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ABSTRACT 

Positive outcomes in biochemical and biological assays of food compounds may appear 1 

due to the well-described capacity of some compounds to form colloidal aggregates that 2 

adsorb proteins, resulting in their denaturation and loss of function. This phenomenon 3 

can lead to wrongly ascribing mechanisms of biological action for these compounds 4 

(false positives), as the effect is non-specific and promiscuous. Similar false positives can 5 

show up due to chemical (photo)reactivity, redox cycling, metal chelation, interferences 6 

with the assay technology, membrane disruption, etc., which are more frequently 7 

observed when the tested molecule has some definite interfering substructures. 8 

Although discarding false positives can be achieved experimentally, it would be very 9 

useful to have in advance a prognostic value for possible aggregation and/or 10 

interference, based only in the chemical structure of the compound tested, in order to 11 

be aware of possible issues, help in prioritization of compounds to test, design of 12 

appropriate assays, etc. Previously, we applied cheminformatic tools derived from the 13 

drug discovery field to identify putative aggregators and interfering substructures in a 14 

database of food compounds, the FooDB, comprising 26457 molecules at that time. 15 

Here we provide an updated account of that analysis based on a current, much-16 

expanded version of the FooDB, comprising a total of 70855 compounds. In addition, we 17 

also apply a novel machine learning model (the SCAM Detective) to predict aggregators 18 

with 46%-53% increased accuracies over previous models.  In this way, we expect to 19 

provide the researchers in the mode of action of food compounds with a much 20 

improved, robust, and widened set of putative aggregators and interfering 21 

substructures of food compounds.  22 
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INTRODUCTION 26 

There is currently a great research effort in the identification of the biological 27 

mechanisms of action of food compounds from a molecular point of view, in order to 28 

understand the beneficial or harmful effects of foods on human health, as well as finding 29 

novel nutraceuticals and scaffolds for drug design.1–9 For that aim, biochemical and/or 30 

biological (cellular) assays directed towards different biological targets (typically 31 

proteins) are being conducted, so that specific macromolecule-food compound 32 

interactions can be identified. However, these assays are subject to compound-related 33 

artifacts. For example, compound aggregation is a well-described phenomenon that 34 

yields artifacts in biochemical and biological assays.10–14 Some compounds, due to low 35 

water solubility, when tested at concentrations above a critical aggregation 36 

concentration (CAC),15 form colloidal aggregates that adsorb biomacromolecules 37 

nonspecifically and alter their activities, in most cases inhibiting them through 38 

denaturation,16 although in some cases activating them.17 This effect can translate into 39 

misled interpretations of the biological mechanism of action of compounds, as it is 40 

wrongly ascribed to the target used in the assay while the aggregation is nonspecific. 41 

Aggregation is very dependent on the assay conditions (pH, buffer composition, testing 42 

concentration) and structure of the compound, rather than on the assay technology and 43 

target, and can be alleviated to some extent by the addition of nonionic detergents in 44 

the assay medium.  45 

An alternative source of false positives in assays is the presence of substructures that 46 

make the molecule interact promiscuously with many targets, through mechanisms like 47 

(photo)chemical reactivity, large hydrophobicity, redox cycling, metal chelation, etc.; or 48 
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that provide it with some interfering properties with the assay technology 49 

(absorption/emission at reading wavelengths, membrane disruption, singlet-oxygen 50 

quenching or production, etc.).18–26 51 

There is a soaring concern for the presence of increasing numbers of false positives in 52 

the scientific literature and the derived databases of bioactivities due to aggregation 53 

and/or interfering substructures, as it could severely hurt knowledge extraction, 54 

decision making, and lead to the waste of resources and time.27,28 As a matter of fact, 55 

the American Chemical Society has provided specific guidelines28 to follow when 56 

submitting manuscripts reporting biological or biochemical activities of compounds with 57 

putative aggregation and/or interfering substructures, such as performing additional 58 

orthogonal assays (with the same target but different technology) and/or counter-59 

assays (with different target but the same technology), adding non-ionic detergents in 60 

the assay buffer, and reviewing reported activities for the same molecules in the 61 

literature.   62 

In a previous work,29 we performed an systematic analysis of a large database of food 63 

compounds, the FooDB,30 aiming at identifying there both putative aggregators and 64 

interfering substructures. This effort would be useful for the scientific community 65 

aiming at deciphering the biological mechanisms of action of food compounds, as it 66 

would allow to point out possible issues with reported activities, guide in the 67 

prioritization of compounds to test, and help in the assay technology selection and 68 

design. We used for the analysis well-established and publicly available cheminformatic 69 

tools,12,19,20,22 derived from the statistical and machine learning analysis of a large 70 

number of structure-activity datasets from both the high-throughput screening and 71 
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medicinal chemistry fields: to identify putative aggregators, we employed the 72 

Aggregator Advisor model,12 while to find putative interfering substructures, we used 73 

three standard libraries of substructural filters derived through data mining efforts: the 74 

Pan-Assay INterference compoundS (“PAINS”) set,22 that of former-GlaxoWellcome 75 

(here called “Glaxo”),19 and another from Pfizer (“LINT”).20  76 

Since 2020, the FooDB size has increased considerably, from about 26000 compounds 77 

at the time when the previous paper was published, to about 71000 to date. This 78 

suggested the need for an update of this analysis, as the number of compounds in the 79 

current version more than duplicates that of the previous one, leaving a lot of molecules 80 

without analysis for possible aggregation and/or interfering behavior. In addition, we 81 

took the opportunity to use more advanced approaches to predict aggregation. The 82 

Aggregator Advisor uses a simple and conservative approach for prediction, as it relies 83 

on a database of ~12000 known aggregators, and only marks a new compound as 84 

aggregator if its Tanimoto similarity to one or more know aggregators is > 0.85 and its 85 

logP > 3. Thus, this approach is restricted to a chemical space very close to the known 86 

aggregators, not being able to extrapolate to molecules outside this narrow space. It 87 

basically suggests putative aggregators with confidence, but potentially misses the vast 88 

majority of the chemical space, and contains no information about non-aggregators. On 89 

the contrary, a recent model based on machine learning, the so-called SCAM 90 

Detective,31 is based on balanced datasets comprising tens of thousands of compounds 91 

for both the aggregator and non-aggregator classes, in two assays, each repeated with 92 

and without detergent, and at different concentrations of compound (here SCAM stands 93 

for “small, colloidally aggregating molecules”). The use of a much larger and balanced 94 
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dataset, together with a Random Forest as predictive model, as well as Extended-95 

Connectivity Fingerprints of diameter 6 (ECFP6) to represent molecular structures, 96 

allows to increase the sensitivity and specificity of the predictions, resulting in 97 

improvements of total accuracy from 46% to 53% over previous models (e.g. the 98 

Aggregator Advisor), and to make it applicable to the whole chemical space. In addition, 99 

the SCAM Detective allows to generate probability maps for aggregation, that highlight 100 

regions in the molecule with high and low propensity for aggregation and  help in the 101 

interpretation of the predictions in molecular terms.   102 

Thus, in this work we attempt to provide an updated and more robust analysis of the 103 

putative aggregators and interference substructures in the current FooDB, comprising 104 

near 71000 molecules. We expect this work will be valuable for the experimentalist 105 

testing food compounds in different biological targets, in order to reduce the presence 106 

of false positive reports in the literature for these molecules. In turn, this will help 107 

globally to gain a better understanding of their true biological mechanisms of action and 108 

structure-activity relationships.    109 
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MATERIALS AND METHODS 110 

All the analyses were performed in Python 3.9 and with the RDKit cheminformatic 111 

toolkit,32 version 2021.03.3. The FooDB,30 comprising a total of 70855 molecules 112 

(including all detected and quantified, detected but not quantified, expected but not 113 

quantified, and predicted) were kindly provided by Dr. Wishart group in SDF format. 114 

Structures were checked in a first step, and then standardized and solvent- and 115 

counterion-stripped (in the case complex molecules containing counterions and/or 116 

solvent molecules), to yield the corresponding parent compound, by using the ChEMBL 117 

Structure Pipeline.33 A few compounds could not be processed by RDKit. Some 118 

compounds raising the Pipeline’s exclusion flag (i.e. with transition metals, or > 7 of 119 

boron atoms, that cannot be properly standardized) or with penalty scores > 5 (due to 120 

severe structural inconsistencies) were discarded (molecules with penalty score = 5 121 

were kept as these corresponded to stereo mismatches between InChi vs RDKit vs Mol 122 

representations of the molecules, with no impact in the analysis of aggregators or 123 

interference substructures). After that, duplicates were removed based on the InChiKey, 124 

resulting in a total of 69502 unique molecules.  The application of this recently described 125 

structure normalization procedure changed slightly the statistics for the molecules 126 

analyzed in our previous work and reported therein,29 that were now reanalyzed as they 127 

were a subset of the new FooDB, but we think this provides a more robust analysis of 128 

aggregators and interference substructures, without changing the former conclusions.  129 

In some cases, for comparison purposes a list of drugs was used. This was obtained from 130 

the DrugBank,34 using the small molecules in approved, not-withdrawn, and non-illicit 131 
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status as in our previous work, and following normalization procedure as with the 132 

FooDB. The resulting number of unique molecules was 2154.  133 

For the SCAM Detective calculations to predict aggregators,31 the code provided by the 134 

authors was locally installed and adapted for batch calculations. For comparison 135 

purposes with our previous work, the aggregators were also predicted through the 136 

Aggregator Advisor method,12 implemented in a locally programmed script with RDKit 137 

as the Aggregator Advisor does not provide batch processing functionality. In this script, 138 

a molecule was assigned a “known” status if its Tanimoto similarity with a molecule in 139 

the list of 12642 Aggregator Advisor molecules was 1, a status of “probable” if its largest 140 

Tanimoto similarity with any molecule in the list of aggregators was ≥ 0.85 and its logP 141 

> 3, and an status of “none” for the rest of the molecules. 142 

To test differences in distributions of numeric variables in different groups, the non-143 

parametric Kruskal-Wallis one-way analysis was used, followed by Conover’s post-hoc 144 

test with p-values correction using Holm’s approach. To test differences in proportions 145 

for pairs of samples, Z-test for proportions were used.  146 

  147 
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RESULTS 148 

Physicochemical and structural analysis of the molecules in the new FooDB 149 

Prior to conducting our analysis of aggregators and interfering substructures, it seemed 150 

necessary a characterization of the molecules incorporated in the new release of the 151 

FooDB, in order to see the extent of overlap with the chemical space of the previous 152 

FooDB molecules. A very large subset of the additional molecules in the new FooDB 153 

corresponds to acylglycerols (in what follows abbreviated AG), namely compounds with 154 

a glycerol backbone and with at least one fatty acid esterified to it, although other types 155 

of molecules (non-acylglycerols or NAG) are present. Figure 1 displays different in-silico 156 

calculated physicochemical and structural properties for four groups of molecules, 157 

specifically the molecules in the previous FooDB (corresponding to the “FD(OLD)” label 158 

in the abscissa), new non-acylglycerol molecules in FooDB (likewise, “FD(NEW/NAG)”),  159 

new acylglycerol molecules in FooDB (“FD(NEW/AG)”), and DrugBank (“DB”) molecules. 160 

The descriptors calculated were: TPSA (topological polar surface area, TPSA), logP 161 

(LOGP), number of rotatable bonds (RB), number of hydrogen bond donors (HBD), 162 

number of hydrogen bond acceptors (HBA), molecular weight (MW), QED (Quantitative 163 

Estimation of Drug-likeness, QED35), number of rings (NRING), and fraction of sp3 164 

carbons (FSP3).  165 

We can see in Figure 1 that the dispersion of distributions is quite different for NAG and 166 

AG molecules in the new FooDB molecules. The main descriptive statistics and test for 167 

differences (omnibus and post-hoc) in the distributions of all the four groups of 168 

molecules can be obtained in Supporting Information (Tables S1 and S2). While the NAG 169 

tend to have a widening of their distributions as compared to the old FooDB, the AG 170 
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have usually very narrow distributions, with TPSA, HBD, HBA and NRING having a null 171 

inter-quartile range, which is expected given the high structural redundancy  within this 172 

group as they are all acyl esters of glycerol. Both NAG and AG display a trend towards 173 

more and larger LOGP, RB, HBA, MW and FSP3. This is especially clear for the AG as 174 

regarding LOGP, RB and FSP3, and expected given their highly aliphatic structure. On the 175 

other hand, both NAG and AG display a reduction in QED and NRING, again not 176 

unexpected for the AG molecules.  177 

As regarding TPSA, NAG show a marked increase compared to the old FooDB, while AG 178 

show an slight decrease of it; in the case of the HBD, the AG molecules have no one, 179 

while NAG show a clear trend towards higher values.  180 

On the other hand, Figure 2 displays the distributions of the 10 most frequent Bemis-181 

Murcko36,37 scaffolds for FDB(OLD), FDB(NEW/NAG), and DB. AG molecules are not 182 

shown as any of them have scaffold (they are linear, branched molecules, and therefore 183 

have no Bemis-Murcko scaffolds, which are ring-based). Again, we observe quite 184 

different distributions for these sets, in spite the benzene ring being the most frequent 185 

scaffold in all of them. The percentage of molecules without scaffold is lowest in the 186 

drugs, but highest in the NAG (after AG, which are 100%). Following the benzene 187 

scaffold, the drugs show a variety of typical drug scaffolds; in decreasing order, two 188 

steroid scaffolds, pyridine, diphenylmethane, another steroid, etc. In turn, the old 189 

FooDB molecules have in common the presence of steroid scaffold, but the second most 190 

frequent one is cyclohexane, followed by tetrahydropyran, etc., while the NAG 191 

compounds display completely different scaffolds: e.g. dual aliphatic esters ending in 192 

furan rings, cyclopentamine, imidazole, etc.     193 



12 
 

In summary, we see that the new FooDB molecules, both AG and NAG, appear to occupy 194 

a different region of the chemical space (including physicochemical properties and 195 

structures), more separated to that of the drugs, as compared to the previous release 196 

of FooDB. This observation stresses the need for an updated analysis of aggregators and 197 

interference substructures in the FooDB.  198 

Aggregators Analysis 199 

In our previous work, the Aggregator Advisor method12 was used to predict putative 200 

aggregators and identify known aggregators. The Aggregator Advisor is based on a very 201 

simple approach, comprising the calculation of the Tanimoto similarity of the tested 202 

compound to a list of ~12600 know aggregators (using topological fingerprints), and if 203 

the similarity is > 0.85 to at least one of these compounds, and its logP is > 3, it is assigned 204 

a “possible aggregator” status;  in the rest of the cases no prediction is made 205 

(“unknown”, or “non-aggregator” status). Thus, it is a very conservative approach that 206 

is unable to give predictions of compounds lying outside the close structural space of 207 

the aggregators list, although it is useful as a fast and easy-to-implement way to identify 208 

close analogs to the known aggregators list with high risk of aggregation if lipophilic 209 

enough.  210 

On the contrary, the SCAM Detective31 is a machine learning-based approach using 211 

random forests38 that is capable in principle to extrapolate to the whole structural 212 

chemical space. The training sets for the SCAM Detective were obtained from pairs of 213 

quantitative high-throughput screening (qHTS) campaigns in PubChem39 run with the 214 

same assay conditions but in the presence and absence of added detergent in the assay 215 

buffer. By comparing the dose-response curves in each pair for each compound, in the 216 
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presence and in the absence of detergent, it was possible to mark it as putative 217 

aggregator or non-aggregator. Models were derived for both AmpC β-lactamase and the 218 

cysteine protease cruzain, which are frequently used counter-assays to discard false 219 

positives in assays.40–42 The corresponding screens in PubChem were tested at different 220 

experimental conditions in terms both of assay buffer and dosing concentrations. This is 221 

an interesting feature as by comparing the predictions in both assays an approach to 222 

assess the robustness of the prediction is available.  223 

In addition, in the development of the training set, a data-rebalancing approach was 224 

applied, so that in both training sets there were equal numbers of aggregators and non-225 

aggregators. In this way, the SCAM Detective is able to reliably predict both aggregators 226 

and non-aggregators, and thus have a balanced sensitivity and specificity (0.72 and 0.73, 227 

respectively for the AmpC β-lactamase model, and 0.71 and 0.69 for the cruzain model).  228 

The SCAM Detective also provides a measure of the reliability of its predictions, which 229 

is based on the so-called applicability domain (AD) of the model, defined as 230 

𝐷𝑐𝑢𝑡𝑜𝑓𝑓 = 〈𝐷〉 + 0.5𝑆 231 

where 〈𝐷〉 and S are the average and SD of all the Euclidian distances in the descriptor 232 

space used between each compound and its nearest neighbors in the training set. New 233 

compounds with a minimum distance to the molecules in the training set D > Dcutoff  234 

would be outside the AD of the model, meaning that the predictions for it would be in 235 

general less reliable.  236 

On top of that, prediction of fragment contributions in the form of contour maps can be 237 

generated for the modeled molecules, aiding to provide an interpretation of the model 238 
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prediction through the groups in the compound most responsible for the aggregating or 239 

non-aggregating behavior. 240 

By first applying the Aggregator Advisor method to the updated FooDB, we can identify 241 

a total of 92 known aggregators and 37 predicted aggregators. These concentrate mainly 242 

in the old FooDB database, since within the new compounds no one was a predicted 243 

compound, and only two were known aggregators. These were in the NAG group. By 244 

merging known and predicted aggregators, this leads to a 0.56% and a 0.004% of 245 

aggregator rate for the old and new FooDB molecules, respectively. These small 246 

numbers reflect the conservativeness of the Aggregator Advisor and that the novel 247 

FooDB molecules display even less overlap with the chemical space of the list of 248 

aggregators used by the method compared with the previous FooDB.  249 

These numbers change dramatically upon application of the SCAM Detective. Table 1 250 

displays the total number and percentages of predicted aggregators in both FooDB (and 251 

its different subsets) and DrugBank (for comparison purposes) for both the β-lactamase 252 

and cruzain models, as well as their intersection. The actual predictions for all the 253 

molecules in FooDB can be obtained in Supporting Information (Table S3). It can be seen 254 

that the aggregator rates for the SCAM Detective are much higher. For instance, the β-255 

lactamase model predicts a 76.7% of aggregators in FooDB, that rises up to 95.39% for 256 

the AG subset. For the cruzain model, the aggregator rate is 40.82% for the whole 257 

FooDB, and 52.98% for the AG subset. In both models, the aggregator rates for the new 258 

FooDB molecules are significantly higher than for the old ones (43.17% and 19.95%, for 259 

β-lactamase and cruzain, respectively), both for NAG and AG, although especially for the 260 

later. This can be expected from the more lipophilic and flexible nature of these 261 
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molecules, with long aliphatic chains that makes them prone to aggregation in the AG. 262 

As a way of confirmation, Figure 3 displays the predicted fragment contribution maps 263 

for FDB00135, a predicted non-aggregator in both models from the old FooDB, and 264 

FDB080642, a doubly-predicted aggregator and an AG compound. We can see that while 265 

FDB000135 shows green contours indicative of non-aggregation contribution together 266 

with some weakly concentrated magenta contours, FDB080642 displays highly 267 

concentrated and dark-magenta contours, a signature of high-aggregating contribution, 268 

especially in its three polymethylene chains.  269 

On the other hand, the DrugBank display aggregator rates near the old FooDB 270 

molecules, slightly lower: 34.44% and 18.89% for β-lactamase and cruzain, respectively.   271 

From Table 1 it can be observed that the β-lactamase model shows in all the compound 272 

sets an increased aggregator rate as compared to the cruzain model. This is in contrast 273 

to the original training datasets used, which showed comparable aggregator rates for β-274 

lactamase and cruzain assays, although obviously the results obtained here depend on 275 

the chemical spaces of the molecules that were aggregators in one or the other training 276 

sets. In general, there is a highly significant association between the two models, with a 277 

61% of molecules being aggregators or non-aggregators simultaneously in both models. 278 

This rises to 73% in the case of the DrugBank molecules. By considering the intersection 279 

between the models, which would correspond to a more robust (although more 280 

conservative) prediction of aggregation, the aggregation rate for the whole FooDB 281 

would be 39.25% (including 15.34%, 29.76% and 52.98% for the old FooDB, NAG, AG, 282 

respectively) vs a 13.32% for the DrugBank.  283 
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If we focus on the reliability of the predictions based on the AD of the different sets, we 284 

obtain the results collected in Table 2. Again, the number and percentage of molecules 285 

within the AD in one or the other model and the intersection of both, for the different 286 

compound sets, are shown. We can see very large percentages of molecules within the 287 

applicability domain in the updated FooDB (81.96% and 86.57% for β-lactamase and 288 

cruzain models, respectively), even higher for the new molecules, especially in the case 289 

of AG, which is very close to 100% (98.96% and 99.99%, respectively). For the old FooDB 290 

molecules the percentages are lower, 50.93% and 61.46%; these values are similar to 291 

those observed for the DrugBank (52.01% and 55.93%).  292 

In this case, the percentage of molecules in the AD is slightly but significantly higher for 293 

the cruzain model compared to the β-lactamase model if we consider the whole set of 294 

molecules: 85.64% vs 81.05%, respectively. The agreement between both models as far 295 

as AD is concerned is very high, and ~94% of the molecules are within or without the AD 296 

of both models simultaneously. This is probably due to both models using similar 297 

collections of compounds in their training sets, as well as the very high percentages of 298 

molecules within the AD in both cases. By intersecting both models, there is just an slight 299 

decrease of percentages in all the sets, so that the whole FooDB has a 81.43% (including 300 

49.51%, 78.07%, and 98.96% for old FooDB, NAG, and AG, respectively) vs a 47.58% for 301 

the DrugBank.  302 

We could ask what are the SCAM Detective predictions for the compounds marked as 303 

known (92) or predicted (37) aggregators by the Aggregator Advisor. Of the 92 known 304 

aggregators, 23 are predicted aggregators by the β-lactamase model, and 15 by the 305 

cruzain model. Of the 37 predicted aggregators, 16 are predicted aggregators by the β-306 
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lactamase model, while 16 are predicted aggregators by the cruzain model. Thus, there 307 

seems to be a modest agreement for the prediction of the aggregator class between 308 

both SCAM Detective and Aggregator Advisor models, although it must be taken into 309 

account that the datasets were derived in different conditions, with different definitions 310 

of aggregation (different predicted labels), and with different compound sets. In 311 

addition, the numbers used for the comparison are very small, given the tiny number of 312 

compounds predicted by the Aggregator Advisor, and we are only considering the 313 

aggregators class, not the non-aggregators.  314 

In summary, we have obtained novel predictions for the updated FooDB through the 315 

machine learning approach used by the SCAM Detective, which was reported to provide 316 

balanced sensitivity/specificity predictions and an increase of accuracy from 46% to 317 

53%31 compared to other methods (e.g. Aggregator Advisor12 and Hit Dexter43, see 318 

SCAM Detective paper31). The FooDB show relatively large percentages of predicted 319 

aggregated molecules, 76.70% in β-lactamase and 40.82% in cruzain. The old fraction of 320 

FooDB displays clearly lower percentages (43.17% and 19.85%, respectively), while the 321 

new fraction of molecules shows increased values, especially in the case of AG, which 322 

are predicted aggregators in 95.39% of the cases by the β-lactamase model and 52.98% 323 

by the cruzain one. For the whole FooDB, a very large proportion of molecules appears 324 

to be within the AD of the models, 86.57% for the cruzain model and 81.96% for the β-325 

lactamase. These predictions, provided as Supporting Information (Table S3), are 326 

expected to help the community of scientist aiming in understanding the biological 327 

mechanisms of action of food compounds to identify aggregators in their assays.  328 

Analysis of interference substructures 329 
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In our previous work we also analyzed the presence of nuisance substructures in the 330 

FooDB. In this section we repeat that analysis for the updated FooDB. Three filter sets 331 

were used, namely PAINS, Glaxo, and LINT. The first one of these was derived by Baell 332 

and Holloway22 after analysis of a series of high-throughput screens run with the 333 

AlphaScreen technology, and comprise a total of 481 filters, grouped in three families 334 

with decreasing statistical support: family A (16 filters), corresponding to the filters with 335 

the strongest support; family B (55 filters), of filters with median support; and family C, 336 

comprising 409 filters with the lowest statistical support. The PAINS filters were derived 337 

using a relatively “clean” screening collection developed after an in-silico effort to 338 

preclude the presence of inappropriately reactive functional groups, like epoxides, 339 

aziridines, alkyl halides, labile esters, etc.22 Thus, in order to be able in our analysis for 340 

the detection of these substructures, we also included two additional more basic filter 341 

sets: Glaxo, corresponding to 55 filters derived in GlaxoWellcome,19 and LINT, of 57 342 

filters and generated in Pfizer.20 343 

 Figure 4 displays the 18 PAINS filters matched by at least one compound in FooDB, color 344 

coded by filter family (green for family A, blue for family B, and red for family C). We can 345 

see the same set of filters and almost the same distribution as the one observed 346 

previously,29 dominated by “catechol_A(92)”, followed by “quinone_A(370)”, 347 

“imine_one_A(321)” and “azo_A(324)”. No molecules in the updated FooDB match any 348 

more of the 18 matching filters in the old FooDB. The reason is that none of the AG 349 

molecules match any of these filters, while just a few set of 74 NAG match a reduced set 350 

of three filters observed before:29 “catechol_A(92)”, “imine_one_A(321)”, and 351 

“quinone_A(370)”. Because of this, the percentage of molecules filtered by PAINS filters 352 
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is reduced from 6.80% down to 2.23%. If we focus on the most reliable family A, the 353 

percentage of filtered molecules is just a 0.37% (before it was 1.11%), corresponding to 354 

~17% of the total of matches by the PAINS set, while there are 6 filters in this family that 355 

match at least one molecule.  356 

Figure 5 shows the matches distribution for the Glaxo filter set. 35 filters match at least 357 

one molecule, and now the distribution is overwhelmingly dominated by the first filter, 358 

namely “I1 Aliphatic methylene chains 7 or more long”, with a total of 51597 matches. 359 

This is because of the new AG molecules, almost all of them matching this filter, as 360 

expected due to the frequent presence in their structure of long polymethylenic chains. 361 

Other than that, the AG do not match any other Glaxo filter. In the case of the NAG 362 

molecules, again the most frequent filter is “I1 Aliphatic methylene chains 7 or more 363 

long”, but in this case the second one is no longer “N3 Saponin derivatives”, which is 364 

very unusual in these molecules, but instead “I15 Di and Triphosphates”, followed by “I5 365 

Thiols” and “N2 Polyenes”. All in all, no additional Glaxo filter absent in the previous 366 

study29 matches any of the new FooDB molecules.  367 

As regarding the LINT filters (Figure 6), a large increase of matched molecules is 368 

observed for the first two filters, “long aliphatic chain, 6+” and “aliphatic ester, not 369 

lactones”, as compared to the matches in the previous FooDB,29 due again to the large 370 

number of new AG molecules that match these substructures. No additional filter is 371 

matched by the AG compounds, while the NAG ones has as most frequently matched 372 

filter “S/PO3 groups”, followed by the previous “long aliphatic chain, 6+”, “alkyl esters 373 

of S or P” and “aliphatic ester, not lactones”. As was observed with PAINS and Glaxo, no 374 

new filter appears here that were not present in the previous study. 375 
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Table 3 collects the filter match statistics for all these filter sets. We can see that, as said 376 

before, the new compounds decrease the stringency of both the PAINS and PAINS-A 377 

sets, due to the little number of matching molecules in the new FooDB molecules for 378 

these sets (74 in total, all of them in the NAG group). The effect of this is to reduce the 379 

percentage of matched molecules from 6.80% to 2.23% (PAINS), and from 1.11% to 380 

0.37% (PAINS-A). The contrary is observed for Glaxo and LINT, where the percentage of 381 

filtered molecules raises up to 78.45% and 85.11%, respectively, while in the previous 382 

work it was 36.18% and 55.43%. Similar dual effect is observed if we focus on the 383 

normalized percentage of matched molecules: now it is 0.0046%, 0.023%, 1.44%, and 384 

1.49% for PAINS, PAINS-A, Glaxo, and LINT, while before it was 0.014%, 0.069%, 0.658%, 385 

and 0.973%. As in our previous work, the stringency order considering the percentage 386 

of filtered molecules is as follows: PAINS-A < PAINS < Glaxo < LINT. If instead we consider 387 

this percentage but normalized by the number of filters in the set, PAINS and PAINS-A 388 

switch order, but the rest remains the same: PAINS < PAINS-A < Glaxo < LINT. The same 389 

order is observed by the fraction of filters with at least one matching molecule in each 390 

set, that goes from 18 out of 481 in PAINS, to 49 out of 57 in the case of LINT, with 35 391 

out of 55 in the case of Glaxo in between.  392 

All these filter matches are collected in Supporting Information (Table S4). In the same 393 

way, it is expected that this will be useful to identify interferences in biochemical and 394 

biological assays of food compounds.   395 

  396 
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DISCUSSION 397 

A large research effort is being devoted to the determination of the biological 398 

mechanism of action of food compounds, in order to understand the beneficial or 399 

harmful effect of foods in human health.1–9,44 These studies are conducted by 400 

performing biochemical or biological (cellular) assays aiming to see if the food molecule 401 

interacts with some biological target, typically a protein. It is well known from the field 402 

of drug discovery that in some cases an assay can result in a false positive or misleading 403 

outcome due to some property of the tested molecule:10,24,26–28,41 the molecule forms 404 

colloidal aggregates that denature the target protein or has some substructure that 405 

make it prone to membrane disruption, (photo)reactivity, redox cycling, etc., or rather 406 

to generate interferences with the assay signal.18–23,26  407 

In a previous work,29 we applied cheminformatic techniques from the drug discovery 408 

field to identify molecules prone to such false-positive behavior in a database of food 409 

compounds, the FooDB,30 to find food compounds with these putative issues. The FooDB 410 

is (quoting from its web site) “the world’s largest and most comprehensive resource on 411 

food constituents, chemistry and biology. It provides information on both 412 

macronutrients and micronutrients, including many of the constituents that give foods 413 

their flavor, color, taste, texture and aroma”. Here we provide an update of that analysis 414 

after the FooDB more than duplicated its size (~26K compounds to ~71K compounds), 415 

that includes also the use of novel machine learning models to predict aggregation, as 416 

the method used before (Aggregator Advisor12) was not able to give predictions for the 417 

majority of food compounds. We opted to use the so-called SCAM Detective,31 as it has 418 

been observed to yield accuracies ~50% above previous methods, including the 419 
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Aggregator Advisor, and as other methods like the Hit Dexter43 show lower accuracy31 420 

and also predict a slightly different endpoint, namely hit promiscuity, which is a related 421 

but different label (aggregators are all promiscuous, but not all promiscuous compounds 422 

are such because of aggregating behavior).  423 

From a practical point of view, the files provided here as Supplementary Information 424 

should be used by the experimenter to find if the tested compound appears there with 425 

one or more annotations for aggregation and/or interference. If the annotation is for 426 

aggregation, its presence can be experimentally checked by different approaches: 427 

decrease of activity after addition of small quantities of non-ionic detergents, counter-428 

assay in aggregation-sensitive assays (e.g. β-lactamase), or detection of colloidal 429 

aggregates through dynamic light scattering. On the other hand, if the annotation is for 430 

a substructure that generates assay signal interferences (e.g. absorption, fluorescence, 431 

etc.), a possible solution is the test in an orthogonal assay using an alternative 432 

technology and signal. The third option are those interfering substructures that provide 433 

nonspecific activity (promiscuity) through variable mechanisms (e.g. membrane 434 

disruption); in that case it could be possible to run a counter-assay with a different and 435 

unrelated target and the same technology. In general, it is always advisable to check in 436 

public databases like ChEMBL45 or PubChem39 about previously reported activities of the 437 

compound, which would be informative about possible promiscuity issues if the 438 

molecule has shown activity against a wide set of unrelated targets. In addition, if 439 

chemical modifications are performed on the compound, finding a lack of a defined 440 

structure-activity relationship would be a signature of artifactual activity. More 441 
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thorough approaches to these issues have been described elsewhere;46–48 and for more 442 

specifically referring to publication in ACS journals see reference (28). 443 

The updated  prediction performed in this work has increased considerably the number 444 

of putative aggregators in FooDB: 77% for the β-lactamase model and 41% for the 445 

cruzain model. One reason is the AG component of the new FooDB molecules, for which 446 

the β-lactamase model predicts a 95% of aggregators, and the cruzain a 53% (Table 2). 447 

Given the very large hydrophobicity of these molecules (median logP of 17.9) together 448 

with the extreme flexibility of their aliphatic structure, these predictions seem quite 449 

reasonable. The higher hydrophobicity, could also contribute to the increase in 450 

aggregator rates in NAG molecules over the old FooDB molecules, together with the 451 

significantly larger surface areas of the former group as compared to the latter and the 452 

higher number of rotatable bonds.  In addition, another reason for getting many more 453 

aggregators is that the Aggregator Advisor had not been able to give predictions for the 454 

vast majority of the FooDB molecules as just a few of them were similar to one or more 455 

in the list of known aggregators: using a Tanimoto radius of 0.85, only 437 in the old 456 

FooDB, 20 for NAG, and none for the AG. This shows the advantages of the SCAM 457 

Detective, that is trained with a very large and diverse dataset of both aggregators and 458 

non-aggregators and gives predictions for the whole chemical space. Also, it is worth 459 

mentioning that a very large fraction of the FooDB molecules are within the AD of the 460 

SCAM Detective models, for which the predictions are expected to be more reliable, 461 

ranging from 51% to 100% depending on the subset and model. Thus, we expect this 462 

effort to give a much more reliable and comprehensive identification of putative 463 

aggregators in the food molecules of FooDB.  464 
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As regarding the interference filter analysis, in the previous work we applied as 465 

cheminformatic tool three well-known substructure filter sets derived from the high-466 

throughput screening and medicinal chemistry fields: PAINS,22 Glaxo19 and LINT.20 Here 467 

we have applied these filters to the updated FooDB too. As a result, for the PAINS we 468 

have observed a very small number of novel FooDB molecules matching them, so that 469 

the observed current distribution is very similar to the previous one; also the set of 470 

matched filters remains equal. The same set of matched filters are also observed again 471 

with the Glaxo and LINT filters, but in this case the distributions change significantly as 472 

the filters representing long aliphatic chains or aliphatic esters (“I1 Aliphatic methylene 473 

chains 7 or more long” in Glaxo and “long aliphatic chain, 6+” and “aliphatic ester, not 474 

lactones” in LINT) have an enormous increase of hits, corresponding mostly to the new 475 

AG compounds. As a result, the interference rates for these filter sets increase 476 

considerably from the previous analysis, resulting in a total of 78% and 85% for Glaxo 477 

and LINT, respectively (before they were 36% and 55%).  478 

In general, we observe a decrease of drug-like properties in the new FooDB molecules, 479 

with a significant decrease of its drug-like “chemical beauty” (as measured by the 480 

Estimation of Drug-likeness (QED) descriptor35, p-value < 0.001 in post-hoc test, see 481 

Supplementary Material, Table S2) and an increase of aggregator and interference rates 482 

(for the Glaxo and LINT filters). The new FooDB molecules (especially the AG component) 483 

tend to have more hydrophobicity, flexibility, and molecular weight; these factors make 484 

them more prone to aggregation on one hand (also the higher TPSA in the NAG 485 

molecules), and to display the long polymethylene-type of interfering substructure 486 

appearing in the Glaxo and LINT filter sets. The near complete absence of interferences 487 
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of the PAINS filters can on the other hand be explained by considering that the later 488 

were derived from a collection of relatively “clean” compounds previously filtered from 489 

more basic problematic substructures, to make them more amenable as starting points 490 

for drug development. The PAINS filters derived from that collection would be more 491 

specific to drug- or lead-like molecules, probably of a more synthetic origin, and 492 

corresponding to substructures scarcely present in the FooDB.  493 

To conclude, we can say that the putative aggregators and interference matches for the 494 

new FooDB found in this work and available as Supporting Information would help to 495 

decrease the false positives in assays performed with food compounds, by applying, 496 

when present, the approaches discussed above, and therefore to gain a better and more 497 

robust understanding of their biological mechanisms of action, thus reducing the rates 498 

of false positive results in public databases like ChEMBL45 or PubChem39. Other uses for 499 

these predictions would be the prioritization of compounds for testing, applications in 500 

large-scale data mining efforts for understanding structure-activity relationships, design 501 

of reliable nutraceutics, and selection of novel scaffolds for development of new drugs.  502 

  503 
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SUPPORTING INFORMATION 524 

Statistical Analysis of PhysChem Distributions.xlsx. Both p.values for tests for 525 

comparison of physicochemical distributions between groups of compounds (omnibus 526 

and pairwise post-hoc), and descriptive statistics (median + interquartile range) for 527 

these distributions are collected here.   528 

SCAM Detective Predictions for FooDB.xlsx Aggregator predictions for the FooDB using 529 

the SCAM Detective (both β-lactamase and cruzain models). The prediction result (0 530 

non-aggregator, 1 aggregator) plus the AD result (Inside AD vs Outside AD) is shown for 531 

each FooDB compound.  532 

Filter Matches for FooDB.xlsx. Filter matches for PAINS, Glaxo and LINT filter sets for 533 

the updated FooDB 534 

 535 
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FIGURE CAPTIONS 725 

1. Figure 1. Boxplots for distributions of TPSA (topological polar surface area), LOGP 726 

(logarithm of the octanol/water partition coefficient), RB (number of rotatable 727 

bonds), HBD (number of hydrogen bond donors), HBA (number of hydrogen 728 

bond acceptors), MW (molecular weight), QED (quantitative estimation of drug-729 

likeness), NRING (number of rings), and FSP3 (fraction of sp3-hybridized 730 

carbons), for the previous release of FooDB analyzed before29 (FDB(OLD)), new 731 

non-acylglycerol FooDB molecules in the new release (FDB(NEW/NAG)), new 732 

FooDB acylglycerol molecules (FDB(NEW/AG)), and DrugBank molecules (DB). 733 

For clarity purposes, outliers have been removed from the plots.  734 

2. Figure 2. Bemis-Murcko36,37 scaffold distributions (10 top scaffolds only shown in 735 

decreasing frequency) for old FooDB, new FooDB (NAG), and DrugBank 736 

molecules. 737 

3. Figure 3. Fragment contribution maps for SCAM Detective predictions for 738 

FDB00135 (from the former FooDB) and FDB080642 (a novel AG) in the β-739 

lactamase and cruzain models. The former compound is a predicted non-740 

aggregator in both models, while the later is a predicted aggregator in both 741 

models. The color and concentration of contours indicate the direction and 742 

strength of the contribution: magenta for aggregation, and green for non-743 

aggregation. Strong contributions result in concentrated contours, weak in 744 

separated ones.   745 

4. Figure 4. PAINS filter set distribution across FooDB matching molecules. Only the 746 

18 filters with at least one match are displayed. Bars are color coded by filter 747 

family, where family A is green, family B is blue, and family C is red. 748 
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 749 

5. Figure 5. Glaxo filter set distribution across the FooDB matching molecules. Only 750 

the 35 filters with at least one match are displayed.  751 

6. Figure 6. LINT filter set distribution across the FooDB matching molecules. Only 752 

the 49 filters with at least one match are displayed.  753 

 754 
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Table 1. Statistics of Prediction of Aggregators by the SCAM Detectivea 

Compound Set β-lactamase cruzain Both 

FooDB 54147 (76.70) 28815 (40.82) 27707 (39.25) 

FooDB(OLD) 10124 (43.17) 4656 (19.85) 3598 (15.34) 

FooDB(NEW/NAG) 2608 (69.94) 1160 (31.11) 1110 (29.76) 

FooDB(NEW/AG) 41415 (95.39) 22999 (52.98) 22999 (52.98) 

DrugBank 755(34.44) 414 (18.89) 292 (13.32) 
a For the different compound sets, the number (percentage) of predicted aggregators in 
the β-lactamase and cruzain models, and the intersection of both models, are shown. 
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Table 2. Molecules Within Applicability Domain of SCAM Detective Modelsa 

Compound Set β-lactamase cruzain Both 

FooDB 57859 (81.96) 61113 (86.57) 57487 (81.43) 

FooDB(OLD) 11945 (50.93) 14415 (61.46) 11611 (49.51) 

FooDB(NEW/NAG) 2950 (79.11) 3288 (88.17) 2912 (78.07) 

FooDB(NEW/AG) 42964 (98.96) 43410 (99.99) 42964 (98.96) 

DrugBank 1140 (52.01) 1226 (55.93) 1043 (47.58) 

 

a For the different compound sets, the number (percentage) of compounds within the 
applicability domain in the β-lactamase and cruzain models, and the intersection of both 
models, are shown.  
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Table 3. Statistics of Matches of Filter Sets for FooDBa 

Filter Set # filters # matching 
filters 

# matching 
molecules 

Filtered 
molecules 
(%) 

Filtered 
molecules 
/ filter (%) 

PAINS 481 18 1554 2.23 0.0046 

PAINS-A 16 6 260 0.37 0.023 

Glaxo 55 35 54693 78.45 1.44 

LINT 57 49 59337 85.11 1.49 

aFor the sets PAINS, PAINS-A, Glaxo, and LINT, the number of filters, number of matching 

filters, number of matching molecules, filtered molecules (%), and filtered molecules per 

filter (%) are displayed for the updated FooDB compound set. 
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