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ASpecD: A Modular Framework for the Analysis of
Spectroscopic Data Focussing on Reproducibility and
Good Scientific Practice
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Reproducibility is at the heart of science. However, most published results usually lack the infor-
mation necessary to be independently reproduced. Even more, most authors will not be able to
reproduce the results from a few years ago due to lacking a gap-less record of every process-
ing and analysis step including all parameters involved. There is only one way to overcome this
problem: developing robust tools for data analysis that, while maintaining a maximum of flexibility
in their application, allow the user to perform advanced processing steps in a scientifically sound
way. At the same time, the only viable approach for reproducible and traceable analysis is to
relieve the user of the responsibility for logging all processing steps and their parameters. This
can only be achieved by using a system that takes care of these crucial though often neglected
tasks. Here, we present a solution to this problem: a framework for the analysis of spectroscopic
data (ASpecD) written in the Python programming language that can be used without any actual
programming needed. This framework is made available open-source and free of charge and
focusses on usability, small footprint and modularity while ensuring reproducibility and good sci-
entific practice. Furthermore, we present a set of best practices and design rules for scientific
software development and data analysis. Together, this empowers scientists to focus on their re-
search minimising the need to implement complex software tools while ensuring full reproducibility.
We anticipate this to have a major impact on reproducibility and good scientific practice, as we
raise the awareness of their importance, summarise proven best practices and present a working
user-friendly software solution.

1 Introduction
Newton’s famous sentence “If I have seen further it is by standing
on ye shoulders of giants”1,2 reveals a basic assumption about
science probably every scientist will share: Progress in science
is always based on the results obtained by others prior to us.
Therefore, these results should better be correct, and to ensure
this, they need to be independently reproducible and reproduced.
Hence, reproducibility is a key aspect of science.3–7 This empha-
sis on independent testability can be traced back at least to Karl
Popper and his critical rationalism, particularly his notion that
scientific hypotheses can never be proven, but only falsified.8

Defining the term “science” has been notoriously difficult,9 al-
though it has been characterised as a systematic endeavour early
on.10 However, key to empirical science and to what is known
as the “scientific method”11 is a structured sequence of events
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summarised in Fig. 1. Everything starts off with an observation
that catches our curiosity, resulting in an approach to quantify
the effect, i.e., a measurement. The data thus acquired need to
be displayed first,12 before we can think of any model to describe
them. Finally, after having modelled the data, we can present the
results, leading to new observations that start again the whole cy-
cle. Without properly documenting each of the steps, no reliable
scientific knowledge can be built upon it.

With the advent of computers in the experimental research, the
amount of data has grown exponentially, and today, data analysis
is mostly computer-based. Therefore, the approach of a hand-
written lab book to document each processing step is at best
impracticable. The result: Most scientists will have hard time
to trace a figure in their own publications back to the original
dataset and give a detailed and gapless account of each process-
ing step that eventually led to the representation.13–15 This poses
a severe problem to science,16 rendering the results obtained this
way eventually unscientific.17

Another problem arises from scientists being more and more
forced to write their own software, whereas they have never been
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Fig. 1 Workflow of empirical science following the scientific method.
Nowadays, each of the steps two to five involve some help of comput-
ers and often programming. For details see the text.

trained how to do so in a reliable fashion.18 The results obtained
by such software are often irreproducible and sometimes even in-
advertently wrong, depending on the complexity of the matter.19

Teaching essential aspects of software development, besides some
very introductory courses in programming, basically has no part
in the curricula of most science courses.6,20–22 However, knowing
and following a few basic rules both, in writing software for scien-
tific data analysis as well as in analysing data using such software,
can greatly enhance the reproducibility and in turn lead to better
and more reliable research.23–25

There are some investigations into how far scientific results
are reproducible and correct,16,19,26,27 as well as a poll on the
topic.28 Another aspect often discussed is the possible contribu-
tions of journals and publishers towards a greater availability of
research by encouraging authors to provide both, data and source
code, together with the publication of the results.29–31 However,
just publishing the source code of analysis software along with
the raw data and results is not sufficient. Rather, independent re-
producibility needs to be a design goal early on in data handling
and analysis.32

Much has been written about the underlying general prob-
lem.6,15,18,20,22–25,33–35. For different scientific disciplines, the
specific problems arising from computational science for re-
producible research have been described,36–38 and some areas
have developed tools that are reasonably widespread.39 Further-
more, there exist short contributions summing up “best prac-
tices”24,40–46. However, many of these articles have appeared
either in engineering journals or in PLoS Computational Biol-
ogy. The authors are, however, not aware of any publication in
a journal regularly consulted by spectroscopists. Furthermore, no
software package seems available addressing the aforementioned
problems in their area of research.

To this end, we present here a modular framework for the
analysis of spectroscopic data, termed ASpecD, built upon more
than a decade of personal practical experience.47–49 The result
is a number of best practices and design rules for both, obtain-
ing data and developing computer programs for their analysis.
The ASpecD framework focusses on usability, small footprint and
modularity, providing the user with a maximum of personal free-
dom while ensuring reproducibility and good scientific practice

and tremendously reducing the effort necessary to achieve these
goals. Few such systems have been described before, perhaps
most prominent is the work of Claerbout and his group in geol-
ogy.50,51 However, to the best of our knowledge, no such system
exists for spectroscopic data. Often spectroscopists seem even not
to be aware of the importance of systematic and reliable tools for
data processing and analysis, or they (understandably) lack ideas
how to practically achieve the required reproducibility.

Two key concepts of the ASpecD framework are the unified rep-
resentation of (numerical) data and accompanying metadata in a
dataset independent of the original raw format and the possibil-
ity to analyse data without having to program a single line using
“recipe-driven data analysis”. Here, the user only provides a list
of datasets and tasks that should be performed on these datasets,
including processing, analysis, and representation of the data.

After shortly discussing the aims and requirements of scientific
software development in general, we introduce the basic concepts
and components of a framework for reliable and reproducible
analysis of spectroscopic data, followed by highlighting a few es-
sential aspects of its general implementation. Afterwards, two
examples for packages based on the ASpecD framework are given
and finally the relation to a complete workflow including aspects
such as data storage and unified access is shortly discussed.

2 Scientific software development
As a matter of fact, programming skills are a fundamental re-
quirement for many scientists nowadays, particularly in but not
restricted to the field of spectroscopy. Furthermore, the role of
scientific thought in software development has been highlighted
early on.52 Therefore, scientists should be well equipped to de-
velop reliable software for their own use if they would care as
much about it as they do about their experiments and theories.6

2.1 Aims and prerequisites

Aspects central to scientific data analysis aiming at reproducibil-
ity and good scientific practice are summarised in Fig. 2 and will
be detailed below. While originating from the context of scien-
tific software development, the criteria listed here are true for
all kinds of data analysis, regardless whether computers are in-
volved.

2.1.1 Reproducible

The eventual goal of a framework for spectroscopic data analysis
is the full reproducibility from the raw data to the final publica-
tion and vice versa. The latter means to start from a published
figure (or table) and trace it back to the original data, includ-
ing the complete provenance and history of the processing steps
involved.50,51

Putting aside such aspects as long-term archival, unified access
to data, and availability of the required software including the
underlying operating system and compatible hardware,17 we fo-
cus here on design rules of a modular framework taking care of
the provenance of eventually published data, i.e. the history of
processing steps from the raw data up to the final representa-
tion and publication. Hence, the strategies discussed are entirely
within the realm of the individual scientist’s work and personal
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Fig. 2 Aspects central to scientific data analysis aiming at reproducibility
and good scientific practice. While originating from the context of scien-
tific software development, the criteria listed here are true for all kinds
of data analysis, regardless whether computers are involved. For details
see the text.

responsibility.
We note that there is some inconsistency in the literature re-

garding the usage of the two terms “reproducible” and “replica-
ble”, even between different disciplines, that have been addressed
recently.53–55 Here, we focus on the workflow from the data ac-
quisition to the final publication of the analyses of the results and
the traceability in both directions.

From a software development perspective, two aspects are cru-
cial for obtaining reproducible results: a version control system
(VCS) in conjunction with a scheme for unique version num-
bers and making the source code of the programs available (open
source). Using a VCS is of utmost importance, as frequently high-
lighted in descriptions of best practices for scientific software de-
velopment.40 In the world of professional software development,
there is no dispute about the importance of using a VCS,56–59

such as git.60.
Providing the source code of software underlying scientific data

analysis open source and free of charge is, as far as possible, a
crucial step towards reproducible research and intellectual hon-
esty.31,61–64 From a scientific point of view, there is no good rea-
son not to publish your source code, and the worst of these rea-
sons is that it is not “good” enough.65,66 However, source code
can not always be published entirely, particularly if commercial
programs are involved in data analysis, both as programming lan-
guages as well as tools.67 Furthermore, while open source is a
necessary requirement, it is not sufficient on its own to allow for
reproducibility.32 In particular, appropriate metadata accompany-
ing the raw data and the processing and analysis steps performed
on them are of outstanding importance.

2.1.2 Reusable

Every question addressed by scientists is new in a certain sense.
However, often a series of routine steps is carried out that should
be performed automatically as much as possible. Furthermore,
code reuse is quite important, as the main focus of (most) scien-
tists is not on developing software, but on performing research us-

ing software. Reusing existing components and combining them
in new ways is a very general theme not only in science and a
matter of efficiency. To achieve this goal, software needs to be
as modular as possible and sensible. Therefore, it needs to con-
sist of cohesive and loosely coupled components.56,68 To design
a modular system, regardless of the actual context, requires ab-
straction.69 Abstraction in turn requires a solid understanding of
the “problem domain”. Software development should be driven
by solving problems of the problem domain, as highlighted by
Evans coining the term “domain-driven design”.70 All this is well-
known and at the heart of software engineering, as presented
in numerous books throughout the last decades.56,57,71–76 Many
different tools have been developed to aid with finding appro-
priate abstractions and to implement them in software, starting
with the now fundamental paradigms of structured,77,78 object-
oriented79 and functional programming80 all the way up to com-
plicated frameworks for developing mobile apps, hiding most of
the underlying complexity from the developers.

From another angle, reusing software components requires a
solid understanding of the individual modules. This is even more
true in science, where it is usually not sufficient to use tools that
give just about sensible results, but to know their exact specifica-
tions and range of validity. Therefore, scientific software needs
to be as readable and understandable as possible, as discussed in
the next section.

2.1.3 Self-documenting

The term “self-documenting” has two meanings in the given con-
text. From a scientific point of view, all parameters of the data
processing and analysis should be (automatically) logged. This
is at the heart of reproducibility and traceability. However, with
the advent of computer-aided data processing, this aspect seems
to have been gone lost. As a result, reproducibility of results pub-
lished in the scientific literature is currently probably worse than
it was previously, with tremendous impact on the reliability of
science as such.17

From a programming perspective, self-documenting implies the
code to be readable on its own, ideally without the help of com-
ments within the source code. Many different metaphors for pro-
gramming have been brought forward, and the one seeing the
programmer as an author might be most useful here.81 This cul-
minates in the advice for the software developer: “Write programs
for people, not computers”.40,82 Other scientists are the audience,
and they should be able to read the code and make sense of it,
even without too much prior knowledge of the programming lan-
guage used. However, this is not restricted to science, but is a
general theme highlighted over the last decades of professional
software development56,72,81 and recently summed up and advo-
cated for under the term “clean code”.76,81

2.1.4 Reliable

A basic requirement for software, particularly in science, should
be correct and functioning code that is flexible and comprehensi-
ble.17 This requires rigorous tests of the software during its de-
velopment. The idea of tests is, however, not to prove the pro-
gram to work correctly, as this is mostly impossible based on logi-
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cal grounds. Tests aim at finding errors in existing software.17

While the importance of tests is not disputed and often high-
lighted,56,57,59,74,83–85 testing software is a difficult matter.86

This led some prominent professional programmers with decades
of experience to inverting the process of writing functional code
and corresponding tests. The idea of “test-driven development”
is to first write a (failing) test and afterwards the piece of soft-
ware necessary to make it pass.87,88 Used properly, this leads to
software that is much more reliable and of higher quality. Im-
portant is to test already the smallest building blocks of software
using automated unit tests and a testing framework to help with
this.88–90. On aside, software that has been developed with testa-
bility in mind is intrinsically more modular, thus aiding with reuse
and other of the aspects highlighted here. Furthermore, a high
test coverage allows to enhance code readability without affecting
the functionality, as advocated under the term “refactoring”.84

2.1.5 Verifiable

Strictly speaking, scientific hypotheses cannot be verified in sense
of a formal proof, but only be falsified.8 The same is true for most
software. Both, the the general impossibility to formally prove
most software,91 as well as the general lines of Popper’s thinking
on science,8 is rooted in Gödel’s discovery of the fundamental
limits of proofs in formal logic and mathematics.92

However, data analysis as well as the programs used for it
should be verifiable in a sense that each step is fully transparently
documented and all necessary information available required for
an independent audit. This includes all parameters as well as the
access to the very version of a software used.

From a programming perspective, a few more aspects are im-
portant. First of all, the source code should be readable and un-
derstandable on its own (“clean code”).81 Furthermore, underly-
ing concepts should be documented. While ideally, source code
can be read and understood without additional comments, the
underlying concepts and the interplay between different parts of
the code need to be independently documented, e.g., in form of a
user manual. This is particularly true for the implementation of
complicated algorithms. Eventually, (automated) tests are a good
way to ensure a routine to work reasonably correct, at least as far
as the behaviour is covered by the tests.

2.1.6 User-friendly

Aspects that might be less obvious on first thought but eventually
decide whether a system will be adopted in practice can be sum-
marised under the term “usability”. Only a system that behaves
intuitively and is easy to use will be used on a daily basis. As any
system aiming at providing a gap-less record of data processing
requires additional work and discipline of its users, the obvious
benefits from using the system need to clearly outperform the ad-
ditional effort in order to not undermine the very reason it has
been implemented in the first place.

Aspects from a programming perspective include intuitive and
stable interfaces, robust code that gracefully handles errors as
well as wrong user input, a proper user manual, and the habit
of the developers to listen to the users and their needs.

2.1.7 Extensible

Any framework for scientific data analysis needs to be highly
modular and extensible, as frequent changes in the requirements
and questions adressed to the data are at the heart of research.
Many aspects of data analysis are routine tasks. However, a key
aspect of scientific research is to creatively combine the available
tools in new and unforeseen ways. This is why software as a sepa-
rate component of computers was developed originally and where
its name stems from. To be able to adapt a system to new require-
ments in a highly flexible manner by (only) changing software
while using general-purpose standard hardware was a necessary
requirement for the unprecedented trail of success of computers
that has revolutionised human life ever since.69

From a programming perspective, this translates to highly mod-
ular code where every routine performs only one task. Further-
more, code needs to be easy to read and understand, as it will
be read far more often than it is written. Automated tests are a
necessary prerequisite for extending code and adding function-
ality, as they allow the programmer to make changes with rea-
sonable confidence to not break existing functionality. Similarly,
a VCS greatly facilitates expanding software. Finally, extensible
software requires the underlying concepts as well as the imple-
mented interfaces to be properly documented, most probably in
terms of an up-to-date user and developer documentation.

2.2 Further aspects

Besides the criteria mentioned above, additional prerequisites are
immediately obvious from a software implementer’s perspective:
Due to the heterogeneity of the IT infrastructure in science, plat-
form independence is imperative. Furthermore, such a system
needs to be easy to integrate into existing workflows of data pro-
cessing. Here, modularity is a great benefit, making it possible
to start small using (parts of) the system without risk. Scientists
are not software engineers, and software development will never
receive the attention it might deserve in science. Hence, adopting
the system “on the go” while still focussing on the actual science
will be the likely usage scenario the system has to account for and
adopt to. Additionally, using well-developed and freely available
programming languages and making the source code available
help to maintain and further develop the system even if the orig-
inal developers are no longer available.

3 Reproducible data analysis:
The ASpecD framework

To achieve the aforementioned goals, a framework for the
Analysis of Spectroscopic Data (ASpecD) has been developed. The
framework itself is implemented in Python and available open-
source and free of charge.93 Therefore, it can be used out of the
box to derive processing and analysis routines for the specific data
at hand. At the same time, it can serve as starting point for own
developments aiming at better reproducibility. Therefore, we will
first give an overview of its basic concepts and components. Af-
terwards, its user interface that is radically different to all ap-
proaches currently employed in scientific data processing will be
introduced: “recipe-driven data analysis”.
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Fig. 3 Basic concepts and components of the ASpecD framework. One
key concept is the dataset containing both, (numerical) data as well as
information about these data (termed metadata). At the same time, a
dataset contains a history of each processing step performed on its data
together with the full set of parameters necessary to reproduce it. Rep-
resentations are stored as abstract descriptions (another form of meta-
data), and annotations are used to store information that cannot be ob-
tained by any automatic analysis, but requires human intervention. Re-
ports are finally a way to obtain a well-formatted overview of certain or all
aspects stored within a dataset. Tasks are at the heart of recipe-driven
data analysis and can be thought of as abstract summary of any action
taken on a single dataset or a defined list of datasets. Models are pa-
rameterised mathematical descriptions of the numerical data that can be
fitted to the latter. For details see the text.

3.1 Basic concepts and components

A graphical overview of the basic concepts and components of the
ASpecD framework is given in Fig. 3. Each of the components will
be discussed hereafter in some detail. Their interplay is graph-
ically represented in Fig. 4. All parts have been implemented
in a highly modular fashion (for implementation details see be-
low) and can readily be used to develop packages for processing
and analysis of spectroscopic data. Developers can entirely focus
on implementing the science rather than ensuring reproducibility
that is taken care of by the framework. Users, on the other hand,
do not require any programming skills at all thanks to recipe-
driven data analysis.

3.1.1 Dataset

The dataset is one key concept of the ASpecD framework, stor-
ing (numerical) data, metadata and the history of processing and
analysis steps in one place. One can think of it as an entity con-
taining a field for the numerical data, a structured array (called
associative array, dictionary, map, hash, or struct, depending on
the programming language, but essentially providing a key–value
store) for the metadata, and a list of processing and analysis steps,
i.e. their parameters and all information necessary to reproduce
such a step, forming the history. If stored as a single unit, a
dataset becomes the independent smallest component of the AS-
pecD framework, aiding much to reproducibility while maintain-
ing modularity and a small footprint, i.e. a minimum of external
dependencies.

Furthermore, the dataset serves as universal exchange format
within the ASpecD framework: While each measurement soft-
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Fig. 4 A dataset-centric view of the interplay of the different compo-
nents of the ASpecD framework. Key is the dataset as a unit consisting
of (numerical) data, metadata, and a full history of each processing and
analysis step performed on the (numerical) data. Metadata of both, rep-
resentations and annotations are stored as well within the dataset. The
difference between processing and analysis steps is that the former mod-
ify the data of a dataset, whereas the latter return an independent result.
“info file” refers to a specific textual format for storing metadata accompa-
nying a measurement. Its file format was developed to be easily (human)
writable while retaining machine readability. For details see the text.

ware will come with its own file format and metadata organisa-
tion, the dataset abstracts from this diversity and represents a uni-
fied interface for all routines of the framework. This even allows
to mix datasets of different origin, e.g. plotting the data together
in one figure. Starting from the initial import of the data and
metadata, every routine operates exclusively on datasets, thus
maintaining full reproducibility by automatically logging process-
ing and analysis steps in the history and representations and an-
notations in their respective lists. At the same time, using the
dataset as universal exchange format for all the different routines
of the framework and its derived programs dramatically simpli-
fies the interfaces of these routines. Additionally, this provides
all functionality necessary to fulfil the requirements for a repro-
ducible, modular and extensible data analysis.

3.1.2 Metadata

Numerical data on their own are rather useless if they are not
accompanied by additional information, here termed metadata.
This insight is central to the development of the ASpecD frame-
work. For a start, metadata of a measurement are all the infor-
mation available at the very moment of the data acquisition, such
as spectrometer type and software version, sample details and
temperature of the setup. Hence, we need a way to record this
information in an organised fashion, using a format that is both,
human and machine readable. In its simplest form, this may just
be a bare text file. Details will be discussed later on. Further-
more, it is the responsibility of the individual scientist to reduce
the vast amount of information available during data acquisition
to the relevant aspects. However, important for now is the inti-
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mate connection between data and associated metadata, as well
as recording the metadata during data acquisition. The latter is
crucial, as we cannot rely on our memory, not to mention that all
too often, we will never provide the required information later
on.

3.1.3 History

The key to reproducibility is to automatically log all tasks that are
performed on a given set of data. Not only the processing and
analysis steps as such, but as well a complete set of parameters
and their values, including implicit or default parameters, need
to be recorded. The version number of the routines, informa-
tion about the underlying operating system, a timestamp, and the
name of the operator are added as well, resulting in a gap-less his-
tory of processing steps on a given set of raw data. Additionally,
this history gets stored such that it can be used directly to replay
every step automatically. This opens the way for repeating (and
systematically varying) the processing and analysis on the origi-
nal dataset as well as applying it to other sets of data in a similar
fashion, greatly assisting with comparing results and analyses.

At the same time, this allows for a straight-forward implemen-
tation of an undo/redo mechanism. An additional read-only field
contains the original raw data of the dataset. This prevents the
application from having to reacquire the raw data from wherever
they were loaded originally. Thus, reverting a processing step can
be translated into starting off from the raw data and performing
each processing step stored in the history except for the last one.
Similarly, not immediately throwing away the metadata of the re-
verted processing step allows for its easy reapplication, termed
“redo” in most software applications.

3.1.4 Annotations

Whereas many routine processing steps on data can be carried
out in a fully automated fashion, the actual data analysis always
involves human intervention, at least with interpreting the results
of preceding data processing and analysis steps. Often, there is
the need to store additional information about a dataset, be it a
comment applying to the entire data or highlighting an area or a
single point. This is what annotations are meant for. Whereas the
term is borrowed from bioinformatics and here from annotating
DNA and protein sequences, it can be easily applied to spectro-
scopic data as well. In the context of the ASpecD framework, an
annotation is characterised by its intrinsic human origin: The in-
formation contained cannot be (re)created in an automated fash-
ion. Hence, excessively annotating datasets imposes severe con-
straints to the way the information is stored, regarding data safety
(against accidential losses) as well as security (restricting access
to the information).

3.1.5 Representations

A picture is worth a thousand words. Mostly, data are represented
in a graphical or tabular manner in a publication. Whereas creat-
ing good figures is a topic on its own,12,94,95 ideally, representa-
tions should be fully reproducible by replaying a “recipe” stored
in form of an instructional text file containing all required param-
eters and information. This abstract description of a graphical or
tabular display of (characteristics of) a dataset is termed repre-

sentation in the ASpecD framework. If a representation depends
solely on the data contained in a single dataset, its metadata will
usually be stored within the dataset.

3.1.6 Reports

Finally, all the information collected by using the framework and
contained in a dataset needs to be accessed in simple yet power-
ful ways. This is the realm of reports. Automatically generated
from a dataset as source of structured information, they can be
fully customised, resulting e.g. in a LATEX file that gets automat-
ically rendered to a PDF document. A key aspect is to separate
formatting and content using template engines.75 This allows for
using a large list of different output formats fully independent of
both, the underlying data source, in the given context a dataset,
and the programming language used for data analysis as well as
report generation. Similarly, reports of identical content but in
different (human) languages can easily be created. Additionally,
writing and modifying templates needs next to no programming
experience and is fully independent of the other aspects of the
data analysis framework. Hence, template engines are a very
powerful application of the concept known as “separation of con-
cerns”.69,71

3.1.7 Tasks

Processing data consists of lots of different single tasks that can
mostly be automated. This is the idea behind recipe-driven data
analysis: lists of datasets and tasks that can easily be created by
a user and processed fully automated. Here, “tasks” has a broad
meaning, covering every aspect of data analysis that can be auto-
mated, such as processing and analysis steps, creating represen-
tations and annotations, and finally reports. For details, see the
next section.

3.1.8 Models

To make sense of and to interpret the physical reality reflected
in numerical data, usually mathematical models are used. These
models typically depend on a number of parameters that may or
may not be adjustable to fit the actual data. Models can there-
fore be seen as abstraction to simulations. In this respect, they
play a central role in conjunction with fitting models to data by
adjusting their respective parameters, a quite general approach in
science and particularly in spectroscopy. Therefore, models pro-
vide the interface towards a fitting framework that is currently
being developed in the authors’ group.

4 No programming skills needed:
Recipe-driven data analysis

The components previously described can all readily be used,
adopting the perspective of a programmer. Therefore, they can
form the basis for own scripts and programs as well as whole
graphical user interfaces, while providing all the prerequisites for
fully reproducible data analysis. Still, the user would need to
be familiar with the underlying programming language to inter-
connect the different functions in a short program. In contrast,
recipe-driven data analysis provides a wholly different level of
abstraction, relieving the user from needing any programming
skills. For a first impression, see Listing 1.
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Listing 1 Example of a recipe used for recipe-driven data analysis within
the ASpecD framework. Here, a list of datasets is followed by a list of
tasks. The user needs no programming skills, but can fully focus on the
tasks to be performed. “Cooking” this recipe is a matter of issuing a single
command on the terminal. For comparison, Listing 2 shows the Python
code of the same analysis carried out fully programmatically instantiating
objects of the respective classes.

1 datasets:

2 - /path/to/first/dataset

3 - /path/to/second/dataset

4

5 tasks:

6 - kind: processing

7 type: BaselineCorrection

8 properties:

9 parameters:

10 kind: polynomial

11 order: 0

12 - kind: singleplot

13 type: SinglePlotter1D

14 properties:

15 filename:

16 - first-dataset.pdf

17 - second-dataset.pdf

Basically, recipe-driven data analysis can be thought of a spe-
cial type of user interface to the ASpecD framework and derived
packages. The normal user of such packages has a clear idea how
to process and analyse data, as this belongs to the realm of sci-
ence. At the same time, however, the user may not necessarily
be interested in actually programming a lot. Furthermore, repro-
ducible science requires the history of each and every processing
and analysis step to be recorded and stored in a way that can be
used and understood long after the steps have been carried out
(think of many years rather than weeks or months).

From the user’s perspective, all that is required is a human-
writable file format and a list of datasets followed by a list of
tasks to be performed on these datasets. For each task, the user
will want to provide all necessary parameters, i.e., the metadata
of the data analysis. Introducing the metaphor of recipe and cook
circumvents using the term “metadata” in different meanings and
the confusion this might cause. A recipe is a list of datasets and
tasks to be performed on them. Such recipe is processed by a cook
invoking the respective routines for each task. This is the origin of
the term “recipe-driven data analysis”. An actual example of how
such a recipe may look like is given in Listing 1. Of course, this
is only a very simple example, and further details can be found
in the online documentation93 and the Supporting Information.
“Serving” the results of this recipe is as simple as issuing a single
command on the terminal.

Essential aspects of the recipe-driven data analysis are detailed
below and a graphical representation, contrasting the dataset-
centric view, is shown in Fig. 5. Eventually, this abstraction ren-
ders scientific data analysis programing language agnostic and
provides a complete new level of reproducible research. From
own experience, the dramatically simplified user interface has the

recipe

raw data

info file

import

dataset

dataset

tasks

annotation

representation

analysis

report

template

processing

represent

annotate

analyse

report

process

Fig. 5 Recipe-driven data analysis as implemented within the ASpecD
framework. Recipes provide a level of abstraction that empower users
not familiar with programming to describe the details of arbitrarily com-
plex data analysis step-by-step in a formalised way. They can be thought
of as a special kind of user interface. A recipe consists of a list of datasets
to operate on and a list of tasks that shall be performed. Tasks can be
everything implemented within a package based on the ASpecD frame-
work, from simple processing steps to complex reports. For details see
the text.

potential to revolutionise the way spectroscopic data are anal-
ysed, paving the way for truly reproducible research.

4.1 Easy handling of multiple datasets
Besides providing an entirely new level of abstraction and a user-
friendly interface to data analysis, recipe-driven data analysis
overcomes an essential limit of the dataset-centric usage scenario
shown in Fig. 4. namely its intrinsic limitation to operating on
single datasets. However, data analysis often requires compar-
ing different datasets. Therefore, history, representations and
reports need to be abstracted from the single dataset and con-
nected to a higher level, in this case the recipe allowing to span
arbitrary numbers of datasets that should be processed and anal-
ysed together and compared in some way or other. Nevertheless,
recipe-driven data analysis can at the same time be used in ex-
actly the same way as the dataset-centric view, processing and
analysing only one dataset at a time, but providing a much more
user-friendly interface. Perhaps most crucial here is the lack of
any programming skills needed, as the tasks are defined in tex-
tual, though structured way. This may be most obvious when
comparing the elegance of the recipe given in Listing 1 with the
corresponding Python code in Listing 2.

4.2 Reproducible and automated
Processing data consists of lots of different single tasks that can
mostly be automated. This is the idea behind recipe-driven data
analysis: lists of datasets and tasks that can easily be created by a
user and processed fully automated. “Tasks” has a broad meaning
here, covering basically every automatable aspect of data analy-
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sis, including processing and analysis steps, creating representa-
tions and annotations, and finally reports.

Storing the (somewhat abstract) recipes rather than scripts con-
sisting of code depending too much on implementation details
helps with reproducibility. On the one hand, problems with other
versions of the underlying programs should be less frequent, and
on the other hand, a human-readable list of datasets and tasks
with their respective parameters is much easier to understand
than actual code. For a direct comparison of the two approaches,
see Listings 1 and 2 as well as the accompanying discussion.

Automatisation comes with several advantages. Generally, ev-
erything that can be automated can be delegated to computers.
That does not mean that the tasks carried out are necessarily cor-
rect, but they are usually consistent. And if mistakes in the input
are detected, this can be easily fixed, resulting in a consistent
(hopefully more correct) result. Additionally, every automated
step saves the users from performing boring and error-prone rou-
tine tasks and allows them to use their brains for good—thinking
of ways how to process and analyse the data and to make sense
of the results, i.e. things computers cannot really do for us. The
power of automatisation is nicely reflected in a quote by White-
head in his “Introduction to Mathematics”: “Civilization advances
by extending the number of important operations which we can
perform without thinking about them.”96

The real important aspect of data analysis in science is to think
about the data and the results obtained from automatically pro-
cessing the (raw) data and to interpret these results. Everything
else can (and should) be delegated to the computer as much as
possible.

4.3 Fully unattended

Recipe-driven data analysis is carried out fully unattended (i.e.,
non-interactive). This allows for using it in context of separate
hardware and a scheduling system. Situations particularly ben-
efiting from this approach are either many datasets that need to
be processed all in the same way, or few datasets requiring expen-
sive processing such as simulation and fitting97. The latter is even
more true in context of global fitting and/or sampling of different
starting parameters, such as Monte-Carlo98 or Latin-Hypercube99

sampling approaches.

Furthermore, this approach allows for decoupling the place the
actual data processing will be carried out from the input. This
leads naturally to containerisation (e.g., docker100) where the ac-
tual packages derived from ASpecD are located in a container that
is self-contained and could basically even be shared with others.
§ Particularly in case of the above-mentioned long-running fitting
tasks, having the data analysis run not on the personal computer,
but on dedicated hardware can be a great advantage.

§ Although an entirely different topic, containerisation would allow to even share a
fully working installation of your analysis packages with collaboration partners. In
such context, an easy-to-use and somewhat intuitive user interface as provided by
recipe-driven data analysis will further help.

4.4 History

Processing a recipe always results in documenting all tasks per-
formed. This includes the complete set of available information
necessary to reproduce and replay the tasks, both parameters and
version information of the actual routines and all package depen-
dencies used. For ease of use, these protocols can be used again
as recipes. Therefore, the history connected now with the recipe
rather than a single dataset represents a generalisation of the his-
tory concept described above. Besides that, all tasks operating on
datasets will still write a history on each of the datasets.

4.5 Human-writable

As the recipe is used as kind of a user interface, it should be as
simple to write and read as possible. Besides that, the format
should be platform-independent and longterm-stable. Therefore,
a simple text format is the most natural choice.58 The actual file
format of the recipes is an unimportant detail. However, at least
in a first implementation of the ASpecD framework, the YAML
file format101 is used. Being very easy to write and read by hu-
mans due to the minimum of formatting required is perhaps its
biggest advantage. Furthermore, due to its hierarchical structure,
it allows for formulating even complex tasks such as a graphical
representation with all the details that can be controlled and ex-
plicitly specified. For more complex examples see the Supporting
Information. This format has been proven useful in similar set-
tings, e.g., automatic provisioning of software using Ansible102.

4.6 Comparison with programmatic approach

Both usage scenarios described above, the dataset-centric ap-
proach and the recipe-driven data analysis, have their particular
strengths. The dataset-centric approach to the ASpecD framework
is user-interface agnostic and hence compatible to application in
context of an interactive graphical user interface (GUI). Recipe-
driven data analysis, in contrast, provides a particular type of user
interface aiming at an abstract description of the different tasks
to be performed on a list of datasets. For a direct comparison of
the two approaches, cf. Listings 1 and 2.

Generally, with reproducibility in mind, every kind of interac-
tive graphical user interface usually poses a certain risk of lack-
ing the complete history of events. This is leveraged using the
dataset-centric approach and the dataset as universal exchange
format between every routine. For a first overview of the char-
acteristics of a single dataset, a graphical user interface clearly
has its advantages, while for routine processing and comparative
analysis of multiple datasets, the recipe-driven data analysis ap-
proach shows its full potential. Besides full reproduciblity span-
ning multiple datasets, recipe-driven data analysis is at its most
impressive when coming to fully unattended and automated rou-
tine data processing and analysis and when comparing a larger
list of datasets in various ways. Furthermore, from the user’s
point of view, recipe-driven data analysis is much simpler, as it
does not require programming skills and allows to focus entirely
on the scientific side of data processing and analysis.
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Listing 2 Example of a dataset-centric scenario of data analysis using
the ASpecD framework. Here, objects of each of the respective classes
need to be instantiated, the properties set appropriately and the inter-
action of the different classes directly implemented in code, calling the
respective methods. For comparison, Listing 1 shows a recipe perform-
ing the same analysis.

1 import aspecd

2

3 dataset_filenames = [

4 ’/path/to/first/dataset’,

5 ’/path/to/second/dataset’

6 ]

7 figure_filenames = [

8 ’first-dataset.pdf’,

9 ’second-dataset.pdf’

10 ]

11

12 importer_factory = aspecd.io.ImporterFactory()

13 baseline_subtraction =

14 aspecd.processing.BaselineCorrection()

15 baseline_subtraction.parameters = {

16 "kind": "polynomial",

17 "order": 0

18 }

19 plotter = aspecd.plotting.SinglePlotter1D()

20

21 for idx, source in enumerate(dataset_filenames):

22 dataset = aspecd.dataset.Dataset()

23 importer = importer_factory.get_importer(source)

24 dataset.import_from(importer)

25 dataset.process(baseline_subtraction)

26 plot = dataset.plot(plotter)

27 saver = aspecd.plotting.Saver()

28 saver.filename = figure_filenames[idx]

29 plot.save(saver)

5 Implementation details
In contrast to engineering with a clear distinction between the de-
sign and the real object, in software development, the source code
of the actual program is the design.103 Furthermore, software is
intrinsically subject to frequent changes, even more during active
development. Therefore, the implementation details of the AS-
pecD framework laid out in the following are necessarily abstract
to a certain extent. However, due to it being open-source and
fully documented, the interested reader is invited to have a look
at the source code itself.

Software development in general and scientific software
development in particular is a topic filling entire vol-
umes.57,59,70,73–75,104 Hence we will only provide a very brief
overview here of the important aspects that shaped the imple-
mentation of the ASpecD framework. Further details can be
found in the Supporting Information. Generally, three aspects
can be distinguished: the necessary infrastructure for develop-
ment and usage, the general implementation, and the actual code
providing the functionality.

Independent reproducibility is at the heart of the scientific
method,3–7 and hence all software developed for scientific data
processing and analysis should be made available for the commu-

nity.31,61–64 This requires a permissive license allowing others to
use and potentially modify the code.58,59 As software is always
in constant development, a version control system (VCS) such as
git60,105 is the next important requirement,56–59 allowing to re-
store the exact version of the software that was used for a partic-
ular task. Only in conjunction with a scheme for version numbers
can this be achieved, with one version number referring to one
and only one actual state of the software. In mathematical terms,
this is is a one-to-one or bijective mapping between version num-
ber and program version. ASpecD follows the semantic version-
ing106 scheme. As software for scientific data analysis is intrin-
sically complex, even the ideal implementation where the code
fully speaks for itself cannot convey the overarching design prin-
ciples. Therefore, extensive documentation of both, the public
interfaces (API) of the routines as well as the underlying concepts
is essential for the software to be usable and to get used.58,59 This
can only be achieved by employing tools that automatically gen-
erate well-formatted documentation from the source code, such
as Sphinx107. Finally, we need to ensure the software to be cor-
rect as much as possible. This requires automatic tests to be
present together with a high test coverage.56,57,59,74,83–86 The
best way to achieve testability and high test coverage is by us-
ing a test-first approach87,88 and automatic testing via a unittest
framework88–90.

With this infrastructure in place, implementing the actual soft-
ware can begin. An essential prerequisite of the modularity and
hence easy extensibility of the ASpecD framework is its use of the
object-oriented programming paradigm.108,109 Next is choosing
a programming language that is easy to use for non-experts and
comes at the same time with a large set of libraries for scien-
tific data processing and an active user community. This is why
Python59,110–113 has been chosen for implementing the ASpecD
framework, in conjunction with the NumPy,114,115 SciPy,116 and
matplotlib117 packages. A last aspect worth mentioning is file
formats. The time scales of reproducibility in science and of the
availability of digital file formats differ quite substantially. Never-
theless, scientific data need to be accessible after years and even
decades. Therefore, only fully documented and open formats
should be used. Furthermore, information about the numerical
data (i.e., metadata) need to be stored together with the actual
numerical data that are the results of measurements or compu-
tations. Generally, structured text files should be used wherever
possible58, with the YAML format101 providing a good compro-
mise of being human-writable while at the same time being pro-
cessable by machines. For storing floating-point numbers in bi-
nary format, the IEEE 754 standard118 is an acceptable exception
from this rule, as long as its use is restricted to numeric data.
Key to reproducible science is to collect all necessary information
(metadata) about the original measurement or calculation as well
as each individual processing and analysis step. As long as this
information is collected and saved in a structured way in open
formats, converting it to exchange formats for deposit in public
databases and sharing with other scientists is possible and can
usually be automated as well.

The actual modules the ASpecD framework consists of are ba-
sically identical to its components described above. For more de-
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tails, the reader is referred to the Supporting Information and the
extensive documentation available online93. Both include details
as well of how to write and develop analysis packages based on
the ASpecD framework. Two such packages that are currently ac-
tively developed in the authors’ group are shortly outlined in the
next section.

6 Examples of concrete analysis packages

Currently, the implementation of analysis tools for data from
both, time-resolved48 and conventional continuous-wave49 elec-
tron paramagnetic resonance (EPR) spectroscopy is under way
in the authors’ group, helping to further develop the framework.
The results are provided open-source and free of charge, and two
Python packages derived from the ASpecD framework focussing
on EPR spectroscopy, namely the trepr119 and cwepr120 pack-
ages, are available online via PyPI and GitHub. Both packages
are now actively employed in the authors’ group on a daily ba-
sis. These packages define as a minimum an explicit description
of the metadata relevant for the respective spectroscopic method,
importers for the different vendor-specific file formats, and pro-
cessing and analysis routines that can be based on existing func-
tionality provided by the ASpecD framework. A particular high-
light, demonstrating the modularity and validity of the approach
taken with the ASpecD framework, is the capability of process-
ing both, cw-EPR and tr-EPR data within one recipe and creating
joint plots with both types of spectra. Details of these two pack-
ages will be published elsewhere.

7 Outlook

As with most software projects, developing the ASpecD frame-
work is an ongoing process, and a few concrete ideas for further
development are worth mentioning here. This involves both, ad-
ditional features as well as embedding the ASpecD framework
into the larger context of an open-source laboratory information
system aiming at even fuller reproducibility.

7.1 Additional features

Besides implementing further generally applicable processing and
analysis steps and providing pre-defined templates for each task
to make report generation a lot easier, interfacing with a fitting
framework is probably most important.

Fitting models to data is a frequent requirement in spec-
troscopy, and the Python SciPy package116 provides excellent
capabilities to this end. Developing a Python package (“FitPy”)
providing a unified interface to the different fitting strategies, in-
cluding stochastic sampling of starting conditions, is currently
under way in the authors’ lab. Fitting is an analysis step, and
the models to be fitted are derived from the abstract model
class provided by the ASpecD framework. Independently, sim-
ulation routines for EPR spectra are developed (Python package
“SpinPy”). Using FitPy together with SpinPy or alternative sim-
ulation routines121,122 will allow to fully automatically process
and analyse EPR data all the way from data acquisition to the
final publication-ready figure.

7.2 ASpecD in context of a laboratory information system

Whereas the ASpecD framework focusses on reproducibility of
scientific data processing, important aspects for a fully repro-
ducible research such as long-term archival of data as well as
unique identifiers for accessing data and metadata, though log-
ical extensions, have been set aside here. Unique identifiers be-
come important as soon as more than one dataset is involved in
the analysis, and one possible solution may be a system similar to
the digital object identifiers (DOI) familiar from scientific publish-
ing. Other aspects include a fully automated and metadata-driven
workflow for routine processing, starting with the raw data and
ending with reports posted, e.g., to an internal web page.

Due to its highly modular design, the ASpecD framework well
integrates in such larger infrastructure. Existing ideas for a mod-
ular laboratory information system built from open-source com-
ponents are currently actively implemented in the authors’ group
and will be detailed elsewhere.123

8 Conclusions
Reproducible research as well as adhering to good scientific prac-
tice is of high demand. Here, we have presented a set of best
practices as well as design rules for scientific software for data
processing and analysis. These are implemented in a modular
framework for analysing spectroscopic data, termed ASpecD and
focussing on usability while minimising system requirements and
detailed knowledge in software development that is notoriously
scarce in science. The implementation is driven by own needs
and based on long-standing experience with both, experimental
science and the intrinsic limitations with regard to software engi-
neering in academia. Therefore, we are optimistic that the ideas
presented here will encourage other scientists to focus more on
reliable and reproducible software-based data analysis, thus ulti-
mately contributing to the overall quality of research. Providing
concepts as well as their implementation that take care of most of
the equally important and tedious tasks, the additional effort be-
sides personal discipline is rather negligible. Finally, recipe-driven
data analysis not requiring any programming skills renders truly
reproducible research easily achievable for spectroscopists.
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