Modulating Photo- and Radioluminescence in Tb(III) Cluster-Based Metal–Organic Frameworks

Zvart Ajoyan,†ab Gabrielle A. Mandl,†ab P. Rafael Donnarumma,ab Victor Quezada-Novoa,ab Hudson A. Bicalho,ab Hatem M. Titi,bc John A. Capobianco*ab and Ashlee J. Howarth*ab

a Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada
b FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), Montreal, Canada
c Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada

Metal–Organic Frameworks, Photoluminescence, Radioluminescence, Lanthanide

Supporting Information Placeholder

ABSTRACT: Luminescent metal–organic frameworks (MOFs) are of interest for sensing, theranostics, dosimetry, and other applications. The use of lanthanoids in MOF metal nodes allows for intrinsic metal-based luminescence. In this work, a facile route for modulating the photoluminescent and radioluminescent properties of Tb(III)-based MOFs is reported. By using Tb(III)-cluster nodes as X-ray attenuators, and organic linkers with varying excited state energies as sensitizers, MOFs with metal-based, linker-based, and metal+linker-based photo- and radioluminescence are reported.

Luminescent materials are of interest for sensing,1 security,2 bioimaging,3 solid-state lighting,4 and other applications. Radioluminescent (RL) materials, in particular, emit light upon excitation with ionizing radiation. Radioluminescence arising from X-ray excitation is of interest for applications in dosimetry,5 theranostics,6 and security.7 RL materials can be categorized as inorganic or organic.8 In pure inorganic materials, radioluminescence is a property of the host material, with high Z elements used to attenuate X-rays through the photoelectric effect to give luminescence. In contrast, radioluminescence of organic materials arises from individual molecules, and the low Z nature of these materials results in inherently low X-ray absorption efficiencies. Thus, inorganic RL materials tend to have higher light output, while organic RL materials have more opportunity for color tunability through functional group modulation.9

Metal–organic frameworks (MOFs) are porous, often crystalline, materials10-13 that have the potential to bridge the properties of traditional inorganic and organic RL materials. The metal nodes in MOFs can either be ion14, 15, chain,16, 17 or cluster-based18, 19 with varying nuclearity, geometry, and connectivity. By controlling the identity of the metal node and organic linker, MOFs with tuneable luminescent properties can be obtained.20, 21 To date, the majority of reported RL MOFs utilize high-Z metal nodes for X-ray attenuation, and organic linkers as the emitting species.5, 6, 22-25 More recently, lanthanoid-based MOFs comprised of metal ion nodes have been shown to demonstrate metal-based radioluminescence.26,27

Herein, we report the photoluminescent and radioluminescent properties of three lanthanoid cluster-based MOFs, Tb-Uio-66 (Figure 1a)28, Tb-CU-10 (Figure 1b),29 and the novel Tb-CU-27 (Figure 1c), which demonstrate metal-based, linker-based, and metal+linker based radioluminescence, respectively. The presence of multinuclear cluster nodes in these MOFs allows for strong X-ray attenuation while the varying triplet state energies of the linkers result in drastically different photo- and radioluminescence spectra. A comparison of their photophysical properties is presented, including an evaluation of radiation hardness up to 200 Gy.

Figure 1. Structures and organic linker component of (a) Tb-Uio-66, (b) Tb-CU-10, and (c) Tb-CU-27.
Three Tb(III)-MOFs were chosen for the present study owing to the variation in triplet excited state energy (T_1) of the structural organic linker. Tb-UiO-66, Tb-CU-10, and Tb-CU-27 are isoreticular and comprised of Tb9-cluster nodes bridged by ditopic linkers to give the fcu topology (Figure 1a). Tb-CU-10 and Tb-CU-27 are isoreticular and comprised of Tb8-cluster nodes bridged by tetratopic linkers giving rise to the shp topology (Figure 1b,c).

Tb-UiO-66, Tb-CU-10, and Tb-CU-27 are synthesized under solvothermal conditions using Tb(NO3)3·xH2O, a fluorinated modulator, and the respective organic linker. The phase purity of each MOF is confirmed by powder X-ray diffraction (PXRD) using simulated patterns as a comparison (Figure 2, Figure S2). Single-crystal X-ray diffraction (SCXRD) of the novel Tb-CU-27 shows a disordered nonanuclear metal cluster node that is 12-connected (Figure S3), and an overall shp topology (Figure 54, S5), similar to that observed in Y-shp-MOF-5,34 and Tb-CU-10.29 SCXRD of Tb-UiO-66 reveals the expected 12-connected Zr-UiO-66, which is comprised of hexanuclear clusters bridged by ditopic linkers to give the fcu topology (Figure 1a). Tb-CU-10 and Tb-CU-27 are isoreticular and comprised of Tb8-cluster nodes bridged by tetratopic linkers giving rise to the shp topology (Figure 1b,c).

The radioluminescence emission spectrum of Tb-UiO-66 upon 355 nm excitation exhibits characteristic emissions of Tb(III) corresponding to the $5D_4 \rightarrow 7F_{3,4,5,6}$ transitions, respectively (Figure 3a). Although the BDC$^2-$ linker and Tb(III) are both excited at 355 nm (Figure S12), Tb-UiO-66 exhibits no fluorescence or phosphorescence from the BDC$^2-$ linker, owing to the energy of its triplet state (25 641 cm$^{-1}$) relative to the $5D_4$ level of Tb(III) (20 490 cm$^{-1}$).30, 31 Efficient intersystem crossing (ISC) and population of the T_1 state of BDC$^2-$ is expected to be facilitated by the heavy atom effect, resulting in strong sensitization of Tb(III) emissions via the antenna effect in Tb-UiO-66. The decay time of the $5D_4 \rightarrow 7F_5$ transition (545 nm) of Tb-UiO-66 upon 355 nm excitation is 1048.6 ± 6.93 μs (Figure S13), which is typical for Tb(III) $4f/4f$ transitions.36–38

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.

The radioluminescence emission spectrum of Tb-UiO-66 under 50 kVp, 80 μA unfiltered X-ray excitation (Au target) also exhibits characteristic Tb(III) emissions and no linker emission. Of all three MOFs, the radioluminescence intensity of Tb-UiO-66 is the most intense (Figure 3d, Figure S14), indicative of high X-ray attenuation by the hexanuclear Tb(III)-clusters coupled with the highly efficient sensitization of Tb(III) from the triplet state of BDC$^2-$.
triplet state of TBAPy\(^{+}\) is significantly lower energy than the \(^{5}D_{4}\) level of Tb(III), near 16 938 cm\(^{-1}\).\(^{32}\) It has been previously demonstrated that the use of ligands with low energy triplet states in Tb(III) coordination compounds leads to quenching of Tb(III) luminescence.\(^{40-43}\) Thus, the lack of Tb(III) emission in Tb-CU-10 is attributed to quenching from the pyrene linker.

The observed photo- and radioluminescence emission of Tb-CU-10, centered at 525 nm, is strongly red-shifted compared to the free linker (420 nm),\(^{44}\) a commonly observed feature of excimer emission in pyrene-based MOFs.\(^{45-47}\) Previous studies demonstrate that excimer formation in MOFs is favorable when the center-center distance between pyrene units is in the range of 8.8 – 11 Å, and the measured distance in Tb-CU-10 is 11 Å, in agreement with previous findings.\(^{46}\) Furthermore, the pyrene-pyrene and pyrene-phenyl torsional angles are known to play a role in excimer formation,\(^{46}\) where Tb-CU-10 exhibits torsional angles of 60 and 59° for pyrene-pyrene and pyrene-phenyl, respectively. These angles are similar to NU-1000 (60 and 50°), which is known to exhibit excimer emission.\(^{46}\)

The weak linker-centered singlet excimer emission from Tb-CU-10 suggests efficient ISC and population of the linker triplet state may occur in the presence of Tb(III). This is corroborated by previously observed singlet oxygen production in this MOF, which is reliant on the population of the triplet state of the linker.\(^{29}\) To further prove the role of the heavy atom effect on quenching the singlet excimer emission of the MOF, we synthesized Y-CU-10 and observed radioluminescence emission in the same position, but of significantly greater intensity (Figure S17). Since Y(III) is not considered a heavy atom compared to Tb(III), the rates of ISC are expected to be significantly reduced and thus singlet-state excimer emission becomes more favorable, resulting in the observed higher intensity.

The emission spectrum of Tb-CU-27 upon 355 nm excitation exhibits emission from both the TCPB\(^{+}\)⁻ linker and Tb(III) (Figure 3c). Owing to the strong absorption bands of TCPB\(^{+}\)⁻ and Tb(III) at 355 nm (Figure S12), and the potential for sensitization between TCPB\(^{+}\)⁻ and Tb(III), photoluminescence is observed from both metal and linker components. As observed with Tb-Uio-66, the population of the \(^{5}D_{4}\) state of the linker leads to \(^{5}D_{4} \rightarrow \^ {7}F_{5}\) transition at 545 nm, and has a short decay time (on the order of ps-ns), which is relatively short for this transition.\(^{36-38}\) Since the emission of TCPB\(^{+}\)⁻ overlaps with the \(^{5}D_{4} \rightarrow \^ {7}F_{5}\) transition at 545 nm, and has a short decay time (on the order of ps-ns), the lifetime of the \(^{5}D_{4} \rightarrow \^ {7}F_{5}\) transition of Tb(III) at 621 nm was also measured. The decay time of this transition was found to be 51.6 ± 1.13 μs, which is similar to the \(^{5}D_{4} \rightarrow \^ {7}F_{5}\) transition, and is still unexpectedly short for a Tb(III) decay time (Figure S13). A decreased decay time is associated with the introduction of a de-excitation pathway of the \(^{5}D_{4}\) state, which can be understood when one considers that the triplet state of TCPB\(^{+}\)⁻ is known to reside at 21 589 cm\(^{-1}\) resonant with the \(^{5}D_{4}\) level of Tb(III), resulting in efficient back ET from Tb(III) to TCPB\(^{+}\). Back ET from the \(^{5}D_{4}\) state of Tb(III) is known to occur when the ligand triplet state energy is below 22 300 cm\(^{-1}\), as is the case here.\(^{49}\)

The radioluminescence and photoluminescence emission spectra of Tb-CU-27 are markedly different (Figure 3c). Upon X-ray excitation, the linker emission is less intense than the emission from Tb(III), which is in contrast to what is observed upon UV excitation. The different emission properties can also be visually observed (Figure 3d,e), where the MOF exhibits predominantly blue photo- and green radioluminescence. This can be explained by considering the efficiency of X-ray attenuation of the Tb(III) clusters vs. the linkers. Low-energy X-ray photons are efficiently attenuated by high-density, high-Z\(_{eff}\) materials, thus the structure of a cluster-based MOF has regions of high
extended doses of X-ray irradiation, radiation hardness measurements were performed on activated MOFs. Doses up to 200 Gy were delivered to the MOFs to evaluate their stability (Figure 4a). Tb-UiO-66 was found to be radioresistant, exhibiting a 10 % loss of its radioluminescence intensity after exposure up to 200 Gy at a dose rate of 30 Gy/min (Figure 4a). In addition, all three MOFs remain stable upon X-ray irradiation with doses up to 200 Gy. This study highlights the utility of cluster-based MOFs in attenuating X-rays to produce radioluminescent materials, and the importance of the role of linker triplet state energies in modulating the photo- and radioluminescence properties of Tb(III)-based MOFs.

ASSOCIATED CONTENT

Supporting Information
Details of synthesis, characterization, and additional data figures. (PDF)

The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author
Department of Chemistry and Biochemistry, and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St W., Montréal, QC, Canada.
Email: john.capobianco@concordia.ca
Email: ashlee.howarth@concordia.ca

Author Contributions
†Z.A. and G. A. M. contributed equally. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interests

ACKNOWLEDGMENTS

G.A.M. is grateful to NSERC for support through the Alexander Graham Bell Canada Graduate Scholarship - Doctoral Program. The authors thank Prof. Tomislav Frisčič for access to PXRD and SCXRD facilities, and Laure-Anne Dubuc-Kanary for help taking the photographs in Figure 3. J.A.C. and A.J.H are supported by the Concordia University Research Chair program. We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [funding reference number: DGECR-2018-00344 (A.J.H) and DG-2016-06655 (J.A.C)] and Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG) [numéro de référence: DGECR-2018-00344 (A.J.H) and DG-2016-06655 (J.A.C)]. All structural figures were made using VESTA 3.50

REFERENCES

FOR TABLE OF CONTENTS ONLY

Tb-UJIO-66

UV light
355 nm

Tb-CU-27

X-rays
50 kVp (Au)

Tb-CU-10