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High harmonic spectra for H2 are simulated by solving the time-dependent Kohn-Sham equation in
the presence of a strong laser field, using an atom-centered Gaussian representation of the orbitals
and a complex absorbing potential to mitigate artifacts associated with the finite extent of the
basis functions, such as spurious reflection of the outgoing electronic wave packet. Interference
between the outgoing and reflected waves manifests in the Fourier transform of the time-dependent
dipole moment function and leads to peak broadening in the high harmonic spectrum as well as
the appearance of spurious peaks at energies well above the cutoff energy at which the harmonic
progression is expected terminate. We demonstrate that well-resolved spectra can be obtained
through the use of an atom-centered absorbing potential. As compared to grid-based algorithms for
solving the time-dependent Kohn-Sham equations, the present approach is more readily extendible
to larger polyatomic molecules.

I. INTRODUCTION

Experimental study of molecules and materials un-
der short, intense femtosecond and even attosecond laser
pulses is becoming possible due to the advent of ultra-
short pulse technology based on high harmonic gener-
ation (HHG).1–4 This has enabled the development of
soft x-ray and extreme ultraviolet laser pulses with ultra-
fast time resolution,5–7 even in tabletop instruments,8–10

which promises to make this technology more widely
available in the near future. The strong-field phenom-
ena that can be probed with this new generation of
instruments poses challenges to well-developed theoret-
ical models that work in the perturbative (weak-field)
regime, as new phenomena arise in strong electric fields.
These include above-threshold ionization, nonsequential
ionization, multiphoton ionization, delayed photoemis-
sion, and HHG.11–13 Attosecond experiments are ex-
pected to provide fundamental probes of electron correla-
tion and ultrafast charge migration in both molecules and
materials.13–16 Theoretical description of this emergent
physics promises to push the envelope of computational
quantum chemistry.17

In the context of time-dependent density functional
theory (TDDFT),18,19 strong-field phenomena cannot
be described within the linear-response approximation20

that has become essentially synonymous (in quantum
chemistry, at least) with the moniker of TDDFT.21 In
principle, an exact theory can still be formulated even
in the strong-field or non-perturbative regime, based
on direct solution of the time-dependent Kohn-Sham
equation.12,22 This approach is often called “real-time”
TDDFT,23 although we prefer the term time-dependent
Kohn-Sham (TDKS) theory.24,25 In practice, however,
there are significant questions as to whether existing
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exchange-correlation functionals that invoke the adia-
batic approximation are up to the task,12,23 although
improving the description of the derivative discontinu-
ity improves the description of ionization, even within
the adiabatic approximation.26

In the present work, we examine the HHG phe-
nomenon in a simple test case, H2 molecule, us-
ing an atom-centered Gaussian representation of the
Kohn-Sham orbitals. Previous TDKS simulations of
HHG in H2 have emphasized the importance of using
an exchange-correlation functional with correct asymp-
totic behavior.27–30 In some calculations, this has been
achieved in practice by using either time-dependent
Hartree-Fock (TDHF) theory or else the closely-related
time-dependent configuration interaction singles (TD-
CIS) method.29,31–33 Functionals with an explicit self-
interaction correction have also been employed,27,28 as
this helps with the aforementioned derivative disconti-
nuity. Recently, the use of range-separated, “long-range
corrected” (LRC) hybrid functionals34–39 has been con-
sidered for simulation of HHG in H2 and other small
molecules.33 As compared to either generalized gradi-
ent approximations or even global hybrid functionals,
LRC functionals do a much better job of approximating
the derivative discontinuity.40 The simulations presented
herein will be based upon the LRC-ωPBE functional,37

which was also used to simulate HHG in Ref. 33.

Rather than using a grid-based algorithm to solve the
TDKS equations,22,27,28 we follow the path established
by Saalfrank, Luppi, and others,29–33,41 using atom-
centered Gaussian basis sets to represent the density.
This makes TDKS simulations accessible with widely-
available, general purpose quantum chemistry codes, and
the compactness of the Gaussian representation offers
the possibility to extend TDKS calculations to larger
molecules than are feasible in grid-based representations.
Even for H2, where both approaches are feasible, the
Gaussian representation is found to be at least an order
of magnitude more efficient,30 and only that approach
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is scalable. This efficiency might be used, for exam-
ple, to simulate HHG in a liquid or in a bulk crystal,
both of which have been realized experimentally.7,42,43

For HHG in liquids, the role of molecular disorder has
been emphasized,44 suggesting that model systems larger
than a single molecule are required to understand this
phenomenon.

That said, previous work on small-molecule HHG has
emphasized the important role that is played by Ryd-
berg and continuum states,32,41,45 which is unsurpris-
ing given the role of tunneling ionization in the HHG
process,1,2,16,46 yet these states are not well described by
standard Gaussian basis sets and very diffuse basis func-
tions are required.30,32,33,41 Even so, a strong laser field
will push the electronic wave packet into regions of space
where support from the atom-centered basis functions is
waning, and this will manifest as spurious reflection of
that wave packet by the artificial potential wall created
by the lack of basis function support. To circumvent this
problem, previous work on strong-field electron dynamics
within an atom-centered Gaussian representation has em-
ployed a heuristic finite-lifetime model in which unbound
states are given complex energies corresponding to finite
lifetimes.31,32,41,47 As an alternative, in the present work
we replace the heuristic lifetime model with the machin-
ery of a complex absorbing potential (CAP). Such po-
tentials are often used for the description of metastable
electronic states,48 whose wave functions are not square-
integrable,49,50 and also as absorbing boundary condi-
tions in wave packet quantum dynamics calculations.51

The CAP absorbs the wave packet as it reaches the edge
of a finite grid or a finite basis set, thus preventing ar-
tificial interference between the outgoing and a reflected
wave, the latter of which is an artifact of the finite-basis
representation. The connection between CAPs and the
heuristic lifetime model have been discussed elsewhere.47

We will see that the use of a CAP is crucial to obtaining
reasonable HHG spectra, as only the very lowest har-
monics are well-resolved in its absence. As demonstrated
herein, Gaussian-orbital-based TDKS simulations with
an appropriate CAP afford high-quality HHG spectra.

II. THEORY

A. High harmonic generation

Theoretical description of HHG, including the semi-
classical three-step model (Fig. 1), is discussed in detail
by Ishikawa.2 That material is briefly summarized here,
in order to place the TDKS simulations in context. Con-
sider a monochromatic laser pulse whose electric field is

E(t) = E0 cos(ω0t) (1)

and which is linearly polarized in the z direction. For an
electron that is ejected at time t = tini with no initial

FIG. 1: Illustration of the semiclassical three-step model
(ionization, propagation, and recombination) leading to HHG.
Reproduced from Ref. 2 under CC BY 3.0.

velocity, setting z(tini) = 0 = ż(tini), one obtains2

z(t) =
E0

ω2
0

[
cos(ω0t)− cos(ω0tini)

+ (ω0t0 − ω0tini) sin(ω0tini)
]
.

(2)

The kinetic energy of this electron is

EKE = 2Up

[
sin(ω0t)− sin(ω0tini)

]2
(3)

where Up = E2
0/4ω

2
0 is the ponderomotive energy, defined

as the time-averaged kinetic energy for the electron in the
oscillatory laser field. A convenient formula for Up is2

Up/eV = 9.337× 10−14

(
I

W cm2

)(
λ

µm

)2

(4)

where λ and I are the wavelength and the intensity of the
driving field, respectively. The electron recombines with
its source (see Fig. 1) at a time trec, when z(trec) = 0.
The energy of the emitted photon created by the recom-
bination event is

hν = EKE(trec) + IE (5)

where “IE” is the molecule’s ionization energy. The max-
imum photon energy (or cutoff energy, Ecutoff) is deter-
mined by the maximum kinetic energy in Eq. (3) under
the constraint that z(trec) = 0 in Eq. (2). The result is a
cutoff law2,46,52,53

Ecutoff = c1Up + c2IE (6)

where c1 and c2 are constants. The values c1 = 3 and
c1 = 1 are widely quoted,52 but more sophisticated mod-
els of the HHG process afford c1 = 3.17 and c2 = 1.32,46

or else c1 = 3.34 and c2 = 1.83.53 Defining a phase
θ = ω0t, with an initial (t = tini) value θini and a re-
combination (t = trec) value θrec, then the pair of values
θini + nπ and θrec + nπ also satisfy z(θ) = 0, for inte-
ger values of n. The displacement z and velocity ż both
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change sign every half cycle, z(θ) = −z(θ − π). As a
result, the harmonic field EHHG(t) can be expressed as2

EHHG(t) = · · ·+f(t+ 2π/ω0)− f(t+ π/ω0)

+ f(t)− f(t− π/ω0)

+ f(t− 2π/ω0)− · · ·
(7)

for some function f(t). Following a Fourier transforma-
tion, Eq. (7) has nonzero values only at odd harmonic
numbers. The HHG spectrum of a molecule in a strong
laser field thus consists of odd multiples of ω0, up to the
cutoff frequency Ecutoff/~.

B. TDKS simulations

A rigorous description of TDKS theory from first prin-
ciples can be found in the work of Gross et al.19,54

and a simplified tutorial, with a discussion of contem-
porary problems, can be found in Ref. 23. The adia-
batic approximation19 (i.e., locality in time) is assumed
throughout this work, so that the time dependence of
the exchange-correlation functional is carried strictly by
the time-evolving density, ρ(r, t); ground-state function-
als are therefore used without alteration. The time-
dependent electron density is expressed in terms of time-
dependent Kohn-Sham molecular orbitals (MOs),

ρ(r, t) =

occ∑
k

∣∣ψk(r, t)
∣∣2 . (8)

Following a perturbation to the ground-state density,
these MOs propagate in time according to the TDKS
equation:

i~
dψk
dt

= F̂ψk(r, t) . (9)

This is the one-electron analogue of the time-dependent
Schrödinger equation and the Fock operator F̂ functions
as the effective Hamiltonian. The equation of motion for
each ψk is numerically integrated to obtain time-evolving
MOs ψk(r, t), starting from ground-state MOs at t = 0.

The functions ψk(r, 0) are eigenfunctions of F̂ .
Equation (9) is equivalent to the Liouville-von Neu-

mann equation

i~
dP

dt
= FP−PF , (10)

where P is the matrix representation of ρ, expressed here
in an orthonormal basis that might simply be the Kohn-
Sham MOs themselves. Integration of Eq. (10) affords
the time-dependent density matrix, P(t). We express
the time propagation of the latter as

P(t+ ∆t) = U(t+ ∆t, t) P(t) U†(t+ ∆t, t) (11)

where U(t+∆t, t) is a unitary time-propagation operator
for the time step t → t + ∆t. Because both P and F in

Eq. (10) are time-dependent quantities, the definition of
U(t+ ∆t, t) involves time-ordering of the matrices F(t′)
at points t′ along the integration (t ≤ t′ ≤ t + ∆t),55 or
else a Magnus expansion of nested commutators.24 Vari-
ous forms for U(t+∆t, t) have been discussed in previous
work,24 including schemes that iterate the time propaga-
tion to self-consistency over the course of a single time
step from t to t + ∆t. In the present work, we focus on
the modified-midpoint algorithm.56 This approach corre-
sponds to a propagator

UN = exp
[
− i(∆t)FN+1/2

]
(12)

that updates the density matrix from tN to tN+1 = tN +
∆t. The quantity FN+1/2 is the Fock matrix at t =
tN + ∆t/2.

For a molecule in a laser field, the Fock operator F̂ con-
sists of a field-free molecular part (F̂0) augmented with an
additional term E · r involving the electric field E(t). In
addition, we add a CAP of the form −iWCAP(r), which is
discussed in detail below. These additional terms added
to F̂0 both take the form of real-space potentials and the
total Fock operator including these additions is

F̂ = F̂0 + E(t) · r− iWCAP(r)

= F̂ ′ − iWCAP(r)
(13)

where F̂ ′ = F̂0+E(t)·r. Our implementation of the CAP
is similar to that used by Schlegel and coworkers to study
strong-field ionization dynamics,57–61 and which we have
previously used to compute broadband x-ray absorption
spectra.25 The real-space CAP function WCAP(r) is con-
structed from a set of overlapping, atom-centered spheri-
cal potentials, each of which is zero within a cutoff radius
r0 then rises quadratically with curvature η. Explicitly,
these functions are

fCAP
k (r) =

{
0, ‖r−Rk‖ < r0

η‖r−Rk‖2, ‖r−Rk‖ ≥ r0

(14)

for k = 1, 2, . . . , NA, where Rk indicates the location of
the kth nucleus and NA is the number of atoms. The
numerical value of WCAP(r) is taken to be the minimum
value of all of the functions fCAP

k (r), except that we im-
pose a maximum value (Emax = 10 Ha) in order to avoid
numerical problems. The overall CAP function that ap-
pears in Eq. (13) is given by

WCAP(r) = min
{
Emax, f

CAP
1 (r), . . . , fCAP

NA
(r)
}
. (15)

The matrix representation of WCAP is required in or-
der to propagate the Liouville-von Neumann equation.
Introducing atom-centered Gaussian functions {gµ(r)}
for the atomic orbitals (AOs), this representation is

WCAP
µν =

∫
gµ(r)WCAP(r) gν(r) dr . (16)

The integral is evaluated by numerical quadrature, using
the DFT quadrature grid.62 The matrix WCAP does not
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depend on time and can be constructed once, at the be-
ginning of a TDKS simulation, and is then added to the
Fock matrix F(t) at each time step. Note that WCAP is
a symmetric matrix and therefore −iWCAP in Eq. (13)
is skew-Hermitian, meaning that F is not Hermitian de-
spite the fact that F0 is real and symmetric at t = 0. This
requires modification to the usual propagator, which is
accomplished by approximate factorization of the rele-
vant exponential, i.e., the split-operator technique:55

e−i(∆t)F = exp
[
− i(∆t)(F′ − iWCAP)

]
≈ exp

[
− (∆t/2)WCAP

]
exp

[
− i(∆t)F′

]
× exp

[
− (∆t/2)WCAP

]
.

(17)

In this factorization, the leading and trailing exponentials
involve symmetric matrices and the middle exponential
involves a skew-Hermitian matrix. Each of these can be
readily diagonalized to evaluate the necessary propaga-
tor, exp[−i(∆t)F].

It is worth noting the connection between the CAP
and the heuristic lifetime model introduced by Klinkusch
et al..31 As noted by Coccia et al.,47 adding an imaginary
part to the self-consistent field (SCF) eigenvalues, εp →
εp− iγp, formally corresponds to the use of the following
CAP:

WCAP(r) =
∑
p

γp ψ
∗
p(r) ψp(r) . (18)

(The modification is made only to the unbound states,
so γp = 0 unless εp ≥ 0.) In practice, the use of the CAP
defined by Eq. (18) is more complicated as compared to
that in Eq. (16) because the former depends explicitly on
the MOs. We will use Eq. (16) exclusively.

In our simulations, the external field E(t) = E(t)nF

is assumed to be linearly polarized in the direction of a
unit vector nF, with

E(t) = G(t)A sin(ω0t) (19)

where A and ω0 are fixed parameters. We will explore
both impulsive fields and continuous-wave fields. For the
latter, the function G(t) ≡ 1 so that the field oscillates
sinusoidally but does not decay. For the impulsive field
we use a Gaussian envelope function,

G(t) = exp

(
− (t− tc)2

2σ2

)
. (20)

These two fields are plotted in Fig. 2 for the same pa-
rameters A and ω0.

The field is turned on at t = 0 where the MOs
{ψk(r, 0)} represent the ground-state Kohn-Sham solu-
tion. Following sufficient time propagation, the HHG
spectrum is computed from the Fourier transform (F̂) of
the time-dependent dipole acceleration, dA(t).27,28 The
dipole acceleration is the second derivative of the dipole
moment, µ(t):

dA(t) =
d2µ

dt2
. (21)
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FIG. 2: An impulse field (in orange) and a continuous-wave
field (in gray), as defined by E(t) in Eq. (19) with different
functions G(t). Parameters A = 0.05 a.u. and ω0 = 0.057 a.u.
are used in both cases and are chosen to simulate a field inten-
sity I = 1014 W/cm2 at 800 nm. The continuous-wave field
persists for the duration of the simulation while the impulse
field is attenuated as shown, with parameters tc = 800 a.u.
and σ = 200 a.u. characterizing the Gaussian envelope in
Eq (20).

The Fourier transform of this quantity is

dA(ω) =
1

tfin − tini

∫ tfin

tini

dA(t)e−iωtdt . (22)

Since the Fourier transform [F̂ : x(t) 7→ X(ω)] has the
property

F̂
[
dn

dtn
x(t)

]
= (iω)nX(iω) , (23)

one may rewrite Eq. (22) as28

dA(ω) =
−ω2

tfin − tini

∫ tfin

tini

µ(t)e−iωtdt , (24)

and this is the form of dA(ω) that is used in practice.
Finally, the spectrum (or dipole oscillator strength, S) is
given by27,28

S(ω) =
3

2πc3
∣∣dA(ω)

∣∣2 . (25)

C. Computational details

Results presented here are based on a completely
new implementation25 of the TDKS module in Q-Chem
v. 5.4,63 replacing the original TDKS code written by
Nguyen et al..64,65 In the new module, time propaga-
tion can be accomplished either based on the modified-
midpoint algorithm,56 which is used here, or else self-
consistent predictor–corrector algorithms.24

Since the HHG process involves ionization and electron
recombination, the asymptotic behavior of the exchange-
correlation function is crucial.27–29 We use an LRC vari-
ant of a range-separated hybrid functional,39 specifically,
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TABLE I: Gaussian exponents, ζ (in bohr−2) for hydrogen in the multiply-augmented n-aug-cc-pVTZ basis sets.

cc-pVTZa aug-cc-pVTZ
n-aug-cc-pVTZ

n = 2 n = 3 n = 4 n = 5
s 1.027× 10−1 2.526× 10−2 6.210× 10−3 1.527× 10−3 3.753× 10−4 9.227× 10−5

p 3.880× 10−1 10.20× 10−2 26.80× 10−3 7.042× 10−3 18.50× 10−4 48.61× 10−5

d 10.57× 10−1 24.70× 10−2 57.70× 10−3 13.48× 10−3 31.49× 10−4 73.56× 10−5

aSmallest exponent in the parent basis set.

the LRC-ωPBE functional with range-separation param-
eter ω = 0.3 bohr−1.37 LRC functionals, as a subset of
range-separated hybrid functionals,39 are characterized
by an asymptotic exchange functional that becomes 100%
Hartree-Fock (HF) exchange for r12 � 1/ω. This ensures
that the asymptotic behavior of the exchange potential is
−1/r. Not all range-separated hybrid functionals enforce
the correct asymptotic behavior; see Ref. 39 for a discus-
sion. To assess the role of electron correlation, we will
also carry out some simulations at the level of TDHF
theory, which is equivalent to TDKS with a functional
that contains only HF exchange, with no correlation and
no range separation.

Calculations are performed for H2 at 0.75 Å separation
in a spin-unrestricted formalism, with the field aligned
along the internuclear axis; we take this to be polariza-
tion in the z direction, nF = (0, 0, 1). The external field
mimics a laser field with intensity of I = 1014 W/cm2

and carrier frequency ω0 = 1.55 eV (= 800 nm). In
atomic units, this corresponds to A = 0.05 a.u. and
ω0 = 0.057 a.u. in Eq. (19). For the Gaussian-impulse
field [Eq. (20)], we take tc = 800 a.u. and σ = 200 a.u.,
and use a total simulation time of 1500 a.u. (≈ 36.3 fs),
extending just beyond the support of the envelope func-
tion E(t) for this set of parameters. We also report simu-
lations using a continuous-wave field where the total sim-
ulation time is 5,000 a.u. (≈ 121 fs). These simulations
use the same values A and ω0 that define the the im-
pulsive field, so that the peak value of E(t) is the same
in both cases. (Both fields are plotted in Fig. 2.) At
low field intensities, vibrational motion may destroy co-
herences needed to obtain the highest harmonic orders66

but is not considered here, where we use an ionizing field
intensity.

The shape of the CAP is described by Eq. (14) with
various values of the turn-on radius r0, in a range from
4.0–18.5 bohr. The curvature parameter η is tested
within a range 0.4–4.0 Ha/bohr2. The time propagation
algorithm is described in Section II B and the time step
is ∆t = 0.1 a.u.. In performing the Fourier transform
that is indicated in Eq. (24), a Hann window function,
w(t) = sin2[πt/(tfin − tini)], is applied to the time series
of µ(t) data.

The basis set for all calculations is 5-aug-cc-pVTZ,
which has been shown to afford a good balance of conver-
gence versus cost in TD-CIS simulations of HHG spec-
tra in H2.32 This basis set is constructed by adding four
additional sets of s, p, and d diffuse functions to the

TABLE II: Gaussian half-widths at half-maximum (HWHM,
in bohr) for the most diffuse basis function on hydrogen.

cc-pVTZ
n-aug-cc-pVTZ

n = 1a n = 2 n = 3 n = 4 n = 5
s 2.60 5.24 10.57 21.31 42.98 86.68
p 1.34 2.61 5.09 9.92 19.36 37.76
d 0.81 1.68 3.47 7.17 14.84 30.70

aConventional aug-cc-pVTZ basis set.

conventional aug-cc-pVTZ basis set.67 Exponents ζ for
these additional functions are provided in Table I. Those
exponents are converted into radial half-widths at half-
maximum (HWHM) in Table II, where50

HWHM(ζ) =

√
ln 2

ζ1/2
≈ 0.8326 ζ−1/2 . (26)

Values of HWHM(ζ) make it easy to understand the ra-
dial extent of each n-aug-cc-pVTZ basis set. The one
that we use (n = 5) includes s functions extending out
to HWHM ≈ 87 bohr or 46 Å. The use of functions this
diffuse can lead to numerical linear dependency problems
if thresholds are set too loose. We convergence the initial
ground-state SCF calculation using an energy threshold
of 10−9 Ha and integral thresholds are set to 10−12 a.u.
for all Fock builds.

III. RESULTS AND DISCUSSION

We first verify that the value ∆t = 0.1 a.u. is suitable
to obtain a stable simulation. Using the impulse field
that is plotted in Fig. 2, we performed a TDKS simu-
lation using values of ∆t ranging from ∆t = 0.01 a.u.
(= 0.242 as), corresponding to a Nyquist frequency of
8.5 keV,24,25 up to as large as ∆t = 0.2 a.u. (= 4.84 as),
corresponding to a Nyquist frequency of 427 eV. Since the
external field is applied in the z direction, corresponding
to the internuclear axis of H2, we can use µz(t) to assess
the impact of ∆t. This quantity is plotted in Fig. 3 for
simulations using three different time steps and the re-
sults track one another quite well. Taking the smallest
time step (∆t = 0.01 a.u.) as the benchmark, differences
in µz for the larger time-step simulations are on the order
of 10−4 a.u., in a total dipole moment whose magnitude
ranges almost to 0.4 a.u.. If the time step is increased to
∆t = 0.2 a.u. then the deviations in µz increase in mag-
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FIG. 3: Time-dependent dipole moment µz(t) for the H2

molecule, obtained from TDKS simulations at the LRC-
ωPBE/5-aug-cc-pVTZ level using various time steps, ∆t. The
simulations use the impulse field shown in Fig. 2.
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FIG. 4: Time-dependent dipole moment µz(t) for the H2

molecule, obtained from TDKS simulations at the LRC-
ωPBE/5-aug-cc-pVTZ level with two different time steps.
The simulations use the impulse field shown in Fig. 2 and
the ∆t = 0.01 a.u. data are the same as those plotted in
Fig. 3. For clarity, only a portion of the simulation is shown
but these simulations have the same t = 0 starting point as
those in Fig. 3.

nitude to ∼ 10−2 a.u. and some spurious high-frequency
oscillations appear (Fig. 4). As such, ∆t = 0.1 a.u. is the
best choice for accuracy and efficiency.

Figure 5 presents HHG spectra for H2 computed using
TDKS simulations with both the LRC-ωPBE functional
as well as TDHF theory. In this first set of numerical con-
trol experiments, no CAP is applied and the laser field
is the same impulse field that was used for the stability
tests, with a total time propagation of 1,500 a.u.. Neither
spectrum in Fig. 5 conveys much of the known character-
istics of a high-harmonic spectrum, in concurrence with
previous TD-CIS simulations when no correction for the
unbound states is applied.32 Only the first three harmon-
ics are well resolved in the DFT spectrum and only the
first two harmonics in the HF spectrum.

The high-harmonic cutoff energy can be calculated us-
ing Up = 5.98 eV, which comes from Eq. (4) with the
field parameters I = 1014 W/cm2 and λ = 800 nm.
The IE ranges from 14.3–16.3 eV, depending on whether
the ∆SCF value is used or the Koopmans’ value (IE =
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FIG. 5: HHG spectra for H2 computed using the TDKS
approach with two different functionals and no CAP, using
the 5-aug-cc-pVTZ basis set in both cases. An impulsive field
is applied, with parameters as in Fig. 2, and the simulations
are propagated for 1,500 a.u. in time. The vertical axis shows
the signal |dA(ω)|2 on a logarithmic scale. The horizontal
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FIG. 6: HHG spectrum of H2 computed at the HF/5-aug-
cc-pVTZ level from an impulsive simulation (in black, cor-
responding to the TDHF data from Fig. 5), overlaid with
vertical excitation energies (in green) computed from a LR-
TDHF calculation. Only LR-TDHF transitions with nonzero
oscillator strength are shown. Vertical sticks in darker green
correspond to overlapping transitions. The vertical axis shows
the HHG signal |dA(ω)|2 on a logarithmic scale and the hor-
izontal scale is in multiples of the fundamental frequency,
ω0 = 1.55 eV.

−εHOMO), and depending on whether the level of the-
ory is HF or LRC-ωPBE. (The 5-aug-cc-pVTZ basis set
is used in each case.) Using the most recent estimate
of the cutoff energy,53 namely, Eq. (6) with c1 = 3.34
and c2 = 1.83, one obtains values of Ecutoff ranging from
46.1–49.8 eV, corresponding to 30–32 harmonics. In the
context of TDKS calculations it is probably more ap-
propriate to use the Koopmans’ value of the IE because
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FIG. 7: Comparison of HHG spectra for H2 computed from simulations with and without a CAP, using (a) TDHF theory and
(b) TDKS with the LRC-ωPBE functional. The field is an impulse (Fig. 2) and all simulations are propagated for 1,500 a.u.
in time. CAP parameters are set to r0 = 9.524 bohr (= 18.00 Å) and η = 4.0 Ha/bohr2. The vertical scale is logarithmic and
the horizontal axis is in units of the fundamental frequency, ω0 = 1.55 eV.

excitations into unbound MOs afford ionization channels.
Taking IE = −εHOMO, the cutoff is estimated around the
30th harmonic for LRC-ωPBE or the 32nd harmonic for
HF.

The sharp drop in intensity that is observed in the
HHG spectra of Fig. 5 is thus in good agreement with
the cutoff estimate in Eq. (6). However, in the TDKS
simulations the intensity does persist to higher harmonic
orders, albeit much attenuated, and there are spikes in
intensity (corresponding to fictitious harmonics) around
the 45th and 60th harmonic orders. We hypothesize that
this behavior results from artificial confinement of the
electron due to the finite extent of the Gaussian basis
set. Higher-energy parts of the outgoing wave that should
be ionized are instead confined and reflected, generating
spurious interference features and generally contributing
to a noisy spectrum.

To confirm this hypothesis, Fig. 6 overlaps the HHG
spectrum computed at the TDHF level with an excitation
spectrum computed using linear response (LR) TDDFT.
(We use LR-TDHF and thus compare to the TDHF data
from Fig. 5. For clarity, only the LR-TDHF states with
oscillator strengths greater than 1× 10−10 are shown.)
It is apparent that the enhanced high-harmonic inten-
sity around the 45th and 60th harmonic orders coincides
with LR-TDDFT excitation energies having nonzero os-
cillator strengths. Thus, we conclude that these are en-
hancements in the high-harmonic spectrum driven by res-
onances with excited states of the system, but are not
physically reasonable because the excited states in ques-
tion lie well above the ionization threshold and are thus
bound only by the finite support of the Gaussian basis
set that prevents the molecule from ionizing. Note that
the LR-TDDFT calculation exhibits resonances coincid-
ing already with the 4th harmonic in the HHG spectrum
and these may also be responsible for the lack of resolu-
tion that is observed in the TDKS simulations in Fig 5,
even at lower harmonic orders.

We thus turn to TDKS simulations using a CAP. Fig-
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FIG. 8: Comparison of HHG spectra for H2 computed from
TDKS versus TDHF simulations, both of which use a CAP.
The field is impulsive impulse (see Fig. 2) and all simula-
tions are propagated for 1,500 a.u. in time. These are the
same spectra that were plotted in Fig. 7 but placed side-
by-side here, omitting the results obtained sans CAP. The
CAP parameters are set to r0 = 9.524 bohr (= 18.00 Å) and
η = 4.0 Ha/bohr2.

ure 7 presents a side-by-side comparison of the HHG
spectra computed with and without a cap. At both
the HF and LRC-ωPBE levels of theory, the noise in
the original spectrum (sans CAP) is greatly reduced and
consequently distinct peaks emerge at odd harmonic or-
ders, as anticipated. The two spectra (HF and LRC-
ωPBE) computed with a CAP are compared side-by-side
in Fig. 8. Up to the 20th harmonic, the TDHF and
TDKS results match relatively well but the TDHF spec-
trum subsequently falls off much more rapidly between
the 20th and 30th harmonics. Above the 30th harmonic,
the LRC-ωPBE spectrum continues to exhibit markedly
larger intensity. There are also some resurgent peaks
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FIG. 9: Comparison of HHG spectra for H2 computed at the TDHF/5-aug-cc-pVTZ level using various values of the parameters
r0 and η that define the CAP, as indicated. All four simulations were performed using a continuous wave field (see Fig. 2) and
5,000 a.u. of time propagation. The vertical scale (which is logarithmic) is different in each panel.

in both spectra, between the 70th and 80th harmonics,
which are discussed below. Due to the logarithmic scale
on which all of these HHG spectra are plotted, differ-
ences between the TDHF and TDKS results above the
30 harmonic order are generally < 10−6 on an absolute
intensity scale, which is small considering that the major
peaks at low harmonic orders are ∼ 10+10–10+15 on the
same scale.

Figure 9 shows HHG spectra computed at the HF/5-
aug-cc-pVTZ level using four different CAPs, defined by
different choices of the parameters r0 and η in Eq. (14).
Unlike the previous simulations, each of which used an
impulsive field and were propagated for 1,500 a.u., these
simulations used a continuous-wave field and were prop-
agated for 5,000 a.u. Figure 9a uses the same set of CAP
parameters as in Fig. 8 and we will use this spectrum as
a reference in examining the effects of the CAP parame-
ters. As compared to the simulation using an impulsive
field (Fig. 8), the corresponding simulation with a con-
tinuous wave (Fig. 9a) provides a much better resolved
set of peaks all the way up to the anticipated harmonic
cutoff, because the system experience more cycles of the
laser field. Beyond the 30th harmonic the intensity drops
dramatically and the baseline is reduced by several orders
of magnitude as compared to the corresponding simula-
tion using an impulsive field. Fictitious peaks around the
60th, 75th, and 93rd harmonic orders can be observed in
both simulations, but their intensity is reduced in the
continuous-wave calculation.

As compared to that in Fig. 9a, the spectrum reported
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FIG. 10: Ionization rates for the simulations in Fig. 9, com-
puted at the TDHF/5-aug-cc-pVTZ level with a continuous-
wave field: (a) CAP parameter sets (r0, η) leading to slow
ionization, versus (b) a much smaller value of r0 that affords
a much larger ionization rate and annihilates the entire elec-
tron density over the course of 5,000 a.u. of time propagation.

in Fig. 9b is computed using the same value of η but a
much larger value of r0. The result is that the harmonic
progression no longer drops nearly as precipitously at the
30th harmonic, as it does for the smaller turn-on radius,
but persists all the way to the 100th harmonic. Along-
side the anticipated odd harmonics are a set of spuri-
ous, parallel features. Conversely, when r0 is reduced to
4.0 bohr (Fig. 9c), keeping η the same, the result is that
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FIG. 11: HHG spectra for H2, computed at the TDHF level using various values of the CAP parameters r0 and η. Simulations
were performed for 5,000 a.u. of time propagation under a continuous wave and the HHG spectra are the same ones that
are reported in Fig. 9, but are overlaid here with vertical lines representing the Koopmans’ theorem IEs (−εk where εk is an
occupied energy level, in translucent orange) and LR-TDHF excited states (in translucent green). Darker colored vertical lines
indicate overlapping transitions in the stick spectra.

the low-order harmonics disappear beyond the third one.
Together, these simulations set boundaries on acceptable
values of r0: the largest value (r0 = 18.500 bohr) fails
to attenuate the harmonics at the expected cutoff while
the smallest value (r0 = 4.000 bohr) attenuates the sig-
nal so much that nearly all of the harmonics are swal-
lowed by the absorbing potential. Finally, Fig. 9d uses
r0 = 9.524 bohr (as in Fig. 9a) but reduces the curvature
η by a factor of 10. This choice restores the harmonic
cutoff around 30th order but the spectrum exhibits spu-
rious peaks above the 60th harmonic order, and these are
somewhat stronger than they were for the larger value of
η with the same turn-on radius.

Figure 10 plots the ionization rates for the simulations
in Fig. 9. For the three sets of CAP parameters (r0, η)
leading to clear HHG peaks (Figs. 9a, b, and d), the
ionization rates are plotted together in Fig. 10a and are
rather slow, such that only ≈ 0.02 electrons are lost over
the course of 5,000 a.u. of time propagation. The ioniza-
tion rate is much larger when r0 = 4.0 bohr (Fig. 10b),
such that the entire electron density is annihilated by the
CAP over the course of 5,000 a.u. of time propagation.
The corresponding HHG spectrum is shown in Fig. 9c
and fails to evince any clear harmonics beyond the first
three, and two of those are severely attenuated. The con-
clusion is that the CAP plays a critical role in obtaining
characteristic HHG spectra, as without it the spectra are
overwhelmed by noise and higher harmonics are miss-

ing. The 1% of the electron density that is annihilated in
Fig. 10a is critical to obtaining a clean HHG spectrum,
for otherwise this part of the density becomes a reflected
wave whose interference with the outgoing wave leads to
noise in the spectrum. On the other hand, if the turn-on
radius of the CAP is set too close to the nuclei (small r0),
then the electron density is absorbed too quickly and the
system does not experience enough pulse cycles to gen-
erate well-resolved harmonics.

In Fig. 11, the HHG spectra from Fig. 9 are plotted
again, along with Koopmans IEs and LR-TDHF exci-
tation energies, both as stick spectra. For clarity, only
excited states with nonzero oscillator strengths (greater
than 1× 10−10) are shown, as these should dominate the
transition rate and are sufficient to illustrate the fact that
some spurious features in the HHG spectrum coincide
with physical excitation energies. Specifically, fictitious
peaks between the 60th and 80th harmonic orders are
observed to coincide with Koopmans IEs, −εk (where
εk is an occupied energy level). Particularly revealing is
the spectrum computed using r0 = 4.0 bohr (Fig. 11c),
where the ionization is rapid. A broad feature around the
30th harmonic order coincides with a particular Koop-
mans IE, as does another broad feature around the 70th
harmonic. (Note that the MO energy levels are much
more sparse after the 30th harmonic order, as compared
to the low-energy regime.) We conclude from this that
these ionizable MOs do provide ionization channels if the
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FIG. 12: HHG spectra for H2 computed at the TDHF/5-aug-cc-pVTZ level from a continuous-wave simulation with CAP
parameters r0 = 9.524 bohr and η = 4.0 Ha/bohr2. The total simulation time of 5,000 a.u. has been divided into five consecutive
segments of 1,000 a.u. each and the spectra in panels (a)–(e) are obtained from the Fourier transform of the dipole moment
data within each segment, as indicated. The intensity scale, which is logarithmic, is the same in each panel.

field-perturbed density has enough overlap with the CAP.
Contrasting this behavior is the spectrum computed us-
ing r0 = 18.5 bohr (Fig. 11b), which exhibits fictitious
peaks at precisely the same energies, albeit very narrow
ones, and well-defined features in the HHG spectrum are
still obtained at energies well above these ionization chan-
nels and well above the predicted cutoff energy. Accord-
ing to Table II, there are a total of 23 basis functions
whose HWHM exceeds 9.5 bohr, and 14 basis functions
where the HWHM is greater than 18.5 bohr. We con-
clude that r0 = 18.5 bohr does not have good overlap
with the atom-centered basis functions and the nonzero

regions of the CAP reside largely outside of the region
that has basis function support.

As compared to the large-r0 spectrum in Fig. 11b, the
small-η spectrum in Fig. 11d exhibits a smaller region of
narrow fictitious peaks. The parameter η determines the
strength of the CAP and its smaller value in Fig. 11d
as compared to Fig. 11a (with r0 = 9.524 bohr in both
cases) leads to additional peaks above the cutoff energy
when η is smaller. In the simulation with the smaller
value of η, some of these above-cutoff peaks coincide with
excitation energies computed using LR-TDHF theory, in-
dicating that there are resonances that persists and con-
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tribute to interference in the spectrum that is eliminated
at the larger value of η.

Focusing now on the spectrum with CAP parameters
r0 = 9.524 bohr and η = 4.0 Ha/bohr2, Fig. 12 shows
several different versions of this spectrum computed from
“windowed” Fourier transforms in which the total time
propagation of 5,000 a.u. is divided into five sequential
segments and the transform is computed using only the
data from within one segment. For the segment corre-
sponding to 0 < t < 1, 000 a.u. (Fig. 12a), peaks are
obtained at the odd harmonic numbers but they are
not yet very clear or sharp, and fictitious peaks are ob-
tained starting from the 60th harmonic order and con-
tinuing through the 100th order. Significant peaks near
the 60th and 93rd harmonic orders clearly correspond to
LR-TDHF excited states. Unphysical peaks between the
75th and 80th harmonic orders correspond to ionization
channels as inferred from the MO eigenvalues.

Within the second data segment (Fig. 12b), corre-
sponding to the next 1,000 a.u. of time propagation,
peaks become clearer and sharper at the anticipated odd
harmonic orders, up to about the 30th harmonic that
corresponds to the expected cutoff energy. The region of
fictitious peaks shrinks dramatically, as compared to the
spectrum computed within the first 1,000 a.u. of propa-
gation time, and no fictitious peaks are observed until the
75th harmonic order. Unphysical features due to TDHF
excited states that were observed in the first data seg-
ment are gone, and the remaining fictitious peaks (be-
tween the 75th and 80th harmonic orders) are smaller
than what was observed from the first segment of simu-
lation data. In the third segment (Fig. 12c), the spectrum
is cleaner still and the spurious peaks between the 75th
and 77th harmonic orders are quite small. These fea-
tures completely disappear from spectra computed from
the next data segment, corresponding to 3, 000 a.u. <
t < 4, 000 a.u. (Fig. 12d). This remains true in the final
data segment (4, 000 a.u. < t < 5, 000 a.u., in Fig. 12e),
although the high-energy tail becomes more noisy.

The success of this windowing procedure can be inter-
preted as follows. In the case that the basis set was com-
plete and covered all of space extending to infinity, then
some part of the H2 wave packet would quickly be ionized
by the strong laser field, never to return. In practice, the
finite extent of the basis set means that there are spu-
rious peaks corresponding to excitations into unbound
states, the rate of which is dominated by the first-order
transition integrals and the most significant spurious fea-
tures coincide with excited states having nonzero oscil-
lator strength. By windowing the spectrum, we only in-
clude µ(t) data from later times in the Fourier transform,
by which time some of the high-frequency, artificially-
trapped electron wave has been absorbed by the CAP.

IV. SUMMARY AND CONCLUSIONS

Based on a new implementation of the TDKS or or
“real-time TDDFT” method in the Q-Chem code,25,63

we have tested the TDKS approach for simulation of
high harmonic spectra using atom-centered Gaussian ba-
sis functions and an atom-centered, real-space CAP. In
these strong-field simulations, the CAP serves to ab-
sorb the highest-energy part of the outgoing charge den-
sity wave, representing tunneling ionization, which would
otherwise reflect off of the artificial barrier that is created
by the finite extent of the basis set. Interference between
the outgoing and reflected waves then leads to significant
noise in the high harmonic spectrum obtained from the
fluctuating dipole moment function.

In this preliminary report, we have characterized the
CAP parameters that are needed to obtain a well-defined
harmonic progression that terminates at the appropriate
energy cutoff, without spurious peaks at high energy. Ab-
sent the CAP, only a few low-energy harmonics can be
observed but even when the CAP is activated, spurious
peaks may result (coinciding with certain resonances) if
the CAP parameters r0 and η are not set properly. Some
of these spurious peaks coincide with excitation ener-
gies while other result from ionization channels coinciding
with Koopmans ionization energies, −εk. We find that
the turn-on radius for the CAP (parameter r0) primarily
affects the cutoff energy at which the harmonic sequence
is attenuated, while the curvature parameter (η) controls
the noise in the spectrum. Since the cutoff energy can be
estimated in advance, the value of r0 should be modified
on this basis. The value of η can then be set to control
the noise above the harmonic cutoff.

The use of atom-centered basis functions (as opposed
to real-space grids), and a commensurate atom-centered
CAP that requires only standard, atom-centered DFT
quadrature grids,62 makes the present methodology ex-
tensible to larger molecular systems, perhaps includ-
ing models of condensed-phase systems. The cost of
a single TDKS time step is comparable to the cost of
a ground-state SCF cycle and the memory footprint is
only twice that of a ground-state DFT calculation, due
to the use of complex-valued matrices. The Gaussian or-
bital representation is thus essential for extending strong-
field calculations to polyatomic molecules, and others
have already reported applications including HHG spec-
tra of CH2Cl2,68 as well as strong-field ionization rates
of C6H8,57 both at the TD-CIS level. The present for-
malism suggests an efficient means to add correlation to
those calculations, as an alternative to time-dependent
implementations of correlated wave function models.69

In moving to larger systems, one may need to deal with
a linear dependency problem arising when very diffuse
basis sets are employed (such as 5-aug-cc-pVTZ that is
used here), which we circumvent in the present work us-
ing very tight thresholds. Judicious use of floating centers
(“ghost atoms”) may be an alternative means to circum-
vent this problem. This extensibility may open the door
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to simulations of strong-field phenomena in a wide vari-
ety of complex systems.
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Proynov, A. Rák, E. Ramos-Cordoba, B. Rana, A. E.
Rask, A. Rettig, R. M. Richard, F. Rob, E. Rossomme,
T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S. M.
Sharada, W. Skomorowski, D. W. Small, C. J. Stein, Y.-
C. Su, E. J. Sundstrom, Z. Tao, J. Thirman, G. J. Tornai,
T. Tsuchimochi, N. M. Tubman, S. P. Veccham, O. Vy-
drov, J. Wenzel, J. Witte, A. Yamada, K. Yao, S. Yeganeh,
S. R. Yost, A. Zech, I. Y. Zhang, X. Zhang, Y. Zhang,
D. Zuev, A. Aspuru-Guzik, A. T. Bell, N. A. Besley, K. B.
Bravaya, B. R. Brooks, D. Casanova, J.-D. Chai, S. Cori-
ani, C. J. Cramer, G. Cserey, A. E. DePrince III, R. A.
DiStasio Jr., A. Dreuw, B. D. Dunietz, T. R. Furlani,
W. A. Goddard III, S. Hammes-Schiffer, T. Head-Gordon,
W. J. Hehre, C.-P. Hsu, T.-C. Jagau, Y. Jung, A. Klamt,
J. Kong, D. S. Lambrecht, W. Liang, N. J. Mayhall, C. W.
McCurdy, J. B. Neaton, C. Ochsenfeld, J. A. Parkhill,
R. Peverati, V. A. Rassolov, Y. Shao, L. V. Slipchenko,
T. Stauch, R. P. Steele, J. E. Subotnik, A. J. W. Thom,
A. Tkatchenko, D. G. Truhlar, T. Van Voorhis, T. A.
Wesolowski, H. L. W. K. B. Whaley, P. M. Zimmerman,
S. Faraji, P. M. W. Gill, M. Head-Gordon, J. M. Herbert,
and A. I. Krylov, “Software for the frontiers of quantum
chemistry: An overview of developments in the Q-Chem 5
package”, J. Chem. Phys., 155, 084801:1–59 (2021).

64 T. S. Nguyen and J. Parkhill, “Nonadiabatic dynam-
ics for electrons at second-order: Real-time TDDFT
and OSCF2”, J. Chem. Theory Comput., 11, 2918–2924
(2015).

65 T. S. Nguyen, J. H. Koh, S. Lefelhocz, and J. Parkhill,
“Black-box, real-time simulations of transient absorption
spectroscopy”, J. Phys. Chem. Lett., 7, 1590–1595 (2016).

66 C. Witzorky, G. Paramonov, F. Bouakline, R. Jaquet,
P. Saalfrank, and T. Klamroth, “Gaussian-type orbital
calculations for high harmonic generation in vibrating
molecules: Benchmarks for H+

2 ”, J. Chem. Theory Com-
put. (DOI: 10.1021/acs.jctc.1c00837).

67 D. E. Woon and T. H. Dunning Jr., “Gaussian basis sets for
use in correlated molecular calculations. IV. Calculation of
static electrical response properties”, J. Chem. Phys., 100,
2975–2988 (1994).

68 F. Bedurke, T. Klamroth, P. Krause, and P. Saalfrank,
“Discriminating organic isomers by high harmonic gener-
ation: A time-dependent configuration interaction singles
study”, J. Chem. Phys., 150, 234114:1–10 (2019).

69 X. Li, N. Govind, C. Isborn, A. E. DePrince III, and
K. Lopata, “Real-time time-dependent electronic structure
theory”, Chem. Rev., 120, 9951–9993 (2020).

70 Ohio Supercomputer Center ,
http://osc.edu/ark:/19495/f5s1ph73.


	Introduction
	Theory
	High harmonic generation
	TDKS simulations
	Computational details

	Results and Discussion
	Summary and Conclusions
	Acknowledgements
	References

