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Abstract

Exploring excitation energy transfer (EET) in light-harvesting complexes (LHCs)

is essential for understanding the natural processes and design of highly-efficient pho-

tovoltaic devices. LHCs are open systems, where quantum effects may play a crucial

role for almost perfect utilization of solar energy. Simulation of energy transfer with

inclusion of quantum effects can be done within the framework of dissipative quantum

dynamics (QD), which are computationally expensive. Thus, artificial intelligence (AI)

offers itself as a tool for reducing the computational cost. We suggest AI-QD approach

using AI to directly predict QD as a function of time and other parameters such as

temperature, reorganization energy, etc., completely circumventing the need of recur-

sive step-wise dynamics propagation in contrast to the traditional QD and alternative,

recursive AI-based QD approaches. Our trajectory-learning AI-QD approach is able to

1

ua2024@xmu.edu.cn
dral@xmu.edu.cn


predict the correct asymptotic behavior of QD at infinite time. We demonstrate AI-QD

on seven-sites Fenna–Matthews–Olson (FMO) complex.

Introduction

From the birth of life, solar energy has been the driving force of life. Via the mechanism of

photosynthesis, living organisms capture sunlight with the highly sophisticated pigments in

their antenna systems and transfer sunlight energy to the reaction center (RC) in the form of

electron-hole pairs (excitons), where it is stored as biochemical energy.1 The transfer of solar

energy from antenna to RC, which is also known as excitation energy transfer (EET), in the

form of excitons is considered to be highly efficient with close to unit efficiency.2 Understand-

ing this high efficiency of the natural harvesting systems is very important because of its

potential applications in designing very efficient organic solar cells and storage devices.3 Ex-

periments showed that the long-lasting coherence in the efficient natural light-harvesting har-

vesting complexes (LHCs) is preserved by the surrounding protein environments (scaffold),

and this coherence may be responsible for this high efficiency.4,5 The most well-investigated

LHC is Fenna–Matthews–Olsen (FMO) complex, which is found in green sulfur bacteria.6

The small size and simplicity of FMO complex also makes it a testbed of simulation ap-

proaches. FMO complex is a trimer of identical subunits, where each subunit consists of

bacteriochlorophyll (BChl) molecules (system) attached to their protein environments.7

Enormous amount of research work has been done on light harvesting processes.8–13 Tak-

ing FMO as an example, it is easy to see that the system (BChl molecules) is not isolated

from the environment (the protein) and thus, the correct simulation of FMO should treat it

as an open system rather than isolated one. In addition, many experiments suggest,14,15 that

quantum effects, particularly coherence, might play an important role in the light harvest-

ing processes and may even be responsible for achieving the high-end efficiency. Temporal

and spatial simulation of EET with inclusion of quantum effects can be done within many
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frameworks such as classical mapping-based approaches,16–18 perturbative methods,19–21 and

dissipative quantum dynamics (QD)22 adopted here.

QD simulations can be performed using the hierarchical equations of motion (HEOM)23

and its many improvements and extensions,8,24–28 the quasiadiabatic propagator path in-

tegral (QUAPI) approach,29 the trajectory-based stochastic equation of motion (SEOM)

approach,30–37 and the local thermalising Linblad master equation (LTLME).38 These tra-

ditional QD approaches require step-wise propagation of trajectories and the next step de-

pends on the previous steps, thus, QD simulation is an iterative, recursive process. Both

calculations at each time step and recursive nature of QD makes it rather computationally

expensive.

Alleviating the computational cost of QD became a target of a series of studies applying

artificial intelligence (AI),39–45 inspired by advances in application of AI employing machine

learning (ML) algorithms in computational chemistry and chemical physics.46,47 AI was also

applied to investigate EET in a dimer system43 and FMO complex.39 Saving of computational

cost by AI in above studies is impressive, however, one of the studies39 only focused on

predicting energy transfer times and transfer efficiencies rather than temporal and spatial

evolution, while other related studies43–45 adopted basically the same recursive nature of QD

trajectory propagation.

The recursive nature of the previous AI-based QD makes it prone to error accumulation.

In recursive simulations, previously predicted values are used as an input to predict the

next value. Thus, the prediction error at each time-step will accumulate, which results in

deterioration of accuracy. In addition, the recursive nature of predictions does not allow us

to make a prediction for any arbitrary time without predicting values before that. Finally, a

short-time trajectory is needed as the seed to be generated with traditional approaches such

as HEOM and then provided as an input to AI model to make prediction for the next time

step and ultimately propagate the long-time dynamics. Thus, even when having AI model,

we still need to spend valuable computational time to generate the short-time trajectory
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with the traditional approaches.

Here, we suggest an AI-QD approach to directly predict QD with AI as a function of time

and other parameters such as temperature, reorganization energy, etc., completely circum-

venting the need of recursive step-wise dynamics propagation in contrast to the traditional

QD and alternative, recursive AI-based QD approaches. Our AI-QD approach is able to pre-

dict QD at infinite time with correct asymptotic behavior and can be viewed as trajectory

learning, which does not need any short-time trajectory as an input, eradicates the need

of traditional approaches to generate the seed, and alleviates the problem of error accumu-

lation. We demonstrate the applicability of AI-QD on seven-sites Fenna–Matthews–Olson

(FMO) complex and show how AI-QD can be used for massive, infinite-time QD simulations

and provide insights into the desired range of parameters and more efficient paths followed

by the transfer of excitation energy.

Results

Reference quantum dynamics of FMO complex

We employ the Frenkel exciton Hamiltonian48 to study EET dynamics in FMO complex:

H = Hs +Henv +Hs−env +Hreorg , (1)
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with all Hamiltonian terms given below

Hs =
n∑
i

|i⟩ϵi⟨i|+
n∑

i,j=1,i ̸=j

|i⟩Jij⟨j| , (2)

Henv =
n∑

i=1

∑
k=1

(
1

2
P 2

k,i +
1

2
ω2
k,iQ

2
k,i

)
, (3)

Hs−env = −
n∑

i=1

∑
k=1

|i⟩ck,iQk,i⟨i| , (4)

Hreorg =
n∑

i=1

|i⟩λi⟨i| , (5)

where Hs, Henv, Hs−env and Hreorg denote system (BChl molecules) Hamiltonian, Hamil-

tonian of protein-environment, system-environment interaction Hamiltonian and the reorga-

nization term, respectively. In Eq. (1), n is the number of sites (BChl molecules), ϵi is the

energy of the ith site and Jij is the inter-site coupling between sites i and j. P k,i and Qk,i are

respectively momentum coordinate and frequency of environment mode k associated with

site i. In Hs−env, each site is connected to its own environment. The ck,i is the strength of

coupling between site i and mode k of its environment. In the reorganization term Hreorg,

λi is the reorganization energy corresponding to site i,49

λi =
1

π

∫ ∞

0

Ji(ω)

ω
dω , (6)

where Ji(ω) is spectral density of the environment corresponding to site i. As shown by

Nalbach and Thorwart,50 the effects of the discrete molecular modes on the population

dynamics are largely irrelevant. As a result, it is acceptable to use continues environment

spectral density such as Drude–Lorentz spectral density

Jenv(ω) = 2λ
ωγ

ω2 + γ2
, (7)
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where γ and λ denote the characteristic frequency (bath relaxation rate) and the reorgani-

zation energy, respectively.

In general terms, the EET dynamics in FMO complex can be described by Liouville–von

Neumann equation
d

dt
ρ(t) =

i

h̄
[H ,ρ(t)] , (8)

where ρ is the density matrix. Because of the many-body effects, direct propagation of

Eq. (8) is not straightforward. Different approaches are developed to simplify and propagate

Eq. (8) and interested readers are advised to look into the corresponding references.17,25,29,32

We use the local thermalising Linblad master equation (LTLME)38 to propagate the

reference QD trajectories of FMO, for which we adopt Adolphs and Renger’s Hamiltonian

for seven sites per subunit51 (see Methods). The LTLME is a coherent and complete positive

trace-preserving approach, but may not be that accurate as HEOM or SEOM approaches

(because of approximations used in its derivation38,52), but here it is not the concern of our

proof-of-concept paper.

Parameters-based non-recursive training framework

In our parameters-based non-recursive AI-QD, we train ML model as a function of the

parameters (used as the input to ML model) depending on the system of interest and on the

data from a limited number of QD trajectories. For FMO complex, we take as parameters the

information of the sites, λ, γ and T . In addition, time also becomes a part of input of our AI-

QD model. In order to treat infinite time, instead of time, we introduce time-function f(t),

which normalizes time and for t → ∞ becomes f(t) = 1. Such normalization, however, can

effectively only discern data within rather short time-region, thus, instead of a single time-

function, we introduce the set of redundant time-functions {fi(t0)} for different regions in

very long-time propagation (see Methods). The remaining input of our model is information

about the initial excitation m = {m1,m2} = {0, 1} (with zero corresponding to initial
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m1 n1 γ1 λ1 T1 {fi(t0)} ρn1n1
(t0)

m1 n1 γ1 λ1 T1 {fi(t1)} ρn1n1
(t1)

m1 n1 γ1 λ1 T1 {fi(t2)} ρn1n1
(t2)

... ... ... ... ... ... ...
m1 n1 γ1 λ1 T1 {fi(tM)} ρn1n1

(tM)
m1 n2 γ1 λ1 T1 {fi(t0)} ρn2n2

(t0)
m1 n2 γ1 λ1 T1 {fi(t1)} ρn2n2

(t1)
m1 n2 γ1 λ1 T1 {fi(t2)} ρn2n2

(t2)
... ... ... ... ... ... ...
m1 n2 γ1 λ1 T1 {fi(tM)} ρn2n2

(tM)
... ... ... ... ... ... ...

Input Target values

Figure 1: Preparation of training data using parameters in AI-QD training framework.
Here {fi(t0)} is a set of time-functions based on the logistic functions f(t) = 1/(1 + 15 ·
exp(−(t + 1))). Other parameters are t = {t0, t1, t2, . . . tM}, λ = {λ1, λ2, λ3, . . . λj}, γ =
{γ1, γ2, γ3, . . . γk}, T = {T1, T2, T3, . . . Tl}, sites-labels n = {n1, n2, n3, . . . n7} and labels for
sites with possible initial excitation m = {m1,m2}.

excitation on site-1 and 1 corresponding to site-6) and site-labels n = {n1, n2, n3, . . . n7} =

{0.1, 0.2, 0.3, . . . , 0.7} corresponding to each of the seven sites. We train convolutional neural

network (CNN) taking all above input elements {m, n, γ, λ, T , f(t)} on exciton population

ρnn(t) (target values to learn or output of the trained model) on the site defined by input

n (see Fig. 1 and Methods for details, such as CNN architecture and normalization of input

elements).

Our training trajectories generated with the reference LTLME-QD approach are chosen

by furthest-point sampling from the three-dimensional space of the following parameters: re-

organization energy λ = {λ1, λ2, λ3, . . . λj}, the characteristic frequency γ = {γ1, γ2, γ3, . . . γk}

and temperature T = {T1, T2, T3, . . . Tl} (see Methods).

We should also decide up to what time-length tM we should run reference LTLME-QD

trajectories. Based on the prior knowledge that populations plateau in asymptotic limit,
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Figure 2: Population of seven sites in FMO complex as a function of time. In (a)-(b) the
initial excitation is considered on site-1 and other parameters are γ = 175, λ = 70, T = 70.
In (c)-(d), the initial excitation is on site-6 and other parameters are γ = 75, λ = 100,
T = 130. The results of AI-QD are compared to the results of LTLME-QD (dots). γ and λ
are in unit of cm−1, while T is in unit of K.

for each trajectory we choose a different time-length tM using a vanishing gradient scheme,

where tM is chosen such that the gradient of population G is close to zero (see Methods).

Using the vanishing gradient scheme to find different tM for each trajectory allows us to

sample more data from the training trajectories, which are hard-to-learn, while avoiding re-

dundant sampling from trajectories, which are easy-to-learn. This also removes arbitrariness

in choosing fixed tM parameter as was done in previous studies using the recursive AI-QD

scheme.43,45
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Application to EET dynamics in FMO complex

As an application of our approach, we predict EET dynamics in FMO complex with seven

sites per subunit for parameters of the test set trajectories (none of which used in training).

Site-1 (BChl molecule 1) and site-6 (BChl molecule 6) are most likely to get initially excited

as they are close to the photosynthetic antenna complex called chlorosome,6 we thus present

results for both cases. For predictions, we just provide the parameters of the test trajectories

(characteristic frequency, reorganization energy, temperature) as an input and predict the

evolution of EET. Fig. 2 shows the evolution of excitation energy in all seven sites for

both cases. In Fig. 2, we show EET for both short and long time periods, demonstrating

that AI-QD is able to capture the coherence of short-time dynamics and also can predict

the asymptotic limit. As AI-QD is non-recursive (non-iterative), without any trajectory

propagation, we can directly predict the asymptotic behaviour.

It was shown,8,53,54 that the transfer of excitation energy in seven-sites FMO complex

follows mainly two paths, i.e., site-1 → site-2 → site-3 ↔ site-4 and site-6 → site-5, site-7,

site-4 → site-3, here the ↔ shows that the excitation energy equilibrates between site-3 and

site-4 after site-3 is populated. Among the seven sites, the sites 1 and 6 are close to the

baseplate protein, while the sites 3 and 4 are near to the target RC complex.51,55 It has been

proposed that the quantum coherence allows FMO complex to quickly sample several routes

(paths) in search for site-3.5 In Fig. 3, we show the population of site-3 at t = 0.5 ps (500 fs) as

a function of γ, λ and T . From Fig. 3(a), we observe that at room temperature T = 300, the

ETT to site-3 or, in other words, to RC complex gets slow as the characteristic frequency γ

increases. In contrast, the ETT to site-3 increases with the increase in reorganization energy

λ as shown in Fig. 3(b). Similar trend can be observed with the increase in temperature T

as can be seen in Fig. 3(c).

In order to find the optimum parameters for the fastest transfer of excitation energy, we

have calculated population of site-3 at 0.5 ps (500 fs) for a massive set of ca. 0.57 million pos-

sible combinations (site-1 + site-6) of the γ, λ, T with the search space γ = 25, 30, 35, . . . , 245,
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Figure 3: The evolution of site-3 population at t = 0.5 ps (500 fs) as a function of (a) char-
acteristic frequency of the environment γ (b) reorganization energy λ and (c) Temperature
T . The blue line corresponds to the case with initial excition on site-1 while the red line is
for the case with initial excition on site-6. γ and λ are in unit of cm−1 while T is in unit of
K.

λ = 10, 15, 20, . . . , 345 and T = 25, 30, 35, . . . , 345. We report the fastest EET of 0.761 to

site-3 for path-2 with γ = 30, λ = 310, T = 25, while for path-1 for the same parameters

EET is 0.626. From Figs. 2,3 and from the optimum parameters, we notice that following

path-1, i.e., site-1 → site-2 → site-3 ↔ site-4, the EET shows more coherence and is slow

compared to excitation transfer following path-2, i.e., site-6 → site-5, site-7, site-4 → site-3.

From Eq. (9) (Methods), energy of the site-1 (12410 cm−1) is lower than the baseplate, which

has been reported to be 12500 cm−1.56,57 This allows a quick transfer of the excitation en-

ergy to site-1 from the baseplate. However, the energy of site-2 (12530 cm−1) is higher than

site-1 and also than site-3 (12210 cm−1), which on the one hand stops backward transfer

from site-3, but on the other hand creates a local minimum on site-1. Despite the local

minimum on site-1, the excitation energy is not trapped because of the quantum coherent

wave-like motion between site-1 and site-2. Following path-2, the energy of site-6 (12630

cm−1) is higher than the energy of baseplate. To stop backward transfer of excitation energy

from site-6 to baseplate, site-6 should quickly transfer excitation energy to other sites such

as site-5, site-7 and site-4. This quick transfer from site-6 to site-5, site-7 and site-4 is only

possible by the strong coupling of site-6 to site-5 and site-7, which in return are strongly

coupled to site-4.
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Discussion

In this work, we have presented a non-recursive (non-iterative) AI-QD approach for blazingly

fast prediction of quantum dynamics, as predictions can be made for any time step up to

asymptotic limit completely circumventing the need of recursive trajectory propagation.

This can be used, as we demonstrated here, for massive quantum dynamics simulations, for

example, in search for the best conditions required for efficient energy transfer in designed

photovoltaic devices. Just to put things into perspective, our AI-QD approach can predict

entire 2.5 ps trajectory within 1 min on 36 Intel(R) Core(TM) i7-10700 CPUs @ 2.90 GHz,

while the same propagation with the traditional recursive approaches such as HEOM would

take hours, and the cost would exponentially increase for low temperatures.

Methods

Training data

In seven-sites FMO complex (apo-FMO), where seven BChl molecules (seven sites) exist

per subunit, the inter-subunit interaction is very small and each subunit can be considered

relatively isolated.58 Here we adopt Adolphs and Renger’s Hamiltonian for seven sites per

subunit51

Hs =



12410 −87.7 5.5 −5.9 6.7 −13.7 −9.9

−87.7 12530 30.8 8.2 0.7 11.8 4.3

5.5 30.8 12210 −53.5 −2.2 −9.6 6.0

−5.9 8.2 −53.5 12320 −70.7 −17.0 −63.6

6.7 0.7 −2.2 −70.7 12480 81.1 −1.3

−13.7 11.8 −9.6 −17.0 81.1 12630 39.7

−9.9 4.3 6.0 −63.3 −1.3 39.7 12440



, (9)
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where energies are given in cm−1. Each site is coupled to its own environment characterized

by the Drude–Lorentz spectral density given by Eq. (7). Not long-ago, an eighth BChl

molecule (site-8) has been discovered,11 however as has been mentioned by Jia et al.,59 the

role of the eighth BChl molecule (site-8) in the transfer of excitation energy in FMO complex

is negligible.

Data for the population of all seven sites has been generated with the local thermalis-

ing Linblad master equation (LTLME)38 implemented in quantum_HEOM package60 with

QuTip61 in the back-end with all the possible combinations of the following parameters:

λ = {10, 40, 70, 100, 130, 160, 190, 220, 250, 280, 310} cm−1, γ = {25, 50, 75, 100,

125, 150, 175,200, 225, 250, 275, 300} cm−1 and T = {30,50,70,90,110,130,150,170,190,

210,230,250,270,290,310} K. The time-step used for propagation is 5 fs and the trajectory is

propagated up to tM = 1 ns (106 fs). With the possibility of initial excitation on site-1 and

site-6, we generate 1980 trajectories for each excitation case.

Data preparation

With all the possible combinations of the parameters, we have 3960 total number of tra-

jectories Ntraj (1980 (site-1) + 1980 (site-6)). Using farthest-point sampling62 in the three-

dimensional space of λ, γ and T , we choose 1000 trajectories as our training trajectories (500

(site-1) + 500 (site-6)), 200 trajectories as the validation set and the rest of trajectories, we

keep as the test set. For each trajectory, we choose a different time-length tM using a van-

ishing gradient scheme. In this scheme, we take the gradient G of the population of each

site for 10 consecutive time-steps and if all of them remain less than the threshold value of

Gth = 1 × 10−10, we choose our tM . By analyzing the gradients, we find the region of the

trajectory, where the change in population of the site is very small. By knowing that, we

keep the time-length of our trajectory tM up to that region, because beyond tM the change

in population is very small, and ML is able to predict it. As the asymptotic limit for each

trajectory is different, we have different value of tM for each trajectory. In our training, we
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have included t → ∞, corresponding to the asymptotic behaviour at long-time. Using the

strategy of different tM for each trajectory allows us to include more sampling in our train-

ing set from hard-to-learn trajectories, while avoiding redundant sampling from easy-to-learn

trajectories. For training, sampling is done with different training time-steps ∆ttrain in differ-

ent regions of the trajectory. We sample our training points from ||0ps–1ps||, ||1ps–1.5ps||,

||1.5ps–2.5ps||, ||2.5ps–5ps||, ||5ps–25ps||, ||25ps–50ps||, ||50ps–250ps|| ||250ps–tM || regions

with ∆ttrain = 5, 10, 25, 50, 100, 200, 500, 1000 fs, respectively. The number of training points

depends on the number of trajectories Ntraj chosen for training, training time-step ∆ttrain

and time-length of trajectories tM , which in turn depends on Gth.

Training architecture

We use 1000 trajectories as our training set and 200 trajectories as the validation set. After

preparation of the input following Fig. 1, we build a CNN architecture and optimize it with

hyperopt library.63 The optimization was carried out only on 200 training trajectories of the

training set. After optimization, our training architecture consists of three one-dimensional

(1D) hidden convolutional layers, one maximum pooling layer, one flatten layer, three fully

connected hidden dense layers and one output dense layer. The convolutional layers extract

time-dependent correlations from a moving window, while maximum pooling layer pulls out

the important information and decreases the size of the feature map which leads to reducing

the computational cost. The flatten layer converts the output from the maximum pooling

layer into 1D format as the fully connected dense layers, which are the traditional networks,

can only work with 1D data. We train our CNN architecture using Keras software package64

with the TensorFlow in the backend.65 Activation function, number of filters, kernel size and

number of neurons for the respective convolutional and dense layers are given in Table 1. In

our study, we train a single CNN model and with ca. 3.2 million training points and 250

epochs, where training takes ca. 15 hrs on 36 Intel(R) Xeon(R) Gold 6240 CPUs @ 2.60GHz.

The optimized learning rate is 1× 10−3 with adoptive mean optimizer and the batch size is
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Table 1: Summary of the optimized neural network architecture with layers, output shape
(OS), number of parameters (NP), activation function (AF), number of filters (NF), kernel
size (KS) and number of neurons (NN).

Layers (type) OS NP AF NF KS NN

First hidden convolutional layer (1D) (None, 104, 90) 270 relu 90 2 ×

Second hidden convolutional layer (1D) (None, 104, 80) 36080 relu 80 5 ×

Third hidden convolutional layer (1D) (None, 104, 40) 16040 relu 40 5 ×

Maximum pooling layer (None, 52, 80) 0 × × × ×

Flatten layer (None, 2080) 0 × × × ×

First hidden dense layer (None, 64) 133184 relu × × 64

Second hidden dense layer (None, 512) 33280 relu × × 512

Third hidden dense layer (None, 8) 4104 relu × × 8

Dense output layer (None, 1) 9 linear × × 1

Total parameters: 222,967
Trainable parameters: 222,967
Non-trainable parameters: 0

512. Using mean squared error function as a loss, we report 2.33 × 10−6 as the validation

loss.

Input normalization and redundant time-functions

As we have multiple input elements, we need to normalize them all. In normalized input, we

have λ = {λ1, λ2, λ3, . . . λj}/λmax, γ = {γ1, γ2, γ3, . . . γk}/γmax and T = {T1, T2, T3, . . . Tl}/Tmax,

where λmax, γmax and Tmax represent the maximum values of λ, γ and T , respectively. For

site-labels, we just use n = {0.1, 0.2, 0.3, . . . , 0.7} in their respective order. Labels for sites

with possible initial excitation are m = {0, 1}, which respectively represent initial excitation

on site-1 and site-6. The input time is represented by a set of redundant time-functions
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{fi(t0)}, each of which is logistic function f(t) normalizing time. We use the set of 100

functions f(t) = 1/(1 + 15 · exp(−(t + 1))), each of which is switched on one-by-one for its

corresponding 5 ps region; before its region, the function is set to zero, after its region, f(t)

is set to one; the time is started from zero at each region. The infinity limit is given by all

redundant time-functions set to one.
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