the bulk nearest-neighbor
bond length.
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Figure 1. Template clusters used for the data driven method to expedite the filling of the database.



Na K CoCsRbRh Ni PdCu Al Tl In GaOs Ir AgHgCd Pt AuZn Ge Si Sn PboMgBeRuFe Zr Hf Y Ca SrBa LiMnSc Ti TaNbRe W BiSb B As P Te C Se S Mo V Cr

Na 025 0.14 -0.15 -0.19 026 0.3 025 0.04
K 027 0.17 012 0.17 025 034 022 005
Co 027 015 0.13 019 028 041 019 000
Cs 030 0.20 -0.08 0.15 0.22 0.32 0.16 0.07
Rb 031 021 -0.06 -0.13 -0.21 -0.31 0.19 0.05
Rh 032 021 001 0.15 022 034 021 001
Ni 026 014 001 022 028 037 030 008
Pd 033 021 009 0.14 -020 027 -028 0.10
Cu 037 027 047 -0.08 -0.13 -0.19 -0: 034 019
Al 032 016 0.01 007 015 022 007
T 013 008 0.02 006 038 -0: 014 004
In 018 0.10 0,04 006 013 0.02
Ga 022 016 0.10 001 031 -0.24 033 -0.41 009 0.04
Os 020 012 0.04 020 029 039 036 0.02 0.09
Ir 034 006 0,01 .00 023 035 023 015
Ag 0.32 0.31 -0.01 -0.04 -0.08 -0.28 -0.35 -0.43 037 029
Hg 027 030 0.06 -0.08 0.07 -0.25 033 -0.40 057 -0.38 034
Ccd 007 0.05 0.01 -0.12 025 -0.32 -0.41 -0.18 -0.15
Pt 011 0.07 0.08 020 028 042 022 0.25
Zn 021 016 0.09 -0.07 -0.13 -0.19 0.00 -0.05
Ge 37 030 0 % 039 042 015 0.13 0.12 0.1 0.07 0.13 0.1 011 002
Si ¥ 036 037 010 0.06 0.06 0.01 -0.15 -0.22 0.24 -0.03 -0.09
Sn 034 035 005 002 -0.01 -0.06 -0.23 -0.29 -0.28 0.00 -0.05
Pb 0.30 0.29 0.00 -0.04 -0.09 -0.17 -0.32 -0.39 -0.36 -0.03 -0.04
Mg 027 0.16 0.06 -0.17 0.2 0.29 -0.41 .21 -0.04
Be 23 0.11 005 022 028 038

Ru .36 0.25 -0.10 -0.08 -0.18 0.35

Fe 22 012 -0.25 -0.20 -0.29 043

Zr

Hf

Y

Ca

Sr

Ba

Li

Mn

Sc

Ti

Ta

Nb 001 032 0.22 -0.02 0.14 -0.15 0.23 0.07

Re 021 043 032 0.10 -0.03 -0.09 -0.18 0.01

W 029 034 040 038 037 039 020 030 023 029 036 035 0 027 014 011 007 0.12 025 028 023 047 015 0.07 040

Bi 025 027 027 030 031 032 026 0.33 037 041 040 027 023 036 022 0.4 0.1 -0.02 -0.06 -0.07 0.18 -0.09 0.01 0.09 0.04 0.36

Sb 014 047 015 020 021 021 014 021 027 032 0

041 030 016 0.11 025 0.12 005 0,02 -0.12 -0.17 0.18 -0.28 -0.18 -0.07 -0.18 -0.03 028

B 015012013 008 005 001 001 009 047 016 013 0.18 022

0.28 034 031 030 0.
AS 019 017 018 015 013 -0.15 022 -0.14 008 001 008 010 0.6 020 008 001 -006 007 014 018 022 015 010
P 026-025028 -022 021 022 026 020 -0.13 0.07 0.02 004 0.0 0.2 001 -004 0.08 0.05 011 047 021 013 006

Te -0.36 -0.34 -0.41 -0.32 031 -0.34 -0.37 -0.27 -0.19 -0.15 -0.06 -0.06 0.01 -0.04 -0.09 -0.08 -0.07 0.01 0.07 0.14 0.16 0.12

c 041 -0.42 038 037 031 020 -023 028 025 -0.12 -0.08 002 009 0.11

Se 041 032 031 026 029 035 035 033 -025 -0.20 -0.13 -0.07 007 <

s 043 -0.40 032 -0.28 021 -0.13 013 -0:

Mo 041 042 041 -0.19 011 -0 -038 024 007 001 040 042
V025022 0.19 016 019 -021 030 0.28 -0:34 022 -0.14 -0.13 009 -0.02 023 037 038 -0.18 022 -027 0.00 011 -0.03 0.00 -0.03 -021 012 -0.05 -0.02 0.08 002 -0.19 036 -0.39 037 031 -0.17 014 020 034

Cr 00t 005 003 007 005 001 008 -0.10 019 -0.07 004 002 0.04 008 -0.15 020 -034 015 -025 032 -0.05 002 0,08 -0.05 .04 -004 007 022 025 07 033 0.14 -005 008 -003 007 020 022 033 036 -0.32 040 031 0.0 000 015 011

Pearson correlation coefficient

Figure 2. The Pearson correlation coefficients for all 55 elements calculated from the energies of unrelaxed
structures, sorted so that two similar elements are close to each other. Blue regions represent positive
correlation, red represents negative correlation, and white represents no correlation. The data used in this
figure are available as a csv file in the Sl and in through the website interface.



DFT calculations

All DFT local energy minimizations were carried out using the Vienna ab initio Simulation Package[84]
(VASP) with the Perdew-Burke-Ernzerhof [85] (PBE) generalized gradient approximation exchange-
correlation functional. We used the projector-augmented wave [86] method, with the potentials listed in
Table S2 in the SI. The convergence criterion for electronic self-consistency was set to 107 eV per cluster.
Structures were optimized using the conjugate gradient approximation [87, 88] as implemented in VASP
until all the atomic forces were less than 0.15 eV/A. All calculations were run at the gamma point with spin
polarization. Methfessel Paxton smearing [89] with o= 0.001 eV was used to achieve high accuracy when
calculating final energies. To accelerate convergence for some clusters, a two-step minimizations scheme
was adopted with smearing of 0.1 eV in the initial step for faster convergence and a smaller value of 0.001
eV for the final step. Symmetry was turned off for all DFT calculations to increase the likelihood that the
calculation completed successfully.

To determine the effect of Spin Orbit Coupling (SOC) on predicting final energies, we performed PBE+SOC
for 11 different heavy-metal elements selected based on ref [41]. As we found the inclusion of SOC had
little effect on the ranking of low-energy structures, to maintain the consistency of the QCD data we have
not included SOC-predicted total energies and atomic structures in the QCD database. More discussion of
the effects of SOC, including simple linear equations for estimating SOC-calculated energies from the
energies reported in the QCD, can be found in section 5 and section 6 of the SI.

Workflow

We identify candidate low-energy cluster structures using one of the four methods listed above. DFT
calculations were performed on these clusters structures before adding them to the database. An outline
of the high-throughput workflow used in these DFT calculations is provided in Figure 3. In the first step we
check whether the ionic relaxation has converged. If it has not, we rerun the relaxation with modified VASP
settings such as increased wall time or a different optimization algorithm.

All DFT calculations were performed using VASP which can only do periodic calculations, so each cluster is
in effect surrounded by translationally equivalent clusters. Hence it is essential to use a simulation cell that
is sufficiently large to avoid interaction among periodic images. We found that this was best accomplished
using two different criteria for different sets of elements. For elements in the Groups 1A and 2A on the
periodic table, the minimum distance between neighboring clusters must be greater than 3.5 times the
distance between nearest neighbor listed in Table S3 in the SI. For all other elements the minimum distance
between periodic images must be greater than 10 angstroms. If, after relaxation, the minimum distance
between neighboring clusters was too small, then we increased the supercell size and ran the DFT
calculation again. We found that these "box size" criteria are sufficient to reach energy convergence within
2 meV/atom in all 1135 tested cases (please see Figure S8 and additional details in the SI) with a root mean
squared error of 0.118 meV/atom.

The atoms sometimes form periodic configurations that correspond to nanowires or slabs. We filter out
these types of structures by discarding clusters that have a minimum distance between periodic images



smaller than 1.5 times the atomic nearest neighbor distance. We also screen for discontiguous clusters
using this same criterion and discard any discontiguous clusters that are identified.

To ensure the Quantum Cluster Database contains only unique clusters for a given element and size, when
two clusters have a structural similarity score [83] less than 0.3, the cluster with higher energy is discarded.
If the higher-energy cluster was from the literature, the appropriate literature references are assigned to
the structurally similar low-energy cluster. All the filters that ensures the quality of the clusters in the
database are summarized in the Figure 3.

The properties and metadata described in the Data Records section are calculated for each cluster and
stored in a PostgreSQL database. Finally, the data are displayed in the Quantum Cluster Database website
and output as a JSON file and a .csv file.

DFT calculations on magnetic clusters

We used spin polarized calculations with default magnetic initializations (1 ug /atom) for all elements other
than Fe, Mn, Co, Ni, Ru, Rh, V, Cu, and Cr. We found that the final magnetic states for Fe, Mn, Ni, Ru, Rh,
V, and Cr clusters are particularly likely to depend on the magnetic initialization. To increase the likelihood
of relaxing into the lowest-energy magnetic state for these elements we run multiple calculations with
different magnetic initializations, as listed in Table S4. The calculations that yields the lowest energy is
selected for inclusion in the QCD. Based on benchmarks on 2228 clusters of above-mentioned elements
selected from an early version of the QCD, we found that this approach yielded the lowest-energy magnetic
state more than 97% of the time. For clusters of Cu and Co, we find that the magnetic initializations with 3
Ug /atom relaxed into lowest energy configurations in all of our benchmark calculations. Additional details
of the magnetic initializations are provided in section 2 of the SI.
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Figure 3. Schematic overview of the high-throughput workflow used in this study and the quantities
calculated within the framework of the database.

DATA RECORDS

The files from the DFT calculations of the more than 50,000 clusters are publicly available through the
NOMAD database [90, 91]. A web interface to visualize the structures, the correlations, and the properties
can be accessed through the website of the Mueller Research Group (http://muellergroup.jhu.edu/qcd),
from where the data can be downloaded in as a JSON file or as a comma-delimited file.



Table 2. Keys, types of data, and description of the QCD data in the JSON file and .csv format

Key Datatype | Description

cluster_id string ID of the cluster in QCD

element_symbol string symbol of the element of the cluster

n_atoms number number of atoms in the cluster

n_val_electrons number number of valence electrons corresponding to the
pseudopotential

energy_dft number energy in eV

energy_relative number energy in eV above the lowest energy structure of the same
element and size

energy_n_minus_one number formation energy in eV relative to the lowest energy structure
of the same element but of size N-1

energy_n_plus_one number formation energy in eV relative to the lowest energy structure
of the same element but of size N+1

homo_lumo_gap number HOMO-LUMO Gap in eV

magnetic_moment number Magnetic moment of the cluster in units of Bohr magneton (js)

similar_structures list space delimited list of cluster_id of clusters within QCD that are
similar to this cluster

references list space delimited list of literature references

structure_xyz string structure represented in XYZ format ©

structure_poscar_format | string structure represented in POSCAR format @

Note: (a) semicolons are used instead of line breaks.

File format

The data is available for download as a JSON file and as a .csv file. Both can be downloaded from the

Quantum Cluster Database website. The first level of the JSON file contains a unique index for every cluster,

the next level contains the cluster_id described in Table 2, and the next level contains the other keys

described in Table 2, with the corresponding values. The columns of the .csv file correspond to the keys
described in Table 2. The VASP DFT calculation files for each cluster are available in the NOMAD repository
in the form of text files from the inputs and outputs of VASP.




Properties

For each cluster of a given number of atoms N and element type k, the database contains the energy
relative to the lowest energy structure of size N and species k, the formation energy with respect to the
stable cluster of size N-1 of species k (equation (1)), the formation energy with respect to the N+1 stable
cluster of the same species (equation (2)), the HOMO-LUMO gap, the number of valence electrons
considered by DFT, the magnetic moment, a list of similar structures within the Quantum Cluster Database,
a list of literature references for the cluster (downloadable in .bib format), the coordinates (downloadable
in XYZ format), and an interactive visualization of the cluster. The formation energies are calculated using
the following equations:

Efnn-1=En— En-1 = Eqrom - (1)
Efnn+1 = En + Egtom — Eny1 (2)

where Ey is the energy of the cluster of size N, En.1 is the energy of the cluster of size N-1, Ens1 is the energy
of the cluster of size N+1, and Eatom is the energy of an isolated atom. The energies for isolated atoms used
in these calculations are provided in Table S3 of the SI.
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Figure 4. Histogram of energy differences between the lowest-energy clusters reported in the literature
(minus 1 meV/atom to account for DFT precision) and the lowest-energy clusters in the QCD. The Quantum
Cluster Database contains 589 clusters that have a lower energy than the lowest-energy clusters from the
literature.



For a given cluster size and element, we compared the lowest-energy cluster from the literature against
the lowest-energy non-literature cluster in the database to assess which had lower energy. There are 1540
systems for which there is at least one literature structure in the database. The database contains clusters
that are lower in energy by at least 1 meV / atom for 589 of these (Figure 5).

The Quantum Cluster Database contains 1483 structure types or templates (i.e., relative arrangements of
atoms) that were not previously reported in the literature. The 1483 templates were identified from the
set of all clusters with calculated energies within 1 meV/atom of the lowest energy cluster with the same
element and size. In comparison, there are 684 templates of low-energy templates from the literature
(Table1).

Cluster size
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

-

Element

=

— - ]

-Clusters from DFT articles and from CCD |:|Clusters from CCD Dclusters from DFT articles I:INew elements and sizes coverd by QCD |:|Unexp\ored systems

Figure 5. A summary of previous studies of the structures of elemental clusters with 3-55 atoms, including
publications that used DFT to find atomic structures (green and blue) as well as systems covered in the
Cambridge Cluster Database (grey and blue). The Quantum Cluster Database covers these clusters as well
as 1340 regions that were previously unexplored (shown in orange).



Before our work, here were 1575 cluster elements and sizes covered by the literature out of 2915, which
corresponds to 54%. With the Quantum Cluster Database, the percentage covered increased to 100%.

USAGE NOTES

When clicking on an element, the website interface enables the visualization of the energetic correlations
with other elements (Figure S10a) and the visualization of the relative energies for clusters of every size
(Figure S10b). When clicking on a particular cluster, the properties (Table 2, except for the raw DFT energy
and the structure in POSCAR format) are displayed together with an interactive view of the cluster and
options to download the XYZ structure file and references in BibTeX format.

CODE AVAILABILITY

The implementations of the DFT and MTP genetic algorithms used to search for low-energy structures are
available via GitLab: https://gitlab.com/muellergroup/cluster-ga.
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Figure S1. A summary of previous studies of the structures of elemental clusters with 3-55 atoms, including

publications that used DFT to find atomic structures as well as systems covered in the Cambridge Cluster

Database. The detailed literature sources are provided in Table 1 in the main article.



1. Identifying low energy clusters using the genetic algorithm

Low-energy atomic structures of clusters were identified using a genetic algorithm (GA), a global
optimization technique inspired by the principles of natural selection [1]. We implemented our own GA
code based off the Birmingham Parallel Genetic Algorithm (BPGA) with some variations [2, 3]. Figure S2
shows a schematic workflow of the genetic algorithm, details of which are described in our previous work
[4].

The majority of GA searches in this work were performed using GA with pure DFT calculations (referred as
GA_DFT in our previous work [5]). We evaluated multiple variations of the genetic algorithm as we filled
the database. The final parameters and workflow were the same as we reported in reference [5], with
some exceptions. First, we used a pool size of 10 and stopped the GA once the total number of clusters
reached 1000. We also included “seeding” as a genetic operation in GA searches for sulfur clusters, with
the ratios of pool clusters generated from seeding, mutation and crossover operations equal to 1:1:3. In
the seeding operation, new structures are generated from seed structures which are typically known low-
energy structures with different numbers of atoms. Atoms are either randomly added or subtracted from
the seed structure until it reaches the target size. Seeding was included for sulfur clusters more than 10
atoms to reduce the chance of clusters being relaxed into discontiguous forms. Low-energy sulfur clusters
with N atoms were used to seed searches for clusters with N+1 to N+5 atoms. For large sulfur clusters with
52 and 53 atoms, we initialized them as zig-zag rings, as suggested by the morphology of stable small-size
clusters, and then collected the ones that are contiguous after relaxed by DFT. We accelerated the GA
search for sulfur clusters with 51, 52, and 53 atoms with on-the-fly active learning (termed as “GA_AL" in
our previous work [4]).

In the energy evaluation by DFT during the GA runs, we set the side length of each simulation box to ensure
a distance of at least 10 angstroms between periodic images. For Na, K, Rb, Cs, Mg, Sr, and Ba, the distances
are increased to at least 15 angstroms because they have larger atomic radii compared with the rest.
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Figure S2. Schematic workflow of the genetic algorithm used for constructing the Quantum Cluster
Database.



Table S1. Pseudopotentials used in VASP calculation to construct Quantum Cluster Database.

Element | Name (TITEL from POTCAR)
Ag PAW_PBE Ag 02Apr2005

Al PAW_PBE Al 04Jan2001

As PAW_PBE As 22S5ep2009

Au PAW_PBE Au 040ct2007

B PAW_PBE B 065ep2000

Ba PAW_PBE Ba_sv 065ep2000
Be PAW_PBE Be 06Sep2000

Bi PAW _PBE Bi 08Apr2002

C PAW_PBE C 08Apr2002

Ca PAW_PBE Ca_pv 065ep2000
Cd PAW_PBE Cd 06Sep2000

Co PAW_PBE Co 02Aug2007

Cr PAW_PBE Cr 06Sep2000

Cs PAW Cs_sv_GW 23Mar2010
Cu PAW_PBE Cu 22Jun2005

Fe PAW_PBE Fe 065ep2000

Ga PAW_PBE Ga 08Apr2002

Ge PAW_PBE Ge 05Jan2001

Hf PAW_PBE Hf 20Jan2003

Hg PAW_PBE Hg 065ep2000

In PAW_PBE In 08Apr2002

Ir PAW _PBE Ir 06Sep2000

K PAW_PBE K_pv 17Jan2003
Li PAW_PBE Li 17Jan2003

Mg PAW_PBE Mg 13Apr2007
Mn PAW_PBE Mn 06Sep2000
Mo PAW_PBE Mo 08Apr2002
Na PAW_PBE Na 08Apr2002

Nb PAW_PBE Nb_pv 08Apr2002
Ni PAW_PBE Ni 02Aug2007

Os PAW_PBE Os 17Jan2003

P PAW_PBE P 06Sep2000

Pb PAW_PBE Pb 08Apr2002

Pd PAW_PBE Pd 04Jan2005

Pt PAW_PBE Pt 04Feb2005

Rb PAW_PBE Rb_pv 065ep2000
Re PAW_PBE Re 17Jan2003

Rh PAW_PBE Rh 04Feb2005




Ru PAW_PBE Ru 04Feb2005

S PAW_PBE S 065ep2000

Sb PAW_PBE Sb 065ep2000
Sc PAW_PBE Sc 04Feb2005

Se PAW_PBE Se 065ep2000

Si PAW_PBE Si 05Jan2001

Sn PAW_PBE Sn 08Apr2002

Sr PAW_PBE Sr_sv 07Sep2000
Ta PAW_PBE Ta 17Jan2003

Te PAW_PBE Te 08Apr2002

Ti PAW_PBE Ti 08Apr2002

Tl PAW_PBE Tl 08Apr2002

Vv PAW_PBE V 08Apr2002

W PAW_PBE W 08Apr2002

Y PAW_PBE Y_sv 25May2007
Zn PAW_PBE Zn 065ep2000

Zr

PAW_PBE Zr_sv 04Jan2005




Table S2. List of nearest neighbor distance of all 55 elements used in this work.

Element | Nearest Neighbor Distance (A)
Ag 2.895913
Al 2.855954
As 2.550183
Au 2.915931

B 1.666025
Ba 4.356367
Be 2.201364
Bi 3.099441
C 1.421378
Ca 3.817938
Cd 2.978816
Co 2.458547
Cr 2.446799
Cs 4.631936
Cu 2.548771
Fe 2.442529
Ga 2.525538
Ge 2.500974
Hf 3.12281
Hg 3.291589
In 3.279844
Ir 2.731446
K 4,145087
Li 2.967711
Mg 3.150178
Mn 2.127518
Mo 2.721704
Na 3.383385
Nb 2.870738
Ni 2.46851
Os 2.684334
P 2.197732
Pb 3.555145
Pd 2.774875
Pt 2.794795
Rb 4.492154
Re 2.74767
Rh 2.694163
Ru 2.640016




S 2.059424
Sb 3.083376
Sc 3.210087
Se 2.361713
Si 2.366088
Sn 2.877918
Sr 4.236609
Ta 2.858984
Te 2.903174
Ti 2.627395
Tl 3.421145
\ 2.570188
W 2.740305
Y 3.541122
Zn 2.611721
Zr 3.162049




Table S3. Energy of an isolated atom for 55 different elements calculated using DFT

Element Eatom(€V/atom)

Ag -0.19857857
Al -0.20506413
As -1.69978222
Au -0.180639
B -0.28367486
Ba -0.03341486
Be -0.03684602
Bi -1.32289577
C -1.26448975
Ca -0.05385721
Cd -0.16384004
Co -1.44899667
Cr -2.33322218
Cs -1.79835245
Cu -0.23767466
Fe -0.64208307
Ga -0.19560421
Ge -0.75666836
Hf -3.47174222
Hg -0.11848548
In -0.17174232
Ir -1.42697803
K -0.15039732
Li -0.29270415
Mg 0.00077358
Mn -5.15415012
Mo -3.05645278
Na -0.21920527
Nb -2.95767864
Ni 0.10158691
Os -2.92048122
P -1.87039627
Pb -0.5951573
Pd -1.46605907
Pt -0.40789317
Rb -0.13888444




Re -4.59821658
Rh -1.01346064
Ru -1.54726228
S -0.88115573
Sb -1.40767101
Sc -1.98139794
Se -0.76220148
Si -0.81939324
Sn -0.64363261
Sr -0.06485411
Ta -3.66265903
Te -0.65162829
Ti -2.24955619
Tl -0.15061158
Vv -2.47033984
W -4.10529928
Y -2.23495881
Zn -0.16143445
Zr -2.21436277




2. DFT Calculation strategies for treating magnetic clusters

The final magnetic state of a cluster may be in a local minimum that is not the global minimum. To reduce
the chance of this happening, for each of the magnetic elements (Fe, Mn, Co, Ni, Ru, Rh, V, Cu, and Cr) we
evaluated the effect of using different initial magnetic moments (+1 ug/atom, +2ug/atom, +3ug/atom, and
+5 ug/atom), as set using the MAGMOM parameter in VASP. We evaluated the final magnetic states and
energies of 2228 clusters with between 3-55 atoms selected from an early version of the QCD. We found
that for some elements (e.g. Co) the final state is almost always independent of MAGMOM, whereas for
others (e.g. Cr) it is common for the cluster to get trapped in local minima, making it important to initialize
with multiple MAGMOM values. Often clusters with an odd-number of electrons would have a net
magnetic moment of 1 ug per cluster, and clusters with an even number of electrons would have a net
magnetic moment of O ug, but this behavior was largely independent of MAGMOM. In Table S4, we list
the elements which retain non-zero magnetic moments after relaxation as well as the effects of multiple
magnetic initializations (as shown in Table S5) on magnetic moments after relaxation.

For each element we selected a subset of MAGMOM values that included the lowest DFT energy for a given
size (within 1 meV/atom) at least 97% of the time (Table S4). These values were used to initialize the DFT
calculations. For elements for which multiple MAGMOM values were used, for each cluster the calculation
that resulted in the lowest energy was added to the database.

Table S4. Finite magnetic moments after relaxation with default and multiple magnetic initializations per
atom using the MAGMOM flag in VASP. This analysis was done considering clusters with all sizes between
3-55 atoms for each magnetic element.

Element | Mean absolute STD DEV Mean absolute STD DEV

magnetizations in (ug/atom) magnetizations in (ug/atom)

with default magnetic with multiple magnetic

initialization in VASP initialization in VASP
Fe 3.05 0.17 2.77 0.36
Mn 2.76 0.63 2.33 1.04
Co 1.92 0.18 1.92 0.104
Ni 0.8 0.12 0.77 0.081
Ru 0.7 0.63 0.69 0.388
Rh 0.69 0.32 0.654 0.341
V 0.39 0.92 0.404 0.455
Cu 0.03 0.06 0.036 0.056
Cr 0.45 0.42 0.954 0.685




Table S5. Magnetic initialization schemes for magnetic elements.

Element Magnetic
Initializations
(MAGMOM in
INCAR files)

Fe +3,+5

Mn +1, 42, +5

Co +3

Ru +1, 43, +5

Rh +1, 42, +3

V +1, 42, +3

Cu +3

Cr +1,+2, +3,+5




3. Effect of Spin Orbit Coupling

To determine whether it is necessary to use spin-orbit-coupling (SOC) to identify low-energy structures for
heavy-metal elements, we performed additional PBE + SOC calculations on the lowest energy clusters of
11 different heavy-metal elements (Au, Bi, Hf, Hg, Ir, Os, Pb, Pt, Re, Ta, and Tl) with sizes ranging from 3 to
55 atoms. Additionally, we choose the six (where available) lowest energy isomers for small (size 10),
medium (size 30), and large (size 55) clusters to study the effect of SOC on relative ordering. The PBE+SOC
calculated energies linearly correlated with PBE computed energies (Figure S3). We also developed a cheap
proxy to evaluate PBE+SOC computed energies from PBE computed energies for these 11 different
elements using linear regression. The conversion factors (slope and intercept) for converting PBE+SOC
energies from PBE energies for these elements are provided in Figure S4. We also found that the use of
SOC has little effect on the energetic rankings of isomers (Figure S5, Figure S6, and Figure S7). For these
reasons, and to maintain consistency in the database, we have not included the effects of SOC in the
calculated energies in the QCD. For three small clusters (with compositions Pbig, Tlip and Hfio), the PBE +
SOC calculations relaxed to clusters that were structurally dissimilar to the relaxed PBE structures (as
determined by similarity scores greater than 0.3). Because the energies for the two methods were not
calculated for the same structure, these clusters are excluded from the comparisons in Figure S5, Figure S6
and Figure S7.
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Figure S3. Total energies from PBE calculations vs. energies from PBE+SOC calculations for 11 heavy-
metal elements (Au, Bi, Hf, Hg, Ir, Os, Pb, Pt, Re, Ta, and Tl).
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Figure S4. PBE + SOC energy conversion from PBE energies using least-square linear regression fit
E(PBE+SOC) =m*E(PBE)+b. The linear parameters (slope m and intercept b) along with their RMSE error are
provided for each element in the legend of each subplot.
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Figure S5. Effect of PBE + SOC on relative energy ordering among isomers of Au, Bi, Hf, Hg, and Ir clusters.
Relative energies with respect to the lowest energy isomers are plotted for each polymorph, and the
polymorphs are sorted based on the PBE+SOC energies. One Hfig structure was not included in this plot
because PBE and PBE-SOC relaxed to dissimilar structures.
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Figure S6. Effect of PBE +SOC on relative energy ordering among the isomers of Os, Ta, Pb, Pt, and Re
clusters. Element name and their sizes are stamped in each subplot. Relative energies with respect to
lowest energy isomer are plotted against each polymorph which is sorted w.r.t PBE+SOC energies. One
Pb1o structure was not included in this plot because PBE and PBE-SOC relaxed to dissimilar structures.
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5. Box Size Analysis

To investigate whether the box sizes used in the QCD are sufficiently large, we performed benchmarks on
1335 clusters from 49 different elements with 3-55 atoms selected from the QCD. In all cases, energies
were converged within 2 meV/atom, with a root mean square box size error of just 0.118 meV/atom.
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Figure S8. Effect of change in computational box size from currently used box length in the database on
predicting total energies.
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Figure S9. The Pearson correlation coefficients for all 55 elements calculated from the energies of relaxed
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(top) and relaxed (bottom) structures. The data used to generate this figure are available as a csv in the Sl
and through the website interface.
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