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Abstract: Electrochemical CO2 reduction (eCO2R) is an emerging technology

that is capable of producing various organic chemicals from CO2, but its high

electricity cost is a big economic obstacle. One solution to reduce the cumula-

tive electricity cost is demand side management, i.e., to adjust the power load

based on time-variant electricity prices. However, varying the power load of

CO2-electrolyzers often leads to changes in Faraday efficiency towards target

components and thereby influences the product composition. Such deviations

from the target product composition may be undesired for downstream pro-

cesses. We tackle this challenge by proposing a flexible operating scheme for a

modular eCO2R process. We formulate the economically optimal operation of an

eCO2R process with multiple electrolyzer stacks as a parallel-machine schedul-

ing problem. Adjusting the power load of each sub-process properly, we can save

electricity costs while the desired product composition is met at any time. We

apply an algorithm based on wavelet transform to solve the resulting large-scale
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nonlinear scheduling problem in tractable time. We solve each optimization

problem with a deterministic global optimization software MAiNGO. We exam-

ine flexible operation of a modular eCO2R process for syngas production. The

case studies show that the modular structure enables savings in the cumulative

electricity cost of the eCO2R process via flexible operation while deviations in

the syngas composition could be reduced. Also, the maximum ramping speed

of the entire process is found to be a key parameter that strongly influences the

cost saving.

1 Introduction

Electrochemical carbon dioxide (CO2) reduction (eCO2R) is an emerging tech-

nology that is capable of producing various organic chemical compounds out

of CO2. Being integrated with renewable energy systems, eCO2R has been

known as a promising alternative to conventional fossil-based chemical produc-

tion. Recent research on eCO2R has focused on synthesis of novel catalysts for

the production of, e.g., carbon monoxide, formic acid, ethylene, and ethanol [9].

In addition, electrode and reactor design [25], conceptual process design [7], and

techno-economic and sustainability analysis [20] are of interest as well.

The electricity cost is one of the major cost drivers of eCO2R technologies

[14]. A straightforward solution to the electricity cost reduction is to lower the

overpotential of, particularly, the anode oxygen evolution reaction [24]. On the

other hand, if an eCO2R process is powered by grid electricity, one can adjust

the plant load to fluctuations in electricity (spot) prices. This flexible operation,

namely demand side management (DSM) or demand response (DR), leads to

savings in overall electricity costs [8]. In academia, DSM has been applied to

various industrial plants, such as air separation units, chlor-alkali plants, and

aluminium plants [18].

A major challenge of flexible operation of eCO2R processes is that the com-

position of the effluent stream depends on the current density (or applied volt-
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age). For example, increasing the current density of CO2-electrolyzers dedicated

to syngas (a mixture of hydrogen and carbon monoxide) production leads to a

higher H2/CO ratio due to the changes in the Faraday efficiencies toward hydro-

gen and carbon monoxide [26]. The deviation of the product composition from

the nominal level is typically undesired for downstream processes. This feature

is distinct from other conventional electrolysis, such as water electrolysis and

chlor-alkali electrolysis, in which the product concentrations do not significantly

change with respect to the current density. To meet the product specification, a

part of the components should be separated, which would complicate the process

configuration and worsen the economic viability as well.

To tackle this challenge, we propose a flexible operation of modular eCO2R

processes. Motivated from the parallel machine scheduling [13], an eCO2R pro-

cess consists of N identical sub-processes that can be operated independently

from one another. Adjusting the power load of each sub-process properly ac-

cording to the instantaneous electricity prices rather than keeping the power

load fixed, we can save the overall electricity costs while the desired product

concentration can be met.

We formulate scheduling problems to determine the optimal load profile of

each sub-process. In this study, syngas is chosen as a target product of an

eCO2R process. Since the syngas production rate and power requirement are

represented as nonlinear functions of the current density, we solve nonlinear

scheduling problems. In order to reduce the computational cost, we apply our

recently proposed algorithm based on wavelet transform [21]. We conduct a

sensitivity analysis that perturbs the maximum ramping speed of each sub-

process to see how much it influences the electricity cost savings.

2 System description

Figure 1 depicts the block flow diagram of an eCO2R process, which is mod-

ularized and thus capable of running flexibly. The entire system consists of N
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Fig. 1: Block flow diagram of a generalized modular eCO2R process for chemical
production

identical sub-processes that are independently operable. Herein, we consider a

moderate size of N (2 „ 8). Carbon dioxide and water are fed into electrolyzer

stacks in each sub-process and then target chemicals are synthesized at the cath-

ode chambers via electrochemical CO2 reduction reactions. Meanwhile, oxygen,

a byproduct, is generated in the anode chambers.

Recent studies on electrochemical CO2 reduction have reported per-pass

conversion of CO2 below 35% [14]. Thus, the significant amount of unreacted

CO2 remains in the cathode effluent streams and has to be separated by a CO2

separation unit(s). In this study, we introduce N identical CO2 separation units

connected to N CO2-electrolyzer stacks to treat the respective cathode effluent.

The separated CO2 is then preferably recycled for reducing the CO2 feed cost.

To enable DSM, the process requires overcapacity, meaning that we install

more than the minimum number of electrolyzer cells needed to achieve the

target production rate. In addition, the products from all the stacks are mixed

and stored in a storage tank. This intermediate storage is mandatory for the

constant supply of the product to the downstream process.

3 Mathematical formulation

The scheduling model presented below is developed to determine the optimal

operation of each sub-process of an eCO2R process. The following assumptions
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are made:

• quasi-steady-state model with discrete-time variables;

• perfect forecast of electricity prices in the day-ahead market;

• no side-product generated;

• unreacted CO2 in the cathode effluent is completely removed;

• considering power demand for electrolysis only.

3.1 Mass balances

The molar amount of a component c produced by stack s at time step t (ns,c,t)

is calculated by

ns,c,t “
FEs,c,t js,tACellNCell

F zc
∆t, @s P S, c P C, t P T, (1)

where FEs,c,t denotes the Faraday efficiency toward component c of stack s, js,t

the current density of stack s, ACell the active electrode area, NCell the number

of cells per stack, ∆t the length of time step, F the Faraday constant, and

zc the number of electrons transferred. Note that FEs,c,t of CO2-electrolyzers

often sharply varies with respect to js,t. For example, when a silver catalyst

is applied to the cathode, the CO2 reduction reaction that generates CO is

superior at low current density due to its low onset potential while the hydrogen

evolution reaction becomes dominant at high current density [25]. Therefore,

this dependency should be properly represented by exploiting either experiment

or simulation data.

The total amount of each component and the target product is calculated

by

nc,t “
ÿ

s

ns,c,t, @c P C, t P T, (2)

nProd,t “
ÿ

c

nc,t, @t P T. (3)
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To maintain the product quality, an additional constraint is imposed:

Qpnc,tq “ qProd, @t P T. (4)

where Qpnc,tq calculates the product quality as a function of nc,t, e.g., the

H2/CO molar ratio of syngas, and qProd is the target value.

We consider the amount of the stored product limited to the maximum

storage capacity CProd:

´
CProd n

N
Prod

2 ∆t
ď

t
ÿ

τ“1

pnProd,τ ´ n
N
Prodq ď

CProd n
N
Prod

2 ∆t
, @t P T, (5)

where nNProd is the nominal production level. Initially, half of the storage tank

is assumed to be filled by the product.

3.2 Power consumption

The power consumption at time step t can be calculated by

Pt “
ÿ

s

pjs,tAcell Us,tNCellq∆t, @t P T, (6)

where Us,t denotes the cell potential of stack s at time step t. As the cur-

rent density js,t increases, the cell potential Us,t rises due to, for example, the

activation and ohmic overpotentials.

3.3 Ramping constraints

Suitable ramping constraints should be imposed in order to make the quasi-

steady state assumptions adequate for optimizing the operation of the dynamic

systems, such as

´∆j ď js,t ´ js,t´1 ď ∆j, @s P S, t P T, (7)
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where ∆j denotes the maximal ramping speed. ∆j is calculated by

∆j “
jmax ´ jmin

TRamp
, (8)

where jmax and jmin denote the maximal and minimal allowable current density,

respectively. TRamp denotes the minimal ramping duration between the two

extreme operating points.

3.4 Symmetry-breaking constraints

We impose the lexicographic ordering constraints [22] that exclude alternative

solutions to break the symmetry and shorten the computation time accordingly:

js,t ě js`1,t, @s “ t1...ST ´ 1u, t P T, (9)

where ST is the total number of stacks. This constraint forces, for example,

the current density of Stack 1 to be higher than those of other stacks over the

simulation horizon.

3.5 Objective function

We minimize the sum of the electricity costs over the time horizon:

min
js,t

ÿ

t

pt Pt, (10)

where pt denotes an electricity spot price.

4 Case Study

We demonstrate the proposed operation concept on a syngas production system

based on co-electrolysis of CO2 and H2O. Four identical and independently op-

erable sub-processes produce syngas via the following electrochemical reactions

over Ag catalysts:
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2 H` ` 2 e´ ÝÝÑ H2

CO2 ` 2 H` ` 2 e´ ÝÝÑ CO`H2O.

We choose a desired H2/CO molar ratio of 1, which is suitable for liquid

fuel synthesis via the Fisher-Tropsch process with iron-based catalysts [10] and

oxo-synthesis for isomeric aldehydes production [2]. Therefore,

nH2,t
{nCO,t “ qSyn, @t P T, (11)

where qSyn “ 1 and nH2,t
and nCO,t are the total molar amount of H2 and

CO produced at time step t. Each sub-process comprises one CO2-electrolyzer

stack and one CO2 separation unit. Each stack consists of 30 electrolyzer cells,

so the total number of electrolyzer cells is 120. The total syngas production rate

is 5.87 kmol{h, which can be manufactured by 100 electrolyzer cells operated at

the nominal current density (117 mA/cm2) determined by Brée et al. (2020).

The effective area of one electrolyzer cell is assumed to be 2.7 m2, which is

the size of the typical chlor-alkali electrolyzer cell [19]. The syngas storage is

capable of supplying syngas to a downstream for maximum of six hours (CSyn).

The time step size is an hour.

The design of the electrochemical reactor (f) in Vennekötter et al. (2019)

is adapted to the electrolyzers considered in this case study. It is a proton

exchange membrane (PEM) reactor with zero-gap configuration at the anode

and a silver gas diffusion electrode (GDE) at the cathode. Brée et al. (2020)

developed a dynamic model, which was validated to the experimental data of

the aforementioned reactor setup. Using the developed model, we generate the

Faraday efficiency and cell potential at different current density as plotted in

Figure 2-(a) and (c).

The original dynamic model for calculation of Faraday efficiency and cell

potential are highly nonlinear, so they are not suitable to the scheduling model.
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Fig. 2: Faraday efficiency (a) and cell potential (c) of the CO2-electrolyzer; and
the underlying and surrogate functions of fFE (b) and fU-j (d). The simulation
results and underlying functions are taken from Brée et al. (2020). The errors
of the surrogate functions are below 1%.

We derive the cubic polynomial functions fFEs,c,t and fU-j
s,t as the surrogate func-

tions of FEs,c,t js,t (effective current density) in (1) and Us,t js,t (power density)

in (6) as follows:

fFEs,c,t “ FEs,c,t js,t “ αFE,c j
3
s,t ` βFE,c j

2
s,t ` γFE,c js,t ` δFE,c,

@s P S, c P tH2,COu, t P T, (12)

fU-j
s,t “ Us,t js,t “ αP j

2
s,t ` βP js,t ` γP , @s P S, t P T, (13)

where α, β, γ, and δ are the coefficients of the surrogate functions. The under-

lying and surrogate functions are plotted in Figure 2-(b) and -(d). Note that, in

Vennekötter et al. (2019), the current density is measured up to 100 mA/cm2.

In this study, we extrapolate the Faraday efficiency and cell potential at the

current density of 100 to 150 mA/cm2 with the rigours dynamic model of Brée

et al. (2020).
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Regarding the removal of bulk CO2 from syngas, several technical candidates

are available, such as chemical absorption, adsorption and membrane gas sepa-

ration. These options differ in energy demand, operating and capital expenses,

and dynamic responses. In this study, we assume that the unreacted CO2 is

separated via an arbitrary separation technology. As mentioned in Section 3,

we exclude the energy demand for CO2 separation because it is much smaller

than the energy demand for electrolysis. For example, CO2 is assumed to be

separated by pressure swing adsorption (PSA) that demands approximately

1.75 GJelec{tCO2
[5]. This amounts to only 11.5% of the power demand of co2-

electrolysis at the nominal current density (assuming 30 % of CO2 per-pass

conversion). Note that the energy demand of PSA given in Bui et al. (2018) is

required for capturing CO2 from flue gases, of which the CO2 concentration is

below 20 mol.%. As the CO2 concentration of the cathode effluent of the CO2-

electrolyzer stack would be much higher (up to 50 mol.%), the specific energy

demand for the CO2 separation would be even lower (see Hasan et al. 2014).

Dynamic responses of electrochemical reactions are generally fast, e.g., water

electrolysis [6], so the CO2 separation unit is likely to limit the ramping speed

of the sub-processes (TRamp). Possible technologies for CO2 separation would

differ in the ramping speed. For instance, membrane gas separation and PSA

allow fast ramping [11, 23] while chemical absorption [15] takes longer time

to change the operation level. In order to investigate how much the maximal

ramping speed affects the optimal operation as well as the cost savings, we

assume different values of TRamp (one to three hours).

An hourly electricity spot price profile (Figure 3) for three days is taken

from the German EPEX SPOT market, recorded end of May in 2018 [1].

Our optimization problem is a nonlinear program due to the nonlinear surro-

gate functions fFEs,c,t and fU-j
s,t . Nonlinear scheduling problems are rarely solved

because they are computationally challenging to obtain global solutions. To

tackle this challenge, linear approximation is usually applied to reformulate the

problem into mixed-integer linear programs, e.g., Zhang et al. (2016), however,
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such an approximation could generate inaccurate results. Instead, we apply

the wavelet-based grid adaptation algorithm [21]. We can find near-optimal

solutions of (nonlinear) scheduling problems in a tractable time by using a few

optimization variables only. Moreover, this algorithm always creates feasible

schedule as the correct nonlinear models can be used. Herein, the current den-

sity js,t are the optimization variables. The entire horizon (144 h) comprises

two time intervals (128 and 16 steps) concatenated. As a result, the num-

ber of degrees of freedom is greatly reduced compared to 574 (144 ˆ 4) in the

original problem. The mathematical models are implemented in our in-house

open-source software for deterministic global optimization MAiNGO [3] based

on McCormik relaxation [16, 17].

The simulation results are illustrated in Figure 3. The results show that the

optimal current density of each stack is adjusted to the time-variable electricity

prices while at anytime meeting the H2/CO ratio of the mixed syngas stream

entering the syngas storage. Because of the symmetry-breaking constraints (9)

imposed, Stack 1 and Stack 4 always operate at the highest and lowest current

densities, respectively. Interestingly, more than two stacks occasionally follow

the same trajectory, e.g., Stack 2 and 3 in the case of 2 hr of the maximal

ramping duration. This kind of optimal trajectories would facilitate the process

control in practice. During the period of low electricity prices, some stacks are

operated at relatively high current density, which results in not only the higher

syngas production rate but also the higher H2/CO ratio than the nominal levels

(see Figure 2-(a)). Other stacks, however, run at below the nominal current

density due to the syngas ratio constraint (11).

As shown in Figure 3, the shorter the maximal ramping duration, the more

dynamical the operation of the sub-processes. As a result, more dynamic oper-

ation ends up with higher savings in the cumulative electricity cost compared

to the steady operation at the nominal current density. It indicates that em-

ploying a CO2 separation unit that allows fast changes in the operation level

will considerably improve the overall economics of the modular eCO2R system
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by DSM.

5 Conclusion

We proposed the modularization of an electrochemical CO2 reduction process

for the purpose of reducing the electricity costs by demand side management.

The modularization is an effective operation strategy to meet a certain product

quality while properly shifting the power demand of individual sub-processes.

We formulated a nonlinear scheduling problem to minimize the cumulative elec-

tricity costs of an electrochemical system while optimizing the operation of each

sub-process. The case study demonstrated our operation idea on co-electrolysis

of CO2-H2O for the production of syngas. The entire system is made of four

sub-processes, each of which produces syngas and separates unreacted CO2 in-

dependently. We used the wavelet-based grid adaptation algorithm to obtain

near-optimal solutions in a reasonable computation time. The simulation re-

sults suggest that the flexible operation of the modular process can reduce the

electricity costs while maintaining the syngas ratio. Moreover, the maximum

ramping speed of the sub-process, which is likely to be determined by the CO2

separation unit, is found to be a key factor that has a considerable impact on

cost savings.

For future research, we should investigate the influences of other parameters,

e.g., the degree of modularization (i.e., the number of sub-processes) and the

strength of electricity price fluctuation, on cost savings. Also, additional capital

costs required for employing flexible operation and modular configuration should

be analyzed. Particularly, installing a fewer number of large CO2 separation

units is worth investigating because of benefits from economies-of-scale.
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