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The molecular reorganization energy λ strongly influences the charge carrier mobility of organic semiconduc-
tors and is therefore an important target for molecular design. Machine learning (ML) models generally have
the potential to strongly accelerate this design process (e.g. in virtual screening studies) by providing fast
and accurate estimates of molecular properties. While such models are well established for simple properties
(e.g. the atomization energy), λ poses a significant challenge in this context. In this paper, we address the
questions of how ML models for λ can be improved and what their benefit is in high-throughput virtual
screening (HTVS) studies. We find that, while improved predictive accuracy can be obtained relative to a
semiempirical baseline model, the improvement in molecular discovery is somewhat marginal. In particular,
the ML enhanced screenings are more effective in identifying promising candidates but lead to a less diverse
sample. We further use substructure analysis to derive a general design rule for organic molecules with low
λ from the HTVS results.

I. INTRODUCTION

By providing fast and accurate predictions of molecu-
lar properties, chemical machine learning (ML) has the
potential to significantly increase the speed and scope
of molecular discovery.1–3 In this context, much atten-
tion has been paid on properties that are directly avail-
able from single-point electronic structure (e.g. density
functional theory, DFT) calculations, such as atomiza-
tion energies4–6 or molecular orbital energies.7,8 For es-
tablished benchmark sets of small molecules like QM9,9

state-of-the-art ML models now reach extremely high ac-
curacies for such properties, often surpassing the intrinsic
error of the reference electronic structure methods.

Despite this success, there remains a gap between the
small, rigid molecules in QM9 and technologically or
pharmaceutically relevant compounds, which are often
larger and much more flexible. Furthermore, the target
properties of molecular discovery are in practice seldom
simple electronic properties that are directly accessible
through single-point DFT calculations. Instead, complex
properties like the bulk electronic conductivity, pharma-
cological or catalytic activity of a molecule are ultimately
of interest.10 Unfortunately, these are extremely compli-
cated to rigorously simulate even for a single molecule.
In high-throughput virtual screening (HTVS) studies, it
has therefore become common to focus on simplified de-
scriptors that are known to correlate with the property of
interest.11–13 Such descriptors include, e.g., the binding
energy of a key intermediate in catalysis or the internal
reorganization energy (λ) in molecular electronics.

Measuring the energetic cost for charge-carriers to
move between molecular sites,14,15 λ provides an im-
portant contribution to the charge-carrier mobility in
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crystalline and amorphous organic semiconductors.16,17

While computational screening for low-λ molecular struc-
tures has successfully guided discovery,18 its sensitivity to
small variations in molecular structure19 renders a tar-
geted molecular design challenging. Fragment19–21 or
rule-based22,23 design strategies have been proposed to
tackle this problem, while virtual screening24–29 or data-
efficient30,31 discovery were used to assess large molecular
candidate spaces, albeit without fully capturing the un-
derlying structure-property relationships.

A reliable ML-based prediction of λ could fill exactly
this gap — providing significant speed-ups for the assess-
ment of thousands of molecules while potentially allowing
for the extraction of robust chemical rules by explainable
AI.32 ML-based approaches were indeed recently success-
ful for the prediction of λ for rigid molecules,33 while flex-
ible molecules still pose a significant challenge,34 likely
because λ simultaneously depends on two potential en-
ergy surfaces (see Fig. 1).

In this contribution we therefore critically study the
ML prediction of λ (specifically for hole conduction) as
a challenging problem for chemical machine learning.
To this end, we present a new dataset of hybrid DFT-
level reorganization energies for 10.900 carbon and hy-
drogen containing molecules consisting of up to sixty
atoms and five rotatable bonds. A series of Gaussian
Process Regression (GPR)35,36 models are developed for
this dataset, both for straightforward structure/property
mapping and ∆-ML37 using a semiempirical baseline. We
find that the conformational freedom of these molecules
can introduce significant noise to this inference task, so
that the performance of the models is strongly influenced
by the conformer sampling method. We further show
that significant improvements in the predictive perfor-
mance are achieved by adopting the ∆-learning strategy.
Finally, we critically evaluate the usefulness of the ob-
tained ML methods for the discovery of low-λ structures
in a diverse chemical space and for deducing molecular
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FIG. 1. Illustration of the adiabatic potential energy
surfaces of neutral and cationic molecular states. The
reorganization energy λ is here calculated from the four indi-
cated points38 as λ = E0(R+)−E0(R0) +E+(R0)−E+(R+).
Focusing on holes as charge carriers, E0 and E+ are the total
energies of the neutral and cationic molecular states, evalu-
ated at the equilibrium geometries R0 and R+ of the respec-
tive states. In practice, two equilibrium geometries thus need
to be obtained.

design rules.

II. METHODS

Dataset. A set of flexible π-conjugated hydrocarbon
molecules was generated by successively applying a se-
ries of molecular transformation operations to benzene
(see Fig. S1), similar to the procedure used in ref. [30].
At each step, these operations modify structural elements
in the parent molecule or add additional ones. The set
of operations used herein includes biphenyl-conjugation,
annelation (5/6-ring) and ring-contraction, among oth-
ers (see SI for details). Based on these transforma-
tions, molecular structures with up to four rings and two
linker atoms were randomly generated, leading to 131.810
unique structures. This set forms the virtual screening
space for this study. DFT calculations were performed
for a subset of 10.900 structures (see below).

While these molecules thus purposely cover a diverse
molecular and conformational space, we note that —as
with any enumerated chemical dataset— unstable and
reactive systems could be contained and synthesizabil-
ity should be assessed separately. All chemoinformatics-
related tasks were carried out using RDKit 2019.09.03.39

Reorganization energies. Reorganization energies
were calculated for the lowest-energy conformer of each
molecule. To determine this conformer, RDKit is first

used to compute 2D coordinates for the molecular graph,
while an initial 3D structural guess is obtained and
relaxed at the GFN2-xTB level using the xTB pro-
gram (v6.3.0).40 Conformational search is then carried
out using the iterative meta-dynamics sampling and ge-
netic crossover (iMTD-GC) approach, as implemented
in the ”Conformer–Rotamer Ensemble Sampling Tool”
(CREST).41 Here, three different settings were compared
as fully detailed in the results section.

For the lowest-energy conformers, reorganization en-
ergies were computed at the GFN1-xTB level (λGFN1).
Electronic descriptor values entering property-based ML
models (see below) were also extracted from results of
these calculations. These include frontier orbital energies
and their gaps, Fermi levels, total energies and vertical
energy differences. Final target λDFT values were calcu-
lated at the B3LYP42–44 level of theory using the FHI-
AIMS45 code, including the TS dispersion correction46.
Electronic wave functions were expanded in an extended
tier 1 basis set using ”light” integration settings. Note
that this level of theory is commonly employed for char-
acterizing organic semiconductors, thus forming a good
reference method for this study.19,25,28,47

ML models. All models presented herein use GPR,
a probabilistic machine learning method that allows for
the smooth interpolation of property values from data.
Specifically, these models infer the underlying relation-
ship between different molecular representations and λ,
based on a training set D = {X,y}. Here, X is a ma-
trix consisting of molecular representation vectors x(i)

and y is a vector of target properties for the training
molecules, with elements y(i). Predictions for a set of un-
seen molecular representations X∗ can then be obtained
as the predictive mean

y(X∗) = α K(X∗,X), (1)

where the covariance (or kernel) matrix K with ele-
ments Kij = K(x(i),x(j)) quantifies the similarity be-
tween molecular representations. The coefficients α min-
imize a regularized least-squares error between property
predictions and reference values and can be calculated as

α = (K(X,X) + σ2
n1)−1y (2)

where K(X,X) is again a covariance matrix. The hy-
perparameter σn incorporates observation noise, in this
case, e.g. related to uncertainty due to conformational
sampling (see below).

In all models reported herein, the commonly used ra-
dial basis function (RBF) kernel is employed:

k(x(i),x(j)) = σ2
f exp

(
−d(x(i),x(j))2

2 l2

)
(3)

where the l is the kernel length-scale, σ2
f is the signal

variance and d(., .) is the Euclidean distance.
A series of GPR models are presented herein, which

differ in the type of representation and in how the covari-
ance matrix is constructed. The most straightforward of
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FIG. 2. Conformational diversity of the dataset. a) Random molecules contained in the dataset. b) Variability of λDFT

obtained for full conformer ensembles derived from conf1 searches. Respective values obtained for the lowest-energy DFT or
GFN1-xTB conformers are marked. c) Correlation between λGFN1 for the lowest energy conformers obtained by with conf1

and conf2. Outliers are marked in orange. d) Improved correlation is obtained for conf3, while outliers of c) are again marked
in orange.

these uses a representation of the molecular geometry of
the lowest-energy conformer in the neutral charge state.

This representation x
(i)
s is constructed in two steps. First,

each atomic environment is encoded into a rotationally
invariant local representation using the smooth overlap of
atomic positions (SOAP)48 as implemented in Dscribe49

(see Fig. S2 for details). These atomic representations
are then combined into molecular representations using
the auto-bag method50, which partitions the local feature
vectors into kmax clusters using the k-means algorithm.51

Each molecular structure can then be encoded by a kmax-
dimensional global feature vector that counts the occur-
rence of local environments that are assigned to each
cluster. The effect of the hyperparameter kmax on the
predictive performance is shown in Fig. S3, arriving at a
converged value of 500.

Note that above we introduced the subscript s to re-
fer to the use of structure-based molecular representa-
tions and the corresponding baseline ML model is de-
noted with Ks. Furthermore, a model termed Kp based
on electronic properties computed at the semiempirical
GFN1-xTB level was developed, with the correspond-

ing representation x
(i)
p (see below for details). Finally,

a model Ksp is explored, that combines the two kernel

functions as Ksp(i, j) = Ks(x
(i)
s ,x

(j)
s ) + Kp(x

(i)
p ,x

(j)
p ).

The hyperparameters θs = (σfs , ls, σn),
θp = (σfp , lp, σn), and θsp = (σfs , σfp , ls, lp, σn) for
the respective models are determined by maximizing
their log-marginal likelihood over D using the L-BFGS
algorithm with randomly sampled initial values. Our
custom GPR model is based on respective code from the
scikit-learn52 implementation.

III. RESULTS

Conformer sampling. The hydrocarbon dataset
presented herein contains molecules with diverse struc-
tural elements (see Fig. 2a for 10 randomly selected ex-
amples). While the enumerated 2D molecular graphs
contain information on molecular bonding, they do not
fully determine the molecular geometry, e.g. with re-
spect to relative configurations around rotatable single
bonds. As an example, 115.888 (53.046) of the contained
molecules incorporate at least 2 (4) rotatable bonds, with
a maximum of 5 rotatable bonds occuring overall. We
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FIG. 3. Effect of improved conformer searches on
learning behavior. Learning curves for λDFT and λGFN1 us-
ing the conf2 and conf3 conformer search protocols. Training
sets for λGFN1 (λDFT) consist of up to 9.900 (880) molecules,
with 1.000 (100) unseen data points used to evaluate the pre-
dictive errors. Shaded errors indicate the standard deviation
for five randomly draw training sets of each size. Note that
the DFT assessment was stopped earlier due to the signifi-
cantly higher computational cost of the method.

thus expect a significant conformational flexibility for
these molecules. This flexibility can influence the ML
predictions of λ in two ways. First, the reference λ values
may depend on the conformer and second, the ML pre-
diction of λ is based on a representation derived from a
3D molecular geometry. To arrive at an internally consis-
tent procedure when comparing among different molecu-
lar systems, we therefore focus on the lowest energy con-
formers that we can identify for each molecular system.

This means that we require a robust and efficient pro-
tocol for the search of low-energy conformers. To this end
we rely on semiempirical and force-field methods from
the GFN family, which have recently been established
for this purpose. These are used in combination with
CREST, which implements a purpose-built workflow for
conformational search.41 Depending on the underlying
energy function, the accuracy and computational cost of
this search can vary significantly, however. We therefore
tested three different workflows, denoted as conf1-3.

In our reference method (conf1), we employ CREST
in combination with the density functional tight-binding
method GFN1-xTB40. Performing conformer searches
for the 10 molecules of Fig. 2a, we find that between 3
and 90 conformers are identified within the default en-
ergy window of 6 kcal/mol (260 meV) above the lowest
energy one, underscoring the conformational flexibility
of molecules in our dataset. For these conformer ensem-
bles, we show the wide range of encountered λDFT values
in Fig 2b. Importantly, there is little variation between
the values of λDFT calculated for the lowest-energy con-
formers at the GFN1-xTB and DFT level, which sug-
gests that GFN1-xTB conformers are a reliable proxy
for the true first-principles ground state geometry. Un-
fortunately, performing the full conformer search at the

FIG. 4. Learning curves for various ML models. Com-
parison of Ks models with various ∆-learning approaches.
Shadings analogous to Fig 3.

GFN1-xTB level is computationally prohibitive for hun-
dreds of thousands of molecules, however.

Alternatively, the significantly more efficient force-
field method GFN-FF53 can be used, and the con-
former search be accelerated using the ’quick’ setting in
CREST (herein termed conf2). For 100 randomly se-
lected molecules, Fig 2c shows a comparison of λGFN1

values for the lowest-energy conformers obtained with
conf1 and conf2. While the bulk of the predictions falls
within the error margins of ± 20 meV, we also find 16
outliers – marked in orange. These can be attributed to
an incomplete coverage of conformational space in the
conf2 ensemble and to differences in the energetic rank-
ing between GFN1-xTB and GFN-FF.

To address the latter point, in conf3 we therefore com-
bine the higher accuracy of GFN1-xTB and the compu-
tational speed of GFN-FF: A conformer ensemble is gen-
erated with CREST at the GFN-FF level, while a subse-
quent local relaxation and energetic re-ranking is carried
out using GFN1-xTB. Comparing again to conf1, we
see a significantly better agreement between the meth-
ods (see Fig. 2d), with 5 remaining outliers falling be-
yond the error margins of ± 20 meV. It should be noted,
that conformer searches are in general a difficult global
optimization problem, which cannot be solved determin-
istically in an efficient manner. Therefore, some amount
of uncertainty is unavoidable and will affect the ML mod-
els in all cases. As discussed in the following, achieving
lower uncertainty at this stage leads to significantly lower
predictive errors, however.

Structure-based ML models. Having established
an efficient conformer search workflow, we now turn to
structure based ML models for predicting λ (Ks). As
these model require 3D geometries as inputs, they are
well suited to investigate the effect of the conformer
search protocols on the ML models themselves, see Fig
3. Here, learning curves for λGFN1 and λDFT are shown.
While all models improve with more data, two striking
differences can be seen. First, the models using the more
accurate conformer search conf3 are consistently better
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FIG. 5. Results of the targeted identification of low-λ structures. a) Distribution of λDFT values in the final selections
derived from three different methods (see text). We only consider compounds that satisfy λDFT < 200 meV. b) Kernel Principal
Component Analysis map of the identified structures (generated with the ASAP54 code). Kernel-density estimates are shown
along the principal components.

than the ones using conf2. Second, the predictive error
is consistently lower for λGFN1 than for λDFT.

In part, this can be explained by the smaller range
of λGFN1 values (see below). However, a fundamental
difference between the two targets also exists: While we
predict λGFN1 on the basis of the corresponding neutral
state molecular equilibrium structures, this does not hold
for λDFT. In, the latter case, the differing neutral state
equilibrium geometries (between GFN1-xTB and DFT)
further complicate the learning task.

It should be noted here that learning λGFN1 is itself
only of methodological interest, however. Indeed, the
conf3 search requires GFN1-xTB for energy ranking,
which has a similar computational effort to calculating
λGFN1. In the following, we therefore exclusively focus
on predicting λDFT, using conf3 for structure generation.
To this end we extended our DFT annotated dataset to
cover in total 10.900 molecules, randomly drawn from the
full hydrocarbon database. The distribution of obtained
λDFT values is shown in Fig S3. 1.000 molecules served
as an external test set for model validation, while at max-
imum 9.600 of the remaining 9.900 entered the respective
training sets.

Beyond structure-based models. While the above
results show that λDFT can be learned from the struc-
ture, the accuracy of the models leaves something to be
desired, given that the intrinsic standard deviation of
the dataset is ca. 80 meV. This underscores our pre-
vious point on the highly challenging nature of λ as a
target property, e.g. compared to the atomization en-
ergy. Furthermore, robust models require the use of
GFN1-xTB for conformer ranking. It is therefore nat-
ural to ask whether electronic properties at the GFN1-
xTB level could be used to improve these models. The
most straightforward way to do this is via a ∆-learning37

strategy, i.e. by learning a correction to λGFN1. To this
end, we first use a simple linear regression to describe

systematic differences between λDFT and λGFN1:

λlin = a · λGFN1 + b (4)

This linear model alone yields a stable MAE of 40
meV, independent of the training set size. It thus out-
performs the structure based Ks models for all but the
largest training sets (see Fig. 4). Defining as a new target
property:

λ∆ = λDFT − λlin , (5)

we can now build ∆-learning models that further improve
on the linear approach. As expected, the ∆-learning vari-
ant of Ks (termed ∆Ks) indeed performs significantly
better than both the linear and the baseline model, ap-
proaching an MAE of 30 meV at the largest training set
size.

The GFN1-xTB calculations required for obtaining
λGFN1 can also be exploited in a different way. One chal-
lenge for the structure-based models is the indirect rela-
tionship between the neutral GFN1-xTB geometry and
λDFT. We therefore also explored property-based mod-
els (termed Kp) which use frontier orbital energies and
gaps, Fermi levels, total energies and vertical energy dif-
ferences of the neutral and cationic system to construct
a representation, as fully detailed in Table S2. The re-
spective ∆Kp model is actually slightly better than the
corresponding structure-based model ∆Ks, despite not
including any structural information. Finally, a com-
bined model incorporating the structural and property
kernels (termed ∆Ksp), performs better still, reaching
an MAE of 25 meV at the largest training set size.

ML-assisted virtual screening. So far, we have
seen that in a ∆-ML setting, the presented GPR mod-
els can lead to a modest increase in predictive perfor-
mance relative to a semiempirical baseline method. This
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FIG. 6. Lowest-λDFT candidates. Shown are the best candidates identified among 120k molecules in the three virtual
screening campaigns. The corresponding λDFT values are listed below.

raises the question of whether this improvement has a
tangible effect on the results of a HTVS for low-λDFT

molecules. To address this issue, we applied ∆Ks, ∆Ksp

(each trained on 9600 molecules) and GFN1-xTB to
screen 120.910 previously unseen molecules for promising
candidates. For each model, we extracted 500 candidates
with the lowest predicted λ and calculated their actual
λDFT values.

As illustrated in Fig 5a, all three methods are quite
successful in identifying promising candidates: From the
500 selected systems, GFN1-xTB identifies 436 molecules
that display λDFT < 200 meV, compared to the some-
what higher numbers for the ∆Ks and the ∆Ksp models
(where 487 and 492 are respectively identified). Narrow-
ing the range to λDFT < 140 meV, the ∆Ksp still per-
forms best and identifies 251 structures, while the ∆Ks

and the GFN1-xTB identify 217 and 118 such cases, re-
spectively.

The 20 lowest-λ structures from all three screenings are
shown in Fig 6. Interestingly, 15 compounds in this sub-
set were identified by the GFN1-xTB screening, while
the ∆Ks and ∆Ksp models identified 9 and 11, falling
slightly behind. In other words, the GFN1-xTB model
actually has an edge over the ML model when consider-
ing the extreme low end of the distribution, although it
is in general less effective in identifying low-λ structures.
It is also notable that, although some overlap between
the methods is observed (i.e. from the 1500 molecules
selected by the three screenings only 1131 are unique
candidates), many structures are exclusively identified
by one method, in particular by GFN1-xTB. This is il-
lustrated by the Kernel Principal Component Analysis
map54 shown in Fig 5b, which places similar molecular
structures close to each other. Clearly, the semiempirical

GFN1-xTB model overall exhibits the highest diversity,
while the candidates selected by the data-driven models
appear somewhat more concentrated. This reflects the
fact that GPR models use metrics of molecular similar-
ity in their predictions.

Substructure Analysis. Given a set of candidates
from HTVS like the one in Fig. 6, it is natural to ask what
makes these systems such good candidates. If general
design rules could be obtained from this set, this would
arguably be even more useful than the candidates them-
selves. Visual inspection indeed points to certain struc-
tural motifs that are fairly common, such as cyclopenta-
diene moieties and acetylene-bridged aromatic rings.

A more quantitative understanding of this can be ob-
tained from a substructure analysis. To this end, we anal-
ysed whether certain structural motifs are significantly
more likely to be found in the low-λ subset than in the
full dataset. This can be quantified via the enrichment
of a given substructure, defined as

χi =
(ni,low /Nlow)

(ni,all /Nall)
. (6)

where ni,low and ni,all are the number of times substruc-
ture i is found in the low-λ and full datasets, while
Nlow and Nall are the total number of molecules in each
dataset. We complement this metric with the frequency
of a given substructure in the dataset, defined as

fi = (ni,all /Nall) . (7)

To obtain a general design rule, we search for substruc-
tures with both high enrichment and reasonably high fre-
quency. This allows balancing between overly specific
substructures that only occur in very few molecules to
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FIG. 7. Substructure analysis. a) The enrichment and frequency of different substructures in the low-λ and full datasets,
respectively. b) Analysed substructures. c) The kernel density estimated λDFT distributions of substructure 5 in the full
training and validation sets (in 10900 DFT data). d) Violin plots of λDFT for all substructures in all λDFT data.

begin with (high enrichment/low frequency) and overly
simple motifs that occur in many molecules, independent
of λ (low enrichment/high frequency).

As a preliminary screening, potential substructures
were defined via Morgan-fingerprints55 of different bond-
radii (see Fig. 8). As illustrated in Fig. S5, this re-
vealed a number of highly enriched substructures, which
confirmed the initial impression that acetylene-bridged
and cyclopentadiene containing structures are highly
favourable. However, the substructures obtained in this
fashion are often redundant and chemically unintuitive
(i.e. by only containing parts of aromatic rings). We
therefore manually derived a number of reasonable sub-
structures from this analysis, in order to elucidate a ro-
bust and general design rule for low-λ molecules (see
Fig. 7). Here, we focused on acetylene-bridged benzene
rings, as cyclopenatdiene is prone to dimerize in Diels-
Alder reactions, pointing to potential stability issues with
these molecules.

In Fig. 7a, we plot the enrichment and frequency of
each substructure. This reveals a contravening trend:
The simplest structure (1) is very common in the full
dataset, but also displays very low enrichment in the low-
λ set. In contrast, the more elaborate structures (8) and
(9) are highly enriched, but very rare overall. Meanwhile

FIG. 8. Graphical illustration of Morgan fingerprints
with various radii. Fingerprints allow highlighting common
structural motifs but also produce redundant results and may
unintuitively cut through aromatic rings or functional groups.

substructure (5) (two meta-substituted acetylene-bridged
benzene rings) features a quite high enrichment and is
also fairly common in the database. As a consequence,
ten further molecules with this motif can be found in
the previously computed set of 10.900 λDFT-values. This
allows us to confirm that the corresponding molecules
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indeed display significantly lower reorganization energies
than the full training set (Fig. 7c).

The distributions of λDFT-values for all substructures
are shown in Fig. 7d. This confirms the impression ob-
tained from the enrichment plots. Simple substructures
like (1) are generally unspecific and can be found in both
high- and low-λ molecules. Meanwhile, highly enriched
substructures indeed robustly predict high quality can-
didates, and can thus be used to define general design
rules.

IV. CONCLUSION

In this work we have explored the potential benefits
of using ML models to enhance virtual screening studies
for molecules with low reorganization energies λ. We find
that this is a challenging setting for molecular ML, both
because of the conformational flexibility of the molecules
and the intrinsic difficulty of predicting λ from the equi-
librium geometry alone. Both aspects can be mitigated
by using a semiempirical electronic structure method for
conformer searching and as a baseline model.

While this leads to a significant improvement of the
predictive performance compared to the baseline, we find
that the benefits of this are actually somewhat marginal
in the context of virtual screening. Specifically, ML en-
hanced screening is more effective in identifying promis-
ing candidates, but the semiempirical model actually has
some advantages in terms of candidate diversity. This
calls into question whether the cost of building the ML
models (in particular the generation of training data) is
actually justified. To obtain a clear advantage, more ac-
curate and/or data-efficient models are thus required.

One way to achieve this would be to work with full con-
former ensembles rather than single conformers to con-
struct the representations.56 It should also be noted that
packing and contact effects occurring in molecular crys-
tals or amorphous structures are known to influence the
encountered solid-state conformation and flexibility for
geometrical relaxation.26,57,58 Potentially, generative ML
models trained on condensed phase data could therefore
help producing more realistic conformer ensembles.

Supporting Information

Details on structure generation, electronic properties,
hyperparameters and substructure analysis.
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