Identifying signatures of proteolytic
stability and monomeric propensity in
O-glycosylated insulin using molecular
simulation

Wei-Tse Hsu', Dominique A. Ramirez2, Tarek Sammakia3, Zhongping Tan*, Michael R.
Shirts’

"Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, CO,
USA 80309; 2Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
80309; 3Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA 80309;
4Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical
College, Beijing, 100050, China

*For correspondence:
michael.shirts@colorado.edu (MRS); zhongping.tan@imm.pumc.edu.cn (ZT)

Abstract Insulin has been commonly adopted as a peptide drug to treat diabetes given its ability to facil-
itate the uptake of glucose from the blood. The development of oral insulin remains elusive over decades
owing to its susceptibility to the enzymes in the gastrointestinal tract and poor permeability through the
intestinal epithelium upon dimerization. Recent experimental studies have revealed that certain O-linked
glycosylation patterns could enhance insulin’s proteolytic stability and reduce its dimerization propensity,
but the understanding of such phenomena at the molecular level is still evasive. To address this challenge,
we propose and test several structural determinants that could potentially influence insulin’s proteolytic sta-
bility and dimerization propensity. We used these as the metrics to assess the properties of interest from
10 us aggregate molecular dynamics of each of 12 targeted insulin glyco-variants from multiple wild-type
crystal structures. We found that glycan-involved hydrogen bonds and glycan-dimer occlusion were useful
metrics predicting the proteolytic stability and dimerization propensity of insulin, as was in part the solvent
accessible surface area of proteolytic sites, while other plausible metrics were not generally predictive. This
work helps better explain how O-linked glycosylation influences the proteolytic stability and monomeric
propensity of insulin, illuminating a path towards rational molecular design of insulin glycoforms.

1 Introduction

Insulin has been widely used as a peptide drug to treat both type 1 and type 2 diabetes mellitus by promoting
the absorption of glucose from the blood into the liver, fat, and skeletal muscle cells. While it is usually
administered via subcutaneous injections, excessive injections could lead to non-compliance by the patients
owing to injection pain and associated side effects, including trypanophobia, lipodystrophy, and peripheral
hyperinsulinemia [1]. As such, there has been a growing interest in the development of an insulin drug
for oral administration [1-3]. Orally ingested insulin not only avoids the aforementioned side effects of
subcutaneous administration, but also has the advantage of reaching the liver at high concentration via
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the portal vein before reaching systemic circulation, which better mimics the physiology of endogenous
secretion by the pancreas and provides a better glucose homeostasis [4, 5].

However, developing oral insulin remains a major challenge because of its susceptibility to proteases in
the digestive system of the human body and poor permeability across the intestinal epithelium upon dimer-
ization, which leads to overall low absorption efficiency [6]. Therefore, proteolytic stability and dimerization
propensity are two of the most important controlling factors when developing oral insulin drugs. During
past years, a wide array of strategies, including chemical modifications [7, 8], nano-particulate carrier sys-
tems [9-11], and utilization of protease inhibitors [12], have been shown to have varying degrees of success
in improving these two insulin properties.

Glycosylation is one of these chemical modifications strategies and has shown significant promise in
enhancing the proteolytic stability and monomeric propensity of various kinds of proteins [13-15]. While
N-linked glycosylation has been more studied [16-18] due to better controllability and the ease of chemical
synthesis, O-linked glycosylation has a larger diversity of carbohydrate structures and potentially a greater
ability for tuning biophysical properties of glycoproteins. Guan et al. systematically investigated different
glycosylation patterns, including glycosylation sites, glycan sizes, and glycan structures [19]. Their study sug-
gested the superiority of O-mannosylation of insulin B-chain Thr27 to other studied glycosylation patterns
in increasing the proteolytic stability against a-chymotrypsin and decreasing the dimerization propensity of
insulin, while still maintaining the full biological activity. However, there is a lack of quantitative understand-
ing of how insulin properties are influenced by the interactions between the attached sugar molecules and
insulin residues, particularly at the molecular level.

Recent advances in molecular simulation methods and greater availability of computing resources allow
much more comprehensive exploration of biomolecular systems at the atomistic level than was previously
possible. A number of previous studies have shown molecular dynamics (MD) simulations to be a pow-
erful tool for understanding the properties and dynamics of insulin. Mark et al. [20] and Zoete et al. [21]
found that the insulin monomer is more flexible than the dimer. Zoete et al. [21] additionally confirmed the
high flexibility in the B-chain C-terminus of insulin, which was consistent with the experimental data. Later,
Yang [22] et al. used simulated annealing [23] to probe how PEGylation enhanced the stability and potency
of insulin, discovering that an optimal chain length existed for PEGglyated insulin pharmaceuticals. More re-
cently, with steered molecular dynamics [24] and replica-exchange umbrella sampling [25], Antoszewski et
al. [26] determined the relative energies of unfolding and identified different unfolding pathways of insulin.

In this study, we aim to identify structural determinants from MD simulations of glycosylated insulin that
lead to enhanced proteolytic stability against a-chymotrypsin or reduced dimerization propensity. Specifi-
cally, we performed molecular dynamics simulations for each of the 12 insulin glycoforms (GFs) (Figure 1)
studied in the experimental work [19] done by Guan et al. Each of the glycoforms was built upon five dif-
ferent wild-type models resolved by different methods/groups to encapsulate a wider variety of initial con-
figurations so as to sample the conformational ensemble more comprehensively. Based on the proteolytic
degradation mechanism by a-chymotrypsin [27] and the structural characteristics of insulin, we proposed
several potential metrics for assessing the two insulin properties, including solvent-accessible surface area
(SASA), secondary structures, existence of glycan-involved hydrogen bonds, and the occlusion between the
glycan and the dimer interface. A previous study [28] found that greater conformational rigidity of a carbo-
hydrate binding module (CBM) protein was associated with larger proteolytic stability of glycoforms, thus
disfavoring reaction-capable transition state. However, overall conformational rigidity of insulin is signifi-
cantly different than CBM, and thus more specific measures of transition state accessibility were used, such
as the p-sheet propensity, which more specifically takes the structural features of the known a-chymotrypsin
transition state into account.
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Figure 1. Structures of a human insulin monomer and glycoforms studied in this work. Two kinds of sugar moieties
(N-acetylgalactosamine (GalNAc) and mannose (Man) in the a-anomer) with varying lengths (e.g. a mannose monomer,
dimer, or trimer) were attached to five different glycosylation sites of insulin, including SerA9 (teal), SerA12 (purple), SerB9
(blue), ThrB27 (orange) and ThrB30 (green) all represented as beads. The glycosylation pattern of each glycoform is
implied by its name—for example, GalNAca (SerA9) represents the glycoform having an N-acetylgalactosamine (GalNAc)
attached to the A chain Ser9 residue. Note that for glycoforms having a mannose dimer or trimer as the glycan, the
linkages between monomers were all a-1,2-linkages, so Tri-Mana (ThrB27) refers to the glycoform containing an a-1,2-
linked tri-mannose at the B chain Thr27 residue.

Notably, both the proteolytic stability and dimerization propensity are related to transformation pro-
cesses that require overcoming free energy barriers. The proteolytic stability can be directly associated with
the free energy barrier of the formation of the conformational ensemble corresponding to the transition
state in the proteolytic degradation by a-chymotrypsin. Similarly, dimerization propensity is strongly corre-
lated with the free energy barrier to dimerization. While these free energy differences could serve as more
direct measures for the two biophysical properties of interest, calculations of such free energy differences
are far fromtrivial. The reason lies in the fact that the timescale of the binding/unbinding events between an
insulin monomer and an a-chymotrypsin or between two insulin monomers are prohibitively long. This ne-
cessitates the use of advanced sampling techniques to accelerate the sampling of the configurational space
of the system of interest, such as umbrella sampling [29] or alchemical transformations [30, 31]. However,
such free energy methods are usually much more complicated and computationally expensive than stan-
dard MD simulations of the same length. The increase in the system size of insulin/protease complex or
insulin dimer calculations adopting either method could easily increase the computational cost significantly
beyond the scope of what is possible to screen large numbers of insulin modifications. Advanced configu-
rational sampling approaches can often be significantly difficult to set up and interpret, thus making easy
screening impossible.

Therefore, instead of considering simulations of an insulin-a-chymotrypsin complex and an insulin dimer,
we worked to develop metrics for proteolytic stability and dimerization propensity based on standard MD
simulations of monomers and their glycosylated analogs. The hypothesis is that the insulin monomer that
participates in either a complex with a-chymotrypsin or an insulin dimer should encode at least some im-
portant structural insights into both the proteolytic stability and the dimerization propensity. As long as
we are able to explore the configurational space of monomer-based structures sufficiently, the conforma-
tional ensembles we get from the simulations should shed light on developing reasonable metrics for the
two insulin properties.

Given the output MD trajectories, all metrics were measured for each glycoform structure. They were
later compared with the experimental work for assessing the efficacy. Notably, we found that at minimum
5 x 2000 ns = 10 us of simulation was necessary to capture the structural characteristics of the insulin
ensembles. This aggregate length is, to our knowledge, the longest among all the computational studies of
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human insulin. In addition, our study is not only one of the very few studies that characterize conformations
of insulin with a covalently attached moiety, but is also unique as the first study that assesses proteolytic
stability of a protein by molecular dynamics. Our investigation facilitates a better understanding of the
underlying mechanism of how different O-glycosylation patterns influence insulin properties, which could
be useful in guiding the design of insulin glyco-variants with better properties for oral delivery.

2 Methodology

2.1 Molecular dynamics simulations

To reduce sampling bias of our MD simulations and ensure that our analysis results were not dependent on
the initial configuration of insulin, in our study, we built each of the 12 glycoforms on 5 wild-type (WT) struc-
tures resolved by different groups using different methods, whose PDB IDs were 4EYD, 4EY9, 4EY1, 313Z, and
2MVC, respectively (Figure 2A). These initial models were chosen based on whether they were resolved in a
complex or as a monomer. For example, 4EYD, 4EY9, and 4EY1 were all crystallized in complex with Zn?*+ as
a hexamer composed of a dimer in 3-fold symmetry [32]. They represented high-resolution human insulin
structures from pharmaceutical formulations. 313Z and 2MVC, on the other hand, were representative of
monomeric insulin structures. 3I13Z was resolved by X-ray crystallography under low gravity conditions so
that the asymmetric unit of insulin was a monomer [33]. 2MVC was resolved by NMR spectroscopy under
acidic conditions, which were known to favor the monomeric form of insulin [34].

For those models resolved in the dimeric form, including 4EYD, 4EY9, and 4EY1, we extracted the insulin
monomer from the dimer conformation. For 313Z, which was resolved as a monomer with the last residue
on the B-chain mutated into an alanine, we used PyMOL [35] to mutate the residue back to a threonine to
match the standard sequence of human insulin. Lastly, for the NMR-resolved 2MVC, we simply took the
first model from the PDB file of the resolved ensemble. Notably, even if monomers extracted from a dimer
conformation could potentially suffer from biases from experimental conditions that favor dimer resolution,
as later shown, these biases did not have noticeable influences on the consistency of our methods.
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Figure 2. Structures of wild-type insulin models used in this study. (A) The initial monomer structures, after equilibration
and before production simulation, are superimposed and are shown from different views. (B) Representative dimer
structure illustrating the dimerization interface. The 313Z crystal structure was used to reconstruct an insulin dimer in the
first two images. Residues GlyB23-TyrB26 (salmon) are highlighted. The lastimage shows the superimposed equilibrated
wild-type structures with labels for the dimer interface.

After extracting the monomer structure from each of the initial models, we used the H++ server (version
3.2) [36-38] to assign reasonable protonation states under the pH value (8.0) adopted in experiments. At
pH 8.0, the total charges of insulin were predicted to be -1 or -2, depending on the pK; , value of the two
histidine residues (HisB5 and HisB10) of insulin. We therefore adjusted the external pH value in H++ of each
wild-type structure to make sure all of them had total charges of -2. Simulated structures from 4EYD, 4EY1,
and 313Z had exactly the same protonation state for each residue. 4EY9 and 2MVC, on the other hand, were
found to have protonation states for the histidine residues different from the ones in the other three models
(see Supplemental Table S1). We chose to include this ensemble of protonation sites, as they were essen-
tially attributable to the orientations of the histidine residues and their surroundings. In addition, these two
histidine residues were far away from the residues involved in the hypotheses of our analysis methods (see
Supplemental Figure S1), making them less likely to have noticeable influences on the predictors we devel-
oped. We started from these parameterized wild-type insulin conformations with reasonable protonation
states and used GLYCAM glycoprotein builder [39], which utilized GLYCAMO6j-1 force field, to build various
glycoform structures by attaching different saccharide moieties to the corresponding glycosylation sites.

In this study, the simulations of all wild-type and glycoform structures were performed using GROMACS
2020.4[40,41]1at310.15 K, which was in agreement with experimental temperature. Outputs in AMBER for-
mats generated by GLYCAM glycoprotein builder were converted into GROMACS formats using ACPYPE [42]
to serve as the inputs of the simulations. Each structure was solvated in a dodecahedral box with 1.0 nm
between the solute and the box edge. Sodium and chloride ions were added to neutralize the system
and match the specified salinity of 0.15 M. The system was then energy minimized with the steepest de-
scent algorithm until the maximum force was lower than 100.0 kJ/mol/nm. Subsequently, a 200 ps NVT
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equilibration followed by a 200 ps NPT equilibration was carried out, in which the Berendsen barostat [43]
and velocity rescaling [44] were employed to maintain the reference temperature and pressure at 310.15K
and 1 bar, respectively. Finally, an MD simulation was performed in an NPT ensemble, with the pressure
maintained at 1 bar by the Parinello-Rahman barostat [45, 46]. The cut-off distances for van der Waals in-
teractions and Coulomb interactions were both set as 0.9 nm, with swiching of the van der Waals potential
between 0.85 and 0.9 nm and an analytical correction for long range dispersion. The particle mesh Ewald
algorithm [47] was used with real-space switching of the potential between 0.89 nm and 0.9 nm. LINCS [48]
was used to constrain hydrogen bonds. All the simulations were extended up to 2000 ns, which we deemed
necessary to capture insulin dynamics in which the major transitions between metastable states occurred
on the time scale of 500-2000ns, as interpreted from time series of the pairwise RMSD calculations of the
wild-type structures (see Supplemental Figure S2). All trajectories were stored every 250 ps, for a total of
8001 frames for analysis. All the input configurations and GROMACS mdp files are provided in the GitHub
repositoryhttps://github.com/shirtsgroup/Glycoinsulin_project for this study.

2.2 Analysis techniques

2.2.1 Proteolytic degradation

Metric 1: SASA of the scissile bonds

a-chymotrypsin is a common digestive protease secreted by the pancreas which performs proteolysis in
the duodenum [49]. Experimental work [19] used a-chymotrypsin to assess the proteolytic stability by mea-
suring the half-life of different insulin glycoforms. In proteolytic degradation of insulin by a-chymotrypsin,
residues including TyrA14, TyrA19, TyrB16, PheB25, and TyrB26 serve as the cleavage sites, whose scissile
bonds are on the carboxyl side [27]. Previous research into a-chymotrypsin [27] indicated that residues
PheB25 and TyrB26 were the cleavage sites considered to be the most susceptible to proteolytic stability.
We therefore hypothesized that the exposure of the scissile bonds of these two residues to the solvent was
positively correlated with proteolytic susceptibility.

To quantify the solvent exposure of these sites, we used the double cubic lattice method (DCLM) [50]
to calculate the SASA of the CONH atoms, which were the atoms sharing the same plane with the scissile
bond, between PheB25 and TyrB26, and between TyrB26 and ThrB27. In DCLM, the accessible surface is
defined by tracing the center of the probe sphere (with the radius as the van der Waals radius of water)
as it rolls along the van der Waals surface of the solute. The obtained SASA time series was truncated to
discard the non-equilibrium region and was then decorrelated [51]. The mean and the standard deviation
of the time series were calculated for each glycoform. Finally, the reported value for each glycoform is the
value averaged across the five different wild-type bases, with the uncertainty being the propagated error.
We then plotted the a-chymotrypsin half-life measured in the experimental work against these averaged
SASA values in a correlation plot, with the Kendall's tau correlation coefficient (z) [52] and its corresponding
two-tailed p-value determined. Kendall's tau was used as it was not clear that the relationship should be
linear, so we are assuming only a monotonic relationship.

Metric 2: SASA of the P1 sites

In addition to the cleavage sites PheB25 and TyrB26, we hypothesized that their adjacent residues along
the N-terminal direction, namely, the P1 residues according to Schechter-Berger nomenclature [53] were
also important. Specifically, the hydrophobicity of the P1 residue was found to be important in the molec-
ular recognition of a-chymotrypsin [54], as the deep hydrophobic pocket formed by Ser189, Gly216, and
Gly226 in a-chymotrypsin requires the P1 residue to be hydrophobic as well [55]. Given the fact that the
P1 residue itself needed to be sufficiently solvent-exposed to contact and fit in this hydrophobic pocket
of a-chymotrypsin, we hypothesized that a glycoform would be more proteolytically stable if its P1 sites
were less solvent accessible due to the steric hindrance by the glycan moiety. Therefore, we calculated the
residue SASA of PheB24 and PheB25, which were the P1 sites corresponding to the cleavage sites PheB25
and TyrB26, respectively. DCLM was used to generate the SASA time series, which was then truncated and
decorrelated with the same method as the one used in Metric 1. Similarly, the final reported value of each
glycoform is the value averaged across simulations starting from the five different wild-type structures, with
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the uncertainty being the propagated error. The monotonicity of the relationship between the metric and
the experimental data was assessed by the Kendall's tau correlation coefficient (z) [52], with the correspond-
ing two-tailed p-value calculated.

Metric 3: p-sheet propensity of the P1-P3 region

Previous experimental studies [55-57] of a-chymotrypsin complexes revealed an invariant feature that the
polypeptide binding sites of a-chymotrypsin formed a short antiparallel g-sheet with the backbone atoms
of the P1-P3 sites of the substrate. In the case of insulin as the substrate, considering the P1 to P3 sites
of both important cleavage sites (PheB25 and TyrB26) leads to residues including ArgB22, GlyB23, PheB24,
and PheB25. As such, we hypothesized that glycoforms whose ArgB22 to PheB25 residues had lower -
sheet propensity would destabilize the transition state in the protease-substrate binding event, hence de-
creasing the proteolytic susceptibility. This assumption also stemmed from the fact that drastic structural
re-orientations or even secondary structure transformations of the insulin substrate cost free energy and
disfavored proteolysis accordingly. To evaluate the g-sheet propensity of these sites, we calculated the y
and ¢ angles of the residues. We then used MDAnalysis [58, 59] to locate all the frames in a Ramachandran
plot [60] and defined the g-sheet propensity as the fraction of the points in the g-sheet region defined by
Lovell et al. [61] Again, for each glycoform, we report the fractions averaged across different wild-type bases,
with the uncertainty the standard deviation over runs with the five different initial structures. Finally, the
a-chymotrypsin half-life was plotted against these averaged g-sheet fractions in a correlation plot, where
the Kendall's tau correlation coefficient (z) and its corresponding two-tailed p-value were determined. The
Ramachandran plot of each of the 4 residues of interest of each glycoform can be found in our GitHub
repository.

Metric 4: Existence of glycan-involved hydrogen bonds

In addition to the consensus conformations of the binding sites, some of the hydrogen bonds between
a-chymotrypsin and the substrate were also found crucial for efficient substrate hydrolysis [55]. These hy-
drogen bonds include the ones involved in the antiparallel g-sheet, formed between (1) the carbonyl oxygen
of Ser214 and the amide NH of the P1 site, (2) the amide NH of Gly216 and the carbonyl oxygen of the P3 site,
and (3) the carbonyl oxygen of Gly216 and the amide NH of the P3 site. Additionally, the main-chain carbonyl
oxygen of Phe41 also forms a hydrogen bond with the amide NH of the P2’ site. These four hydrogen bonds
in the P3'-P3 region are commonly believed to form the canonical hydrogen-bonding network between in-
sulin and a-chymotrypsin. With this in mind, we hypothesized that the oxygen atoms of the glycan could
compete with the a-chymotrypsin residues (Ser214, Gly216, and Phe41) as the acceptors to form hydro-
gen bonds with insulin residues (the P1-P3 sites, and the P2’ site), hence disturbing the hydrogen-bonding
network and potentially enhancing the proteolytic resistance of the structure. To see what additional in-
teractions were formed due to the presence of the glycan, we examined all the glycan-involved hydrogen
bonds, not just the ones involving the P1-P3 and P2’ residues. We used MDtraj [62] to identify hydrogen
bonds between the glycan moiety (as the acceptor) and any insulin residue (as the donor) according to the
Baker-Hubbard criterion [63], which identified a hydrogen bond only if the angle formed between the donor,
hydrogen atom and the acceptor was larger than 120 degrees and the distance between the hydrogen atom
and the acceptor was less than 2.5 angstrom at least 10% of the time. For each trajectory, we calculated the
fraction of the time each hydrogen bond existed and averaged the fractions of the hydrogen bonds of each
glycoform across the 5 different wild-type bases. The ones whose fraction is larger than 5% are reported,
with the uncertainty being the standard deviation.

2.2.2 Dimerization Propensity

The dimerization propensity metric was compared to experimental dimerization data from Guan et al. [19].
Dimerization data exists only for wild type, GF 9, GF 10, and GF 13, and thus comparisons between experi-
mental and computational data proved challenging. We focused only on residues GlyB23-TyrB26 because
these are the dimer interface residues that form backbone hydrogen bonds with another insulin monomer
(Figure 2B) [33, 64, 65].
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One potential signature of dimerization propensity is the presence of dimer-characteristic structure in
the monomer ensemble, which would reduce the free energy of reorganization on dimerization. However,
we found no consistent secondary structure propensity differences in either the dimer or the monomer be-
tween glycoforms or between glycoforms and the wild type. This was also true after examining additional
monomer structures 1JCO, 1MH]J, and 2JV1. This suggests to us that such structural analysis alone of gly-
coforms will not allow us to determine dimerization propensity, and so we explored different metrics to
assess dimerization.

Metric 1: Glycan-dimer occlusion

We considered steric occlusion of the dimer interface by the glycans as a possible metric for dimerization.
Several glycan moieties are attached close to the explicit dimerization region GlyB23-TyrB26 (Figure 1), and
there are several glycans large enough to sterically interfere with the dimerization interface (Figure 3). We
hypothesized that glycans that occupy space close to these residues, with high frequency in simulation time,
will preclude dimerization.

We used the same converted trajectories described above to calculate this metric. We defined glycan-
dimer occlusion as any instance when at least one atom of the glycan moiety comes within 5 angstroms of
any atom in the dimer interface GlyB23-TyrB26, including the atoms in the backbone and in the side chains.
We used the Python package ProDy [66], to calculate the total number of atom neighbor pairs between the
glycan and dimer interface for each frame in the converted trajectories.

Atom neighbor pair autocorrelation lag times (in ns) were estimated by fitting autocorrelation data to
an exponential decay function using SciPy [67, 68] and are presented in Supplemental Table S2. There are
several glycoform models that have no lag time ("NA" in Supplemental Table S2) and this is because for
these trajectories, no occlusion was found. The lag times were used to estimate the independent occlusion
states sampled throughout the simulation by dividing the total simulation time by the subsequent lag times.

To simplify the occlusion analysis, we calculated the proportion of simulation frames that contain a
glycan-dimer atom neighbor pair out of the total simulation frames, and ignored the absolute number of
atom neighbor pairs in each frame so as to treat any number of interactions as possible occlusion. Since
larger glycans will have more possible neighbors than smaller glycans, this also served to normalize the
data to prevent a bias for the larger glycans. The 95% confidence intervals for these binomial proportions
were estimated using the independent occlusion samples and the Wilson score method, which produces
bounded asymmetric intervals and does not require normal approximations for its use [69-71]. The pro-
portion of frames with occlusion for each glycoform were only compared within its respective set, because
no wild-type control could be included as the wild type is not glycosylated.
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Figure 3. Classification of occlusion and no-occlusion states. Representative frames from four different glycoform tra-
jectories show occlusion (GF 13, GF 10) and no occlusion (GF 4, GF 8) states. Insulin monomer presented in translucent
blue-white cartoon, dimerization residues presented in salmon sticks, and glycan moiety presented in yellow spheres.

2.3 Molecular Visualization
Molecular visualization, specifically for Figure 1, 2, 3, and S1, were done using PyMOL version 2.4.1 [35].

3 Results and Discussions

3.1 Proteolytic degradation

Metric 1: SASA of scissile bonds

According to our hypothesis of the peptide bond SASA of the cleavage sites, glycoforms whose scissile bonds
are less solvent-exposed should have higher proteolytic stability. To examine this hypothesis, we plotted
the a-chymotrypsin half-life measured in the experimental work against the SASA value of each of the two
scissile bonds, including the one between residues B25 and B26 (upper panel of Figure 4A) and the one
between residues B26 and B27 (lower panel of Figure 4A). Ideally, a good computational metric should be
able to reproduce consistent results as compared to the work by Guan et al. [19], leading to a Kendall's tau
correlation coefficient close to-1. A good metric should also be immune to the starting model bias, including
the bias from wild-type models resolved using different methods or under different conditions, or the bias
solely from different protonation states of the histidine residues.

As a result, we concluded that although the SASA of the scissile bonds was free from inital structure bias,
it was only a weak predictor for proteolytic stability. GF 13 and GF 10, which were experimentally found to
be more proteolytically stable than the wild type, did have a lower SASA value than the wild type at both
sites. Notably, as the most proteolytically stable structure, GF 13 also had the lowest SASA values at both
sites. However, GF 10 had the second-longest a-chymotrypsin half-life, but not the second-lowest SASA
values at both sites. At the scissile bond between B26 and B27, most glycoforms had a lower SASA value
than that of the wild type, but some of them were experimentally identified as less proteolytically stable
than the wild type. Overall, the SASA values of either scissile bond have roughly the same efficacy given
similar values of Kendall's tau correlation coefficients. However, if we are only interested in the comparison
between the wild type and any glycoform instead of between any two of the glycoforms, the SASA value
of the scissile bond between B25 and B26 is marginally more indicative than the SASA value of the other
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site. For glycoforms having lower permeability than the wild type, such as GF 3, GF 4, GF 7, and GF 8, the
SASA values were indeed higher than the wild type. Still, some of its predictions provided opposite results
as compared to the experimental ones (GF 6 and GF 11). Importantly, all observations are independent of
different initial wild-type structures, which is reflected by the small error bars of the SASA values.
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Figure 4. The SASA of both the scissile bonds and the P1 sites are weakly correlated with a-chymotrypsin half-life, implying
moderate predicitveness for the proteolytic stability. (A) The correlation plot between the a-chymotrypsin half-life and
the average SASA of the scissile bonds in the glycoforms (GF). (B) The correlation plot between the a-chymotrypsin half-life
and the average SASA of the P1 sites in the glycoform (GF). Different regions were colored to indicate glycoforms having
longer, comparable or shorter half-life as compared with the wild type. The Kendall's tau correlation coefficient (z) and
its two-tailed p-value were calculated. Error bars of both variables are shown, but the error bars of the SASA metrics are
generally very small and invisible.

Metric 2: SASA of the P1 sites
Similarly to Metric 1, Metric 2 is independent of the initial wild-type structures, as evidenced by the small
error bars of the SASA values. However, we again concluded that it was partially predictive.

In the lower panel of Figure 4B, the SASA of residue B25 is less predictive than the SASA of the other
site. Although agreement with experimental results can be seen from GF 13, which had the lowest SASA at
residue B25 and was previously found to be the most proteolytically stable, other glycoforms, regardless of
the a-chymotrypsin half-life, all had a lower value compared to the wild type. The Kandall's tau correlation
coefficient, which was close to 0, showing that the SASA of residue B25 was almost uncorrelated with the
a-chymotrypsin half-life.

The SASA of residue B24 (the upper panel of Figure 4B), on the other hand, had a higher correlation
with the proteolytic stability of the structure. Specifically, GF 13 and GF 10, the two most proteolytically
stable glycoforms, had significantly lower SASA value at residue B24. As for the glycoforms that had a lower
SASA value at this site, except for GF 7, all had comparable proteolytic stability to the wild type. This higher
correlation can also be seen from the magnitude of the corresponding Kendall's tau correlation coefficient,
which was higher than those of Metric 1.

Overall, these observations imply moderate predictiveness of the SASA of residue B24, since a low value
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atthis site generally indicates that the structure is very likely to have more, or at least comparable proteolytic
stability compared to the wild type. Notably, most proteolytically unstable glycoforms, including GF 2, GF
3, GF 4, GF 6, GF 7, and GF8, had the same level of SASA at residue B24 as the wild type. This could be
attributable to the situation where the residue of the wild type is already very solvent-exposed, leaving
considerably less space for the proteolytically unstable glycoforms to have an even higher SASA value. This
limitation is intrinsic to both Metric 1 and Metric 2, motivating us to look for more reliable predictors for
proteolytic stability.

Metric 3: p-sheet propensity of the P1-P3 region

Our hypothesis suggests that glycoforms whose P1-P3 region has a lower g-sheet propensity should poten-
tially have higher proteolytic stability. However, from Figure 5, it can be seen that none of the examined
residues showed this trend and all the Kendall's tau correlation coefficients were very low and highly un-
certain, indicating that Metric 3 was inadequate in capturing structural determinants that influenced the
proteolytic stability of the structure. This is also reflected by the large error bars in the p-sheet propensity
of most of the residues of interest, including residues B22, B23, and B24. The large error bars in g-sheet
propensity imply that the structure at these sites (residues B22 to B24) can adopt a wide range of orienta-
tions, contradicting our hypothesis that the glycoforms able to prevent proteolytic degradation should have
common orientations at these sites due to high free energy costs of structural re-orientations or transfor-
mations. Note that these large error bars are not necessarily the results of the starting model bias, since the
p-sheet propensity was calculated from the orientations of just a few atoms, which naturally caused larger
fluctuations of the results. Since the metric is insufficient to assess the proteolytic stability, whether or not
the large error bars can be ascribed to the starting model bias is not relevant. We note the only site that
showed small error bars in the p-sheet propensity was residue B25, which might be related to the unique
role of residue B25 as a P1 site and a cleavage site at the same time. However, B25 essentially has high
p-sheet propensity in all glycoforms, so variability at this site cannot be used.
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Figure 5. The correlation plot between the a-chymotrypsin half-life and the average g-sheet propensity of residues B22
to B25. The g-sheet propensity of the P1-P3 region does not correlate with a-chymotrypsin half-life. Different regions
were colored to indicate glycoforms having longer, comparable or shorter half-life as compared with the wild type. The
Kendall's tau correlation coefficient (r) and its two-tailed p-value were calculated. Error bars of both variables are shown.

Metric 4: Existence of glycan-involved hydrogen bonds
We hypothesized that glycoforms with more glycan-involved hydrogen bonds, especially the ones that in-
volve the P1-P3 or the P2’ sites, could interfere with the canonical hydrogen-bonding network formed be-
tween the protease and the substrate, thus enhancing the proteolytic stability of the substrate. This metric
does turn out to be in large part predictive of proteolytic stability of the glycoforms.

Figure 6 shows the percentage of the time each kind of hydrogen bond existed in the MD simulations. As
a result, proteolytically stable glycoforms such as GF 13 and GF 10 had the most glycan-involved hydrogen
bonds. Glycoforms with comparable proteolytic stability as the wild type, including GF 5, GF9, and GF 12 had
at least one or two glycan-involved hydrogen bonds. Most of the remaining glycoforms, which were more
susceptible to proteolytic degradation than the wild type, had no glycan-involved hydrogen bonds. Impor-
tantly, glycoforms having at least comparable proteolytic stability as the wild type typically have hydrogen
bonds that involved residues PheB24 or ThrB27, which were the P1 site and the P2’ site corresponding to
the cleavage site B25, respectively. In glycoforms that had an intermediate level of proteolytic stability (GF 5,
and GF 9), hydrogen bonds involving these two residues were not present or at least not long-lasting in the
MD trajectories (see Supplemental Table S3), as reflected by the large errors bars that almost reached the
bottom of the graph. On the other hand, in the proteolytically stable glycoforms, GF 13 and GF 10, hydrogen
bonds ThrB27(N)-Man[2](06) and PheB24(N)-Man[1](O3) were found in all GF 13/GF 10 MD trajectories, re-
gardless of which wild-type model the glycoform was built on. We concluded these two kinds of hydrogen
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bonds (ThrB27(N)-Man[2](06) and PheB24(N)-Man[1](03)), the longest-lasting glycan-involved hydrogen
bonds in the most proteolytically stable structures, were the most important hydrogen bonds influencing
the proteolytic stability in our study. Interestingly, GF 13 occasionally had a hydrogen bond formed between
ThrB27 and the third mannose, which was absent from GF 10. This additional hydrogen bond that involved
a P2’ site might further interfere with the hydrogen bonding network between insulin and a-chymotrypsin,
making GF 13 even more proteolytically stable than GF 10.

Overall, the predictions made out of the glycan-involved hydrogen bonds analysis are relatively consis-
tent with the experimental results. The only exception is GF 6, which was experimentally found to be less
proteolytically stable than the wild type but had a hydrogen bond, ThrB27(N)-GalNAc[1](O3) that involved
a P2’ site ThrB27. However, this hydrogen bond was only present in the MD trajectories of 4EYD-, 4EY1-,
and 2MVC-based GF 6 (see Supplemental Table S3, indicating that this hydrogen bond might not be stable
enough to consistently disturb the aforementioned hydrogen bonding network. Importantly, the fact that
4EYD-, 4EY1-, and 2MVC-based GF 6 all possess the same hydrogen bond is one of many examples showing
the large error bars should be irrelevant to the initial modeling bias. Specifically, if there is a bias from the
differences in the resolution methods or the histidine protonation states, glycoforms resolved by the same
method (e.g. 4EYD-, 4EY9-, and 4EY1-based glycoforms) or having the same histidine protonation states
(e.g. 4EYD-, 4EY1- and 3I3Z-based glycoforms) should exhibit similar hydrogen bond distributions at the
examined site. However, this trend is absent from our results, suggesting that the metric is independent
of the starting wild-type models. Finally, we can conclude that long-lasting, stable glycan-involved hydro-
gen bonds, especially the ones that involve PheB24 and ThrB27, appear critical in enhancing the proteolytic
stability of the structure. This conclusion also upderpins the findings in the work by Guan et al. [19] that
ThrB27 and ThrB30 were identified as the best two glycosylation sites, as the glycan attached to these sites
are structurally closer to the important residues (ThrB27 and PheB24) found in this study.

Glycan-involved hydrogen bonds of all glycoforms
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Figure 6. The most proteolytically stable glycoforms tend to have more glycan-involved hydrogen bonds, especially the
ones involving the residues PheB24 and ThrB27. The figure shows the average percentage of the time of each hydro-
gen bond existed in the MD simulations. The experimental results are summarized such that +(yellow), —(red), and
~(magenta) respectively indicate that the corresponding glycoform was experimentally found to have higher, lower and
comparable proteolytic stability as compared to the wild type. Note that in the name of each hydrogen bond, the 1-based
index of the glycan is shown in the bracket following the name of the glycan. The atom type is shown in the parenthesis
right after the residue name. (See Supplemental Table S4 for more details of the atom types shown in the figure.) For
example, ThrB27(N)-Man[2](06) means the hydrogen bond formed between the amide N atom of ThrB27 as the donor
and one of the oxygen atoms of the second mannose as the acceptor. Text for hydrogen bonds that involve any of the
P1-P3 or the P2’ residues are colored in blue, which in our case only include PheB24 and ThrB27.

3.2 Dimerization Propensity
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Metric 1: Glycan-dimer occlusion

Based on our dimerization hypothesis, glycoforms whose glycans come in proximity to the dimer interface
(GlyB23-PheB26) will be less prone to dimerize because of steric occlusion by the glycan. We found that
this glycan-dimer occlusion might be a useful predictor of dimerization propensity.

To test this hypothesis, we calculated the glycan-dimer occlusion metric for each glycoform and consid-
ered those with low occlusion to have high dimerization propensity, and vice versa. Figure 3 shows repre-
sentative frames from four 313Z trajectories to visually demonstrate occlusion versus no-occlusion, where
the light blue cartoon represents insulin, salmon sticks represent residues GlyB23-PheB26, and pale yellow
spheres represent the glycan moiety.

Using the glycan-dimer occlusion metric, we calculated the proportion of simulation frames with occlu-
sion for each glycoform and ordered them from least occlusion to most occlusion, shown in Supplemental
Table S5. We must carefully compare these results to experimental dimerization data [19] because this
analysis method cannot include the respective wild-type models for reference (which by default have no
occlusion), which is a drawback of this metric.

There is agreement in the order of glycoforms between model sets for this metric. While there are slight
variations in the precise order between models, there are trends that sort the glycoforms into low (GF 2,
GF 3, GF 7, GF 8), medium (GF 4, GF 6, GF 11, GF 12), and high (GF 5, GF 9, GF 10, GF 13) occlusion batches
which are independent of starting structure. This analysis consistently predicts GF 9, GF 10, and GF 13 as
having the most occlusion, and therefore least dimer propensity, of the glycoforms. This is in agreement
with experimental data that these glycoforms form dimers less frequently than wild-type insulin [19]. None
of the models accurately reproduced the correct experimental dimerization order, however (GF 10 > GF 13
>GF9).

The proportion of frames with occlusion, and the associated uncertainty, were compared between gly-
coforms for each model (Supplemental Figure S3). The Wilson score 95% confidence intervals for each
proportion is shown in red and calculated from the occlusion autocorrelation lag times, which were used
to estimate the number of independent occlusion configurations sampled. Differences in occlusion propor-
tions, particularly between the low occlusion batch and the high occlusion batch, are statistically distinguish-
able and this finding is true for all 5 model sets. Differences within occlusion batches are not statistically
differentiable.

Comparison of occlusion proportion across all models
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Figure 7. Average occlusion analysis distinguishes glycoforms with low, medium, and high occlusion proportion. All five
models for each glycoform were averaged for occlusion proportion, and are plotted with standard deviation represented
in black bars. Axis labels in red indicate glycoforms with experimental dimerization data.

To assess the dependence of these results on the starting structural model, for each glycoform we aver-
aged the proportion of frames with occlusion across the five models and compared the means and associ-
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ated standard deviations (Figure 7). Occlusion proportions are consistent across the models for almost all
the glycoforms, particularly those in the low and high occlusion batches. There is considerable variability
in the glycoforms of the medium occlusion batch (GF 6, GF 11) but considering the consistency in the other
models, this might result more from initial glycoform minimization/optimization than the model itself.

These results suggest that the dimer occlusion metric is independent of the initial model of human
insulin. Since we cannot include a wild type in this analysis, there is no negative control for each glycoform
set nor is there a way to predict percentage dimerization relative to wild type. But despite those drawbacks,
this metric allows us to statistically differentiate results between glycoforms and the results are consistent
with experimental data, and supports our hypothesis. The glycan-dimer occlusion metric, therefore, might
be a useful predictor of dimerization propensity. Interestingly, the occlusion data suggests a unifying theme
in glycan placement which might preclude dimerization: glycans that are large and those that are attached
close to the dimer interface, especially residues ThrB27 and ThrB30.

4 Conclusions

The primary goal of our study is to develop metrics for screening the proteolytic stability and dimerization
propensity of insulin based on MD simulations of monomers and their glycosylated analogs. The use of
monomer simulations removes the need of performing advanced sampling of more complicated systems,
such as a protease-substrate complex or an insulin dimer. We also evaluated whether these metrics were
independent of initial configuration used.

We examined four metrics based on two overarching hypotheses for proteolytic stability. The first is
that the glycan could sterically hinder the scissile bonds or part of the binding sites, especially the P1 site, to
prevent proteolysis, while the second is that the existence of the glycan disfavors configurations required for
proteolytic degradation. From the first hypothesis, we derived two metrics, the SASA of the scissile bonds
and the P1 sites. Both metrics were found independent of the initial wild-type models, and were partly
predictive for assessing the proteolytic stability. Based on the second hypothesis, we examined g-sheet
propensity of the P1-P3 region and the existence of glycan-involved hydrogen bonds that compete with the
hydrogen-bonding network present in a-chymotrypsin binding. The g-sheet propensity was not correlated
with proteolytic stability. However, long-lasting, stable glycan-involved hydrogen bonds, especially the ones
involving residues PheB24 and ThrB27, were highly predictive in enhancing the proteolytic stability and
independent initial wild-type model. In particular, using glycosylation site ThrB27 is more likely to form
hydrogen bonds with ThrB27 and PheB24 due to spatial proximity.

To assess dimerization propensity, we examined glycan occlusion of the dimer interface. This metric was
consistent with the limited experimental data for dimerization and is free from starting model bias. There
is no ability to include a wild-type model for comparison, which is a drawback of this metric. However, this
metric showed clear, statistical differences between glycoforms with and without occlusion which translates
to predictive differences in dimerization potential and is independent of starting model. Additionally, this
metric suggests a generalizable glycosylation scheme that might preclude dimerization: large glycans and
those attached near the dimerization interface (ThrB27, ThrB30).

The presence of relatively little experimental data (13 proteolytic stability data points, 3 dimerization
data points) means that it is difficult to make firm statistical conclusions about these screening metrics. Itis,
however, the difficulty in generating experimental data that motivates the development of computational
screening techniques. Our framework presented here is widely applicable and allows easy screening of
large numbers of insulin glycoforms. To further validate this approach, we are applying our framework in
a blind challenge to more complicated insulin glycoforms that are under experimental investigation. The
results presented in this paper suggest that we are likely to be able to differentiate the structures with high
proteolytic stability and low dimerization propensity from others, as long as the configurational ensembles
of the investigated structures are sufficiently sampled. Finally, it is possible that clearer metrics could be
identified in more sophisticated machine-learning based approaches, such as recent deep learning frame-
works [72] that appear capable of identifying subtle structural signatures that predict biophysical properties,
and such techniques will be tested in the future.
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5 Data Availability

As discussed in Section 2.2, most values reported in our results were values averaged over different bases
of wild-type models. For individual analysis result of each insulin glycoform, please refer to our GitHub
repository of the project. The repository also contains input configurations/MD parameters and Python
codes for data analysis. The outputs of the MD trajectories are too large to release as they are several
terabytes in size and statistically representative outputs can be generated from the input files.
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